2019
Том 71
№ 9

# Sharan V.L.

Articles: 4
Brief Communications (Russian)

### On zeros, singular boundary functions, and modules of angular boundary values for one class of functions analytic in a half-plane

Ukr. Mat. Zh. - 2004. - 56, № 6. - pp. 851–856

We obtain the description of the zeros, singular boundary functions, and modules of angular boundary values of the functions $f \neq 0$ which are analytic in the half-plane $C_{+} = \{ z : \Re z > 0 \}$ and satisfy the condition $$( \forall \varepsilon > 0 ) ( \exists c_1 > 0 ) (\forall z \in \mathbb{Ñ}_{+} ): | f ( z ) | \leq c_1 \exp ( (\sigma + \varepsilon) | z \eta ( | z | ) ),$$, where $0 \leq \sigma < +\infty$ is a given number and $\eta$ is a positive function continuously differentiable on $[0; +\infty$ and such that $t\eta'(t)/\eta(t) \rightarrow 0$ as $t \rightarrow + \infty$/

Brief Communications (Ukrainian)

### On Zeros of One Class of Functions Analytic in a Half-Plane

Ukr. Mat. Zh. - 2003. - 55, № 9. - pp. 1254-1259

We describe sequences of zeros of functions f ≢ 0 analytic in the half-plane ${\mathbb{C}}_ + = \{ z:\operatorname{Re} z >0\}$ and satisfying the condition $(\exists {\tau}_1 \in (0;1))(\exists c_1 >0)(\forall z \in {\mathbb{C}}_ + ):|f(z)| \leqslant c_1 \exp ({\eta}^{\tau }_1 (c_1 |z|)),$ where η: [0; +∞) → (0; +∞) is an increasing function such that the function ln η(r) is convex with respect to ln r on [1; +∞).

Article (Ukrainian)

### On zeros of functions of given proximate formal order analytic in a half-plane

Ukr. Mat. Zh. - 1999. - 51, № 7. - pp. 904–909

We describe sequences of zeros of functionsf≢0 that are analytic in the half-plane ℂ+={z:Rez> and satisfy the condition $$\forall \varepsilon > 0\exists c_1 \in (0; + \infty )\forall z \in \mathbb{C}_{\text{ + }} :\left| {f(z)} \right| \leqslant c_1 \exp \left( {(\sigma + \varepsilon )\left| z \right|\eta (\left| z \right|)} \right)$$ where 0≤σ<+∞ and η is a positive function continuously differentiable on [0; +∞) and such thatxη′(x)/η(x)→0 asx→+∞.

Article (Ukrainian)

### Description of sequences of zeros of one class of functions analytic in a half-plane

Ukr. Mat. Zh. - 1998. - 50, № 9. - pp. 1169–1176

We describe sequences of zeros of functions ƒ ≠ 0 that are analytic in the right half-plane and satisfy the condition ¦ƒ(z)¦ ≤ 0(1) exp (σ¦ z ¦η(¦ z ¦)), 0 ≤ <+ ∞, Re z > 0, where η: [0; + ∞) → (- ∞; + ∞) is a function of bounded variation.