2019
Том 71
№ 4

All Issues

Danilov V. Ya.

Articles: 5
Article (Ukrainian)

Viscous solutions for the Hamilton – Jacobi – Bellman equation on time scales

Danilov V. Ya., Lavrova O. E., Stanzhitskii A. N.

↓ Abstract

Ukr. Mat. Zh. - 2017. - 69, № 7. - pp. 933-950

We introduce the concept of viscous solution for the Bellman equation on time scales and establish сonditions for the existence and uniqueness of this solution.

Anniversaries (Ukrainian)

Dmytro Ivanovych Martynyuk (on the 70th anniversary of his birthday)

Danilov V. Ya., Gorodnii M. F., Kirichenko V. V., Perestyuk N. A., Samoilenko A. M.

Full text (.pdf)

Ukr. Mat. Zh. - 2012. - 64, № 4. - pp. 571-573

Anniversaries (Ukrainian)

Dmytro Ivanovych Martynyuk (On the 60th Anniversary of His Birth)

Danilov V. Ya., Mitropolskiy Yu. A., Perestyuk N. A., Samoilenko A. M.

Full text (.pdf)

Ukr. Mat. Zh. - 2002. - 54, № 3. - pp. 291-292

Article (Russian)

Periodic solutions of systems of differential equations with random right-hand sides

Danilov V. Ya., Martynyuk D. I., Stanzhitskii A. N.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 1997. - 49, № 2. - pp. 223–227

We prove a theorem on the existence of periodic solutions of a system of differential equations with random right-hand sides and small parameter of the form dx/dt=εX(t, x, ξ(t)) in a neighborhood of the equilibrium state of the averaged deterministic system dx/dtX 0(t).

Article (Russian)

Second bogolyubov theorem for systems of difference equations

Danilov V. Ya., Martynyuk D. I., Pan'kov V. G.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 1996. - 48, № 4. - pp. 464-475

We establish an analog of the second Bogolyubov theorem for a system of difference equations.