2019
Том 71
№ 6

All Issues

Guo Y.

Articles: 2
Article (English)

Globally robust stability analysis for stochastic Cohen – Grossberg neural networks with impulse control and time-varying delays

Guo Y.

↓ Abstract

Ukr. Mat. Zh. - 2017. - 69, № 8. - pp. 1049-1060

By constructing suitable Lyapunov functionals, in combination with the matrix-inequality technique, a new simple sufficient linear matrix inequality condition is established for the globally robustly asymptotic stability of the stochastic Cohen – Grossberg neural networks with impulsive control and time-varying delays. This condition contains and improves some previous results from the earlier references.

Article (English)

Solvability of boundary-value problems for nonlinear fractional differential equations

Guo Y.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2010. - 62, № 9. - pp. 1211–1219

We consider the existence of nontrivial solutions of the boundary-value problems for nonlinear fractional differential equations $$D^{α}u(t)+λ[f(t,u(t))+q(t)]=0,\; 0 < t < 1, \; u(0) = 0,\; u(1) = βu(η),$$ where $λ > 0$ is a parameter, $1 < α ≤ 2,\; η ∈ (0, 1),\; β ∈ \mathbb{R} = (−∞,+∞),\; βη^{α−1} ≠ 1,\; D^{α}$ is a Riemann–Liouville differential operator of order $α$, $f: (0,1)×\mathbb{R}→\mathbb{R}$ is continuous, $f$ may be singular for $t = 0$ and/or $t = 1$, and $q(t) : [0, 1] → [0, +∞)$. We give some sufficient conditions for the existence of nontrivial solutions to the formulated boundary-value problems. Our approach is based on the Leray–Schauder nonlinear alternative. In particular, we do not use the assumption of nonnegativity and monotonicity of $f$ essential for the technique used in almost all available literature.