2018
Том 70
№ 11

All Issues

Baryshovets P. P.

Articles: 15
Article (Russian)

Infinite Groups with Complemented Non-Abelian Subgroups

Baryshovets P. P.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2015. - 67, № 4. - pp. 447-455

We obtain a description of locally finite A -groups with complemented non-Abelian subgroups.

Article (Russian)

On Infinite Groups with Complemented Non-Abelian Subgroups

Baryshovets P. P.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2013. - 65, № 11. - pp. 1443–1455

We present the description of locally finite groups containing at least one non-Abelian Sylow subgroup in which all non-Abelian subgroups are complemented.

Brief Communications (Russian)

On groups with a small number of classes of conjugate noncomplemented subgroups

Baryshovets P. P., Bilotskii N. N.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2010. - 62, № 10. - pp. 1420–1427

We give a description of finite nonprimary groups that contain at most two classes of conjugate noncomplemented subgroups.

Article (Russian)

Finite A-groups with complementable nonmetacyclic subgroups

Baryshovets P. P.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2006. - 58, № 5. - pp. 607–615

We study groups G, satisfying the following conditions:
1)G — is a finite soluble group with nontrivial prime-power metacyclic second commutator subgroup;
2)all Sylow subgroups of G are elementary Abelian.
We describe the structure of these groups with complemented nonmetacyclic subgroup.

Brief Communications (Russian)

On Finite $A$-Groups with Complementable Nonmetacyclic Subgroups

Baryshovets P. P.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2002. - 54, № 7. - pp. 1004-1007

We study groups G satisfying the following conditions:

(i) G is a finite solvable group with nonidentity metacyclic second derived subgroup;

(ii) all Sylow subgroups of G are Abelian, but not all of them are elementary Abelian.

We give a description of the structure of such groups with complementable nonmetacyclic subgroups.

Article (Russian)

On Complementability of Nonmetacyclic Subgroups in Finite $A$-Groups

Baryshovets P. P.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2001. - 53, № 12. - pp. 1600-1606

We study groups G that satisfy the following conditions: (i) G is a finite solvable group with nonprimary metacyclic second subgroup and (ii) all Sylow subgroups of the group G are elementary Abelian subgroups. We describe the structure of groups of this type with complementable nonmetacyclic subgroups.

Article (Ukrainian)

Finite A-groups in which all nonmetacyclic subgroups have complements

Baryshovets P. P.

Full text (.pdf)

Ukr. Mat. Zh. - 1988. - 40, № 3. - pp. 297-302

Article (Ukrainian)

Finite nonsolvable groups with complemented nonmetacyclic subgroups

Baryshovets P. P.

Full text (.pdf)

Ukr. Mat. Zh. - 1987. - 39, № 5. - pp. 547–551

Article (Ukrainian)

A class of finite groups with complemented non-Abelian subgroups

Baryshovets P. P.

Full text (.pdf)

Ukr. Mat. Zh. - 1981. - 33, № 3. - pp. 291–296

Article (Ukrainian)

Finite nonnilpotent groups all whose non-Abelian subgroups can be completed

Baryshovets P. P.

Full text (.pdf)

Ukr. Mat. Zh. - 1981. - 33, № 2. - pp. 147–153

Article (Ukrainian)

Finite nonsolvable groups in which subgroups of nonprimary index are nilpotent or are Shmidt groups

Baryshovets P. P.

Full text (.pdf)

Ukr. Mat. Zh. - 1981. - 33, № 1. - pp. 47–50

Article (Ukrainian)

Finite non-Abelian p-groups with complemented non-Abelian subgroups

Baryshovets P. P.

Full text (.pdf)

Ukr. Mat. Zh. - 1980. - 32, № 6. - pp. 798–802

Article (Ukrainian)

Nonabelian groups with complemented nonabelian subgroups

Baryshovets P. P.

Full text (.pdf)

Ukr. Mat. Zh. - 1980. - 32, № 1. - pp. 99 - 101

Article (Ukrainian)

Finite non-Abelian groups with complemented non-Abelian subgroups

Baryshovets P. P.

Full text (.pdf)

Ukr. Mat. Zh. - 1977. - 29, № 6. - pp. 733–737

Article (Ukrainian)

On one generalization of completely factorable groups

Baryshovets P. P.

Full text (.pdf)

Ukr. Mat. Zh. - 1974. - 26, № 3. - pp. 359–362