2018
Том 70
№ 5

All Issues

Romanenko Ye. Yu.

Articles: 9
Article (Russian)

Dynamical systems and simulation of turbulence

Romanenko Ye. Yu., Sharkovsky O. M.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2007. - 59, № 2. - pp. 217–230

We propose an approach to the analysis of turbulent oscillations described by nonlinear boundary-value problems for partial differential equations. This approach is based on passing to a dynamical system of shifts along solutions and uses the notion of ideal turbulence (a mathematical phenomenon in which an attractor of an infinite-dimensional dynamical system is contained not in the phase space of the system but in a wider functional space and there are fractal or random functions among the attractor “points”). A scenario for ideal turbulence in systems with regular dynamics on an attractor is described; in this case, the space-time chaotization of a system (in particular, intermixing, self-stochasticity, and the cascade process of formation of structures) is due to the very complicated internal organization of attractor “points” (elements of a certain wider functional space). Such a scenario is realized in some idealized models of distributed systems of electrodynamics, acoustics, and radiophysics.

Article (Russian)

Dynamics of neighborhoods of points under a continuous mapping of an interval

Romanenko Ye. Yu.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2005. - 57, № 11. - pp. 1534–1547

Let $\{ I, f Z^{+} \}$ be a dynamical system induced by the continuous map $f$ of a closed bounded interval $I$ into itself. In order to describe the dynamics of neighborhoods of points unstable under $f$, we suggest a notion of $\varepsilon \omega - {\rm set} \omega_{f, \varepsilon}(x)$ of a point $x$ as the $\omega$-limit set of $\varepsilon$-neighborhood of $x$. We investigate the association between the $\varepsilon \omega - {\rm set}$ and the domain of influence of a point. We also show that the domain of influence of an unstable point is always a cycle of intervals. The results obtained can be directly applied in the theory of continuous time difference equations and similar equations.

Article (Russian)

Asymptotic Discontinuity of Smooth Solutions of Nonlinear $q$-Difference Equations

Derfel' G. A., Romanenko Ye. Yu., Sharkovsky O. M.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2000. - 52, № 12. - pp. 1615-1629

We investigate the asymptotic behavior of solutions of the simplest nonlinear q-difference equations having the form x(qt+ 1) = f(x(t)), q> 1, tR +. The study is based on a comparison of these equations with the difference equations x(t+ 1) = f(x(t)), tR +. It is shown that, for “not very large” q> 1, the solutions of the q-difference equation inherit the asymptotic properties of the solutions of the corresponding difference equation; in particular, we obtain an upper bound for the values of the parameter qfor which smooth bounded solutions that possess the property \(\begin{array}{*{20}c} {\max } \\ {t \in [0,T]} \\ \end{array} \left| {x'(t)} \right| \to \infty \) as T→ ∞ and tend to discontinuous upper-semicontinuous functions in the Hausdorff metric for graphs are typical of the q-difference equation.

Article (Ukrainian)

Simulation of spatial-temporal chaos: The simplest mathematical patterns and computer graphics

Romanenko Ye. Yu., Vereikina M. B.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 1993. - 45, № 10. - pp. 1398–1410

The article presents three scenarios of the evolution of spatial-temporal chaos and specifies the corresponding types of chaotic solutions to a certain nonlinear boundary-value problem for PDE. Analytic assertions are illustrated by numerical analysis and computer graphics.

Article (Ukrainian)

Representation of the local general solution of a certain class of differential-functional equations

Romanenko Ye. Yu.

Full text (.pdf)

Ukr. Mat. Zh. - 1990. - 42, № 2. - pp. 206–210

Article (Ukrainian)

Asymptotic of the solution of a certain class of functional-differential equations

Romanenko Ye. Yu.

Full text (.pdf)

Ukr. Mat. Zh. - 1989. - 41, № 11. - pp. 1526–1532

Article (Ukrainian)

Asymptotic periodicity of solutions of difference equations with continuous time

Maistrenko Yu. L., Romanenko Ye. Yu., Sharkovsky O. M.

Full text (.pdf)

Ukr. Mat. Zh. - 1987. - 39, № 1. - pp. 123-129

Article (Ukrainian)

Representation of the solutions of quasilinear functional differential equations of neutral type in case of resonance

Romanenko Ye. Yu.

Full text (.pdf)

Ukr. Mat. Zh. - 1977. - 29, № 2. - pp. 280–283

Article (Ukrainian)

Representation of the solutions of quasilinear differential-functional equations of neutral type

Romanenko Ye. Yu.

Full text (.pdf)

Ukr. Mat. Zh. - 1974. - 26, № 6. - pp. 749–761