2019
Том 71
№ 5

All Issues

Skorokhod A. V.

Articles: 21
Anniversaries (Ukrainian)

Yuri Yurievich Trokhimchuk (on his 80th birthday)

Berezansky Yu. M., Bojarski B., Gorbachuk M. L., Kopilov A. P., Korolyuk V. S., Lukovsky I. O., Mitropolskiy Yu. A., Portenko N. I., Reshetnyak Yu. G., Samoilenko A. M., Sharko V. V., Shevchuk I. A., Skorokhod A. V., Tamrazov P. M., Zelinskii Yu. B.

Full text (.pdf)

Ukr. Mat. Zh. - 2008. - 60, № 5. - pp. 701 – 703

Anniversaries (Ukrainian)

Volodymyr Semenovych Korolyuk (the 80th anniversary of his birth)

Bratiichuk N. S., Gusak D. V., Kovalenko I. N., Portenko N. I., Samoilenko A. M., Skorokhod A. V.

Full text (.pdf)

Ukr. Mat. Zh. - 2005. - 57, № 9. - pp. 1155-1157

Anniversaries (Ukrainian)

Mykhailo Iosypovych Yadrenko (On His 70th Birthday)

Buldygin V. V., Korolyuk V. S., Kozachenko Yu. V., Mitropolskiy Yu. A., Perestyuk N. A., Portenko N. I., Samoilenko A. M., Skorokhod A. V.

Full text (.pdf)

Ukr. Mat. Zh. - 2002. - 54, № 4. - pp. 435-438

Anniversaries (Ukrainian)

Mykola Ivanovych Portenko (On His 60th Birthday)

Dorogovtsev A. A., Kopytko B.I., Korolyuk V. S., Mitropolskiy Yu. A., Samoilenko A. M., Skorokhod A. V., Sytaya G. N.

Full text (.pdf)

Ukr. Mat. Zh. - 2002. - 54, № 2. - pp. 147-148

Article (Ukrainian)

On Randomly Perturbed Linear Oscillating Mechanical Systems

Skorokhod A. V.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2000. - 52, № 9. - pp. 1294-1303

We prove that the amplitudes and the phases of eigenoscillations of a linear oscillating system perturbed by either a fast Markov process or a small Wiener process can be described asymptotically as a diffusion process whose generator is calculated.

Anniversaries (Ukrainian)

On the 75th Birthday of Vladimir Semenovich Korolyuk

Gusak D. V., Kovalenko I. N., Samoilenko A. M., Skorokhod A. V., Yadrenko M. I.

Full text (.pdf)

Ukr. Mat. Zh. - 2000. - 52, № 8. - pp. 1011-1013

Anniversaries (Ukrainian)

Anatolii Mikhailovich Samoilenko (on his 60th birthday)

Berezansky Yu. M., Boichuk A. A., Korneichuk N. P., Korolyuk V. S., Koshlyakov V. N., Kulik V. L., Luchka A. Y., Mitropolskiy Yu. A., Pelyukh G. P., Perestyuk N. A., Skorokhod A. V., Skrypnik I. V., Tkachenko V. I., Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 1998. - 50, № 1. - pp. 3–4

Anniversaries (Ukrainian)

Yurii L’vovich Daletskii

Berezansky Yu. M., Korolyuk V. S., Krein S. G., Mitropolskiy Yu. A., Samoilenko A. M., Skorokhod A. V.

Full text (.pdf)

Ukr. Mat. Zh. - 1997. - 49, № 3. - pp. 323–325

Article (English)

Measure-valued diffusion

Skorokhod A. V.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 1997. - 49, № 3. - pp. 458–464

We consider the class of continuous measure-valued processes {μ t } on a finite-dimensional Euclidean space X for which ∫fd μ t is a semimartingale with absolutely continuous characteristics with respect to t for all f:X→R smooth enough. It is shown that, under some general condition, the Markov process with this property can be obtained as a weak limit for systems of randomly interacting particles that are moving in X along the trajectories of a diffusion process in X as the number of particles increases to infinity.

Article (Ukrainian)

Dynamical systems under the action of fast random perturbations

Skorokhod A. V.

Full text (.pdf)

Ukr. Mat. Zh. - 1991. - 43, № 1. - pp. 3-21

Article (Ukrainian)

A central limit theorem for Hermitian polynomials of independent Gaussian variables

Skorokhod A. V., Stepakhno V. I.

Full text (.pdf)

Ukr. Mat. Zh. - 1990. - 42, № 12. - pp. 1681–1686

Article (Ukrainian)

Vladimir Semenovich Korolyuk (on his sixtieth birthday)

Gusak D. V., Mitropolskiy Yu. A., Skorokhod A. V.

Full text (.pdf)

Ukr. Mat. Zh. - 1985. - 37, № 4. - pp. 488–489

Article (Ukrainian)

Korolyuk V. S., Skorokhod A. V.

Full text (.pdf)

Ukr. Mat. Zh. - 1984. - 36, № 5. - pp. 571 – 575

Article (Ukrainian)

Distribution of functionals of certain processes with independent increments with a restraining boundary

Akhmedova G. M., Skorokhod A. V.

Full text (.pdf)

Ukr. Mat. Zh. - 1979. - 31, № 1. - pp. 54–62

Article (Ukrainian)

Asymptotic method for probability problems

Gusak D. V., Mitropolskiy Yu. A., Skorokhod A. V., Turbin A. F.

Full text (.pdf)

Ukr. Mat. Zh. - 1975. - 27, № 4. - pp. 471–476

Article (Ukrainian)

Solution and stability of a system of two linear homogeneous first order differential equations with variable coefficients

Nasirova T. I., Skorokhod A. V.

Full text (.pdf)

Ukr. Mat. Zh. - 1973. - 25, № 3. - pp. 400—405

Article (Ukrainian)

On the 150-th anniversary of the birth P. L. Chebyshev

Gavrilyuk V. T., Rémès E. J., Skorokhod A. V.

Full text (.pdf)

Ukr. Mat. Zh. - 1972. - 24, № 1. - pp. 

Article (Russian)

Difference equations and Markov chains

Gatun V.P., Skorokhod A. V.

Full text (.pdf)

Ukr. Mat. Zh. - 1969. - 21, № 3. - pp. 305–315

Brief Communications (Russian)

Absolute continuity of a family of measures depending on a parameter

Skorokhod A. V.

Full text (.pdf)

Ukr. Mat. Zh. - 1965. - 17, № 5. - pp. 129-135

Article (Russian)

Limiting distributions for additive functionals of a sequence of sums of independent equally distributed lattice random variables

Skorokhod A. V., Slobodenyuk N. P.

Full text (.pdf)

Ukr. Mat. Zh. - 1965. - 17, № 2. - pp. 97-105

Article (Russian)

Some limit theorems for additive functionals of a sequence of sums of independent random variables

Skorokhod A. V.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 1961. - 13, № 4. - pp. 67-78

Let $\xi_1, \xi_2,... \xi_n,...$ be independent identically distributed random variables, $s_{n0} = 0,\; s_{nk} = \cfrac1{\sqrt{n}}(\xi_1 + ... + \xi_k)$; and $\Phi_n(x_0, x_1, ..., x_r)$ the sequence of non-negative measurable functions for which $\lim_{n\rightarrow \infty}\sup_{x_0, x_1, ..., x_n}\Phi_n(x_0, x_1, ..., x_r) = 0$.
Limit theorems for random variables $\cfrac1n\sum_{k=0}^{n-r}\Phi_n(s_{nk},...,s_{nk+r})$ are obtained in the article.