2018
Том 70
№ 12

All Issues

Parasyuk I. O.

Articles: 27
Anniversaries (Ukrainian)

Anatolii Mykhailovych Samoilenko (on his 80th birthday)

Antoniouk A. Vict., Berezansky Yu. M., Boichuk A. A., Gutlyanskii V. Ya., Khruslov E. Ya., Kochubei A. N., Korolyuk V. S., Kushnir R. M., Lukovsky I. O., Makarov V. L., Marchenko V. O., Nikitin A. G., Parasyuk I. O., Pastur L. A., Perestyuk N. A., Portenko N. I., Ronto M. I., Sharkovsky O. M., Tkachenko V. I., Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 2018. - 70, № 1. - pp. 3-6

Anniversaries (Ukrainian)

Oleksandr Mykolaiovych Sharkovs’kyi (on his 80th birthday)

Fedorenko V. V., Ivanov А. F., Khusainov D. Ya., Kolyada S. F., Maistrenko Yu. L., Parasyuk I. O., Pelyukh G. P., Romanenko O. Yu., Samoilenko V. G., Shevchuk I. A., Sivak A. G., Tkachenko V. I., Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 2017. - 69, № 2. - pp. 257-260

Anniversaries (Ukrainian)

On the 100th birthday of outstanding mathematician and mechanic Yurii Oleksiiovych Mytropol’s’kyi (03.01.1917 – 14.06.2008)

Berezansky Yu. M., Boichuk A. A., Korolyuk V. S., Lukovsky I. O., Makarov V. L., Nikitin A. G., Parasyuk I. O., Perestyuk N. A., Samoilenko A. M., Sharkovsky O. M.

Full text (.pdf)

Ukr. Mat. Zh. - 2017. - 69, № 1. - pp. 132-144

Anniversaries (Ukrainian)

Mykola Oleksiiovych Perestyuk (on his 70th birthday)

Boichuk A. A., Gorbachuk M. L., Gorodnii M. F., Khruslov E. Ya., Lukovsky I. O., Makarov V. L., Parasyuk I. O., Samoilenko A. M., Samoilenko V. G., Sharkovsky O. M., Shevchuk I. A., Slyusarchuk V. Yu., Stanzhitskii A. N.

Full text (.pdf)

Ukr. Mat. Zh. - 2016. - 68, № 1. - pp. 142-144

Article (Ukrainian)

Dynamical Bifurcation of Multifrequency Oscillations in a Fast-Slow System

Parasyuk I. O., Repeta B. V., Samoilenko A. M.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2015. - 67, № 7. - pp. 890-915

We study a dynamical analog of bifurcations of invariant tori for a system of interconnected fast phase variables and slowly varying parameters. It is shown that, in this system, due to the slow evolution of the parameters, we observe the appearance of transient processes (from the damping process to multifrequency oscillations) asymptotically close to motions on the invariant torus.

Article (Ukrainian)

Quasiperiodic Extremals of Nonautonomous Lagrangian Systems on Riemannian Manifolds

Parasyuk I. O.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2014. - 66, № 10. - pp. 1387–1406

The paper deals with a quasiperiodically excited natural Lagrangian system on a Riemannian manifold. We find sufficient conditions under which this system has a weak Besicovitch quasiperiodic solution minimizing the averaged Lagrangian. It is proved that this solution is indeed a twice continuously differentiable uniformly quasiperiodic function, and the corresponding system in variations is exponentially dichotomous on the real axis.

Article (Ukrainian)

Theorem on the existence of an invariant section over $\mathbb{R}^m$ for the indefinite monotone system in $\mathbb{R}^m \times \mathbb{R}^n$

Lagoda V. A., Parasyuk I. O.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2013. - 65, № 1. - pp. 103-118

We consider a nonlinear system on the direct product $\mathbb{R}^m \times \mathbb{R}^n$. For this system, under the conditions of indefinite coercivity and indefinite monotonicity, we establish the existence of a bounded Lipschitzian invariant section over $\mathbb{R}^m$.

Article (Ukrainian)

Estimation of the number of ultrasubharmonics for a two-dimensional almost autonomous Hamiltonian system periodic in time

Parasyuk I. O., Vakal Yu. E.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2012. - 64, № 4. - pp. 463-489

Using the Arnold method of detection of fixed points of symplectic diffeomorphisms, we find lower estimates for the number of ultrasubharmonics in a Hamiltonian system on a two-dimensional symplectic manifold with almost autonomous time-periodic Hamiltonian. We show that the asymptotic behavior of these estimates as the perturbation parameter tends to zero depends on which of the four zones of a ring domain foliated by closed level curves of the unperturbed Hamiltonian the generating unperturbed ultrasubharmonics belong to.

Article (Ukrainian)

Lipschitzian invariant tori of indefinite monotone system

Lagoda V. A., Parasyuk I. O., Samoilenko A. M.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2012. - 64, № 3. - pp. 363-383

We consider a nonlinear system in the direct product of a torus and a Euclidean space. For this system, under the conditions of indefinite coercivity and indefinite monotonicity, we establish the existence of a Lipschitzian invariant section.

Article (Ukrainian)

Invariant tori of locally Hamiltonian systems close to conditionally integrable systems

Loveikin Yu. V., Parasyuk I. O.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2007. - 59, № 1. - pp. 71–98

We study the problem of perturbations of quasiperiodic motions in the class of locally Hamiltonian systems. By using methods of the KAM-theory, we prove a theorem on the existence of invariant tori of locally Hamiltonian systems close to conditionally integrable systems. On the basis of this theorem, we investigate the bifurcation of a Cantor set of invariant tori in the case where a Liouville-integrable system is perturbed by a locally Hamiltonian vector field and, simultaneously, the symplectic structure of the phase space is deformed.

Anniversaries (Ukrainian)

Nikolai Perestyuk (60th birthday)

Mitropolskiy Yu. A., Parasyuk I. O., Samoilenko A. M., ShkiI N. I.

Full text (.pdf)

Ukr. Mat. Zh. - 2006. - 58, № 1. - pp. 113-114

Anniversaries (Ukrainian)

V. G. Georgii Mykolaiovych Polozhyi (on his 90th birthday)

Glushchenko A. A., Lyashko I. I., Mitropolskiy Yu. A., Parasyuk I. O., Samoilenko A. M., Samoilenko V. G.

Full text (.pdf)

Ukr. Mat. Zh. - 2004. - 56, № 4. - pp. 560-561

Article (Ukrainian)

Construction of Floquet–Bloch Solutions and Estimation of Lengths of Resonance Zones of One-Dimensional Schrödinger Equation with Smooth Potential

Denysenko O. M., Parasyuk I. O.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2004. - 56, № 1. - pp. 3-18

A one-dimensional Schrödinger equation with a potential characterized by a certain rate of approximation by trigonometric polynomials is investigated by methods of the KAM theory. Estimates for resonance energy zones are obtained. The case where the potential belongs to the Gevrey class is analyzed.

Article (Ukrainian)

Bifurcation of a Whitney-Smooth Family of Coisotropic Invariant Tori of a Hamiltonian System under Small Deformations of a Symplectic Structure

Kubichka A. A., Parasyuk I. O.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2001. - 53, № 5. - pp. 610-624

We investigate the influence of small deformations of a symplectic structure and perturbations of the Hamiltonian on the behavior of a completely integrable Hamiltonian system. We show that a Whitney-smooth family of coisotropic invariant tori of the perturbed system emerges in the neighborhood of a certain submanifold of the phase space.

Article (Ukrainian)

Generalized and classical almost periodic solutions of Lagrangian systems convex on a compact set

Parasyuk I. O., Zakharin S. F.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 1998. - 50, № 12. - pp. 1601–1608

By using the variational method, we establish sufficient conditions for the existence of generalized Besicovitch almost (quasi)periodic solutions and classical quasiperiodic solutions of natural Lagrangian systems with force functions convex on a compact set.

Article (Ukrainian)

Perturbations of degenerate coisotropic invariant tori of Hamiltonian systems

Parasyuk I. O.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 1998. - 50, № 1. - pp. 72–86

We consider a Hamiltonian system with a one-parameter family of degenerate coisotropic invariant tori. We prove a theorem on the preservation of the majority of tori under small perturbations of the Hamiltonian.

Article (Ukrainian)

Nilpotent flows of S1-invariant Hamiltonian systems on 4-dimensional symplectic manifolds

Parasyuk I. O., Samoilenko A. M.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 1997. - 49, № 1. - pp. 122–140

We investigate S1-invariant Hamiltonian systems on compact 4-dimensional symplectic manifolds with free symplectic action of a circle. We show that, in a rather general case, such systems generate ergodic flows of types (quasiperiodic and nilpotent) on their isoenergetic surfaces. We solve the problem of straightening of these flows.

Article (Ukrainian)

Reduction and coisotropic invariant tori of Hamiltonian systems with non-poisson commutative symmetries. II

Parasyuk I. O.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 1994. - 46, № 7. - pp. 904–914

Haamiltonian systems of mechanical type are considered on a twisted cotangent stratification of a manifold admitting a smooth free torus action. In the case where these systems possess non-Poisson symmetries generated by the torus action, the Lee-Cartan reduction scheme is described and the structure of a reduced phase space and reduced Hamiltonians is clarified.

Article (Ukrainian)

Reduction and coisotropic invariant tori of Hamiltonian systems with non-poisson commutative symmetries. I

Parasyuk I. O.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 1994. - 46, № 5. - pp. 537–544

Hamiltonian systems invariant under the non-Poisson torus action are studied on a symplectic manifold. Conditions are established under which coisotropic invariant tori filled with quasiperiodic motions exist in these systems.

Article (Ukrainian)

Qualitative analysis of families of bounded solutions of the multidimensional nonlinear Schrodinger equation

Fushchich V. I., Parasyuk I. O.

Full text (.pdf)

Ukr. Mat. Zh. - 1991. - 43, № 6. - pp. 821-829

Article (Ukrainian)

Qualitative analysis of families of bounded solutions of the nonlinear three-dimensional schrodinger equation

Fushchich V. I., Parasyuk I. O.

Full text (.pdf)

Ukr. Mat. Zh. - 1990. - 42, № 10. - pp. 1344–1349

Article (Ukrainian)

Coisotropic invariant tori of hamiltonian systems of the quasiclassical theory of motion of a conduction electron

Parasyuk I. O.

Full text (.pdf)

Ukr. Mat. Zh. - 1990. - 42, № 3. - pp. 346-351

Article (Ukrainian)

Conservation of multidimensional invariant tori of Hamiltonian systems

Parasyuk I. O.

Full text (.pdf)

Ukr. Mat. Zh. - 1984. - 36, № 4. - pp. 467 – 473

Article (Ukrainian)

Parameteic resonance in linear Hamiltonian systems with quasiperiodic coefficients

Parasyuk I. O.

Full text (.pdf)

Ukr. Mat. Zh. - 1979. - 31, № 1. - pp. 92–95

Article (Ukrainian)

Zones of instability of the Schrödinger equation with a smooth quasiperiodic potential

Parasyuk I. O.

Full text (.pdf)

Ukr. Mat. Zh. - 1978. - 30, № 1. - pp. 70–78

Article (Ukrainian)

The application of the Wiener-Levinson theory to the investigation of the asymptotic behavior of continuous bounded solutions of integral equations with difference kernels

Parasyuk I. O.

Full text (.pdf)

Ukr. Mat. Zh. - 1974. - 26, № 3. - pp. 408–411

Article (Ukrainian)

On the asymptotic behavior of unbounded solutions of a system of integral equations with a difference kernel

Parasyuk I. O.

Full text (.pdf)

Ukr. Mat. Zh. - 1974. - 26, № 2. - pp. 256–259