2019
Том 71
№ 6

All Issues

Grigoreva T. I.

Articles: 3
Brief Communications (Russian)

Properties of parabolic Kählerian spaces admitting an almost geodesic mapping of the type π2 with degenerate affinor structure

Grigoreva T. I.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2007. - 59, № 11. - pp. 1574–1579

We study an almost geodesic mapping of Riemann spaces with parabolic affinor structure. Some properties of parabolic Kählerian spaces admitting an almost geodesic mapping are established.

Article (Ukrainian)

Invariant Geometric Objects of the Canonical Almost-Geodesic Mapping π2 (e = 0)

Grigoreva T. I.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2002. - 54, № 10. - pp. 1329-1335

For the canonical almost-geodesic mapping π2 (e = 0), we prove an analog of the Beltrami theorem in the theory of geodesic mappings. We introduce canonical π2-flat spaces and obtain metrics for them in a special coordinate system.

Article (Russian)

$\Gamma$-Transformation of Parabolic Kählerian Spaces Related by an Almost Geodesic Mapping π2 $π_2 (e = 0)$

Grigoreva T. I.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2001. - 53, № 4. - pp. 449-454

For parabolic Kählerian spaces, we obtain a new form of the main equations and construct a Γ-transformation that enables one to convert a certain pair of related parabolic Kählerian spaces into an infinite sequence of different related parabolic Kählerian spaces.