# Vlasenko M. A.

### On configurations of subspaces of a Hilbert space with fixed angles between them

Ukr. Mat. Zh. - 2004. - 56, № 5. - pp. 606–615

We investigate the set of irreducible configurations of subspaces of a Hilbert space for which the angle between every two subspaces is fixed. This is the problem of *-representations of certain algebras generated by idempotents and depending on parameters (on the set of angles). We separate the class of problems of finite and tame representation type. For these problems, we indicate conditions on angles under which the configurations of subspaces exist and describe all irreducible representations.

### Equations with Random Gaussian Operators with Unbounded Mean Value

Ukr. Mat. Zh. - 2002. - 54, № 2. - pp. 170-177

We consider an equation in a Hilbert space with a random operator represented as a sum of a deterministic, closed, densely defined operator and a Gaussian strong random operator. We represent a solution of an equation with random right-hand side in terms of stochastic derivatives of solutions of an equation with deterministic right-hand side. We consider applications of this representation to the anticipating Cauchy problem for a stochastic partial differential equation.