2019
Том 71
№ 2

All Issues

Subbotin I. Ya.

Articles: 8
Article (English)

Groups with Bounded Chernikov Conjugate Classes of Elements

Kurdachenko L. A., Otal J., Subbotin I. Ya.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2002. - 54, № 6. - pp. 798-807

We consider BCC-groups, that is groups G with Chernikov conjugacy classes in which for every element xG the minimax rank of the divisible part of the Chernikov group G/C G(x G) and the order of the corresponding factor-group are bounded in terms of G only. We prove that a BCC-group has a Chernikov derived subgroup. This fact extends the well-known result due to B. H. Neumann characterizing groups with bounded finite conjugacy classes (BFC-groups).

Brief Communications (Ukrainian)

On complementability of certain generalized hypercenters in Artinian modules

Kurdachenko L. A., Petrenko B. V., Subbotin I. Ya.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 1997. - 49, № 11. - pp. 1548–1552

We prove that, in an Artinian module, the upper FC-hypercenter over an infinite FC-hypercentral locally solvable group has a direct complement. Thus, we obtain a generalization of one of Zaitsev’s theorems and one of Duan’s theorems.

Article (Ukrainian)

On weakly-central group extensions

Subbotin I. Ya.

Full text (.pdf)

Ukr. Mat. Zh. - 1991. - 43, № 7-8. - pp. 1017–1021

Article (Ukrainian)

New characterizations of locally nilpotent IH-groups

Kuzennyi N. F., Subbotin I. Ya.

Full text (.pdf)

Ukr. Mat. Zh. - 1988. - 40, № 3. - pp. 322-326

Article (Ukrainian)

Groups in which all subgroups are pronormal

Kuzennyi N. F., Subbotin I. Ya.

Full text (.pdf)

Ukr. Mat. Zh. - 1987. - 39, № 3. - pp. 325–329

Article (Ukrainian)

Groups that decompose as quasicentralized products

Subbotin I. Ya.

Full text (.pdf)

Ukr. Mat. Zh. - 1985. - 37, № 5. - pp. 648–651

Article (Ukrainian)

The hypercentral coradical of a KI-group

Subbotin I. Ya.

Full text (.pdf)

Ukr. Mat. Zh. - 1982. - 34, № 5. - pp. 647—650

Article (Ukrainian)

Infinite finitely generated groups in which each subgroup of the commutator subgroup is normal

Subbotin I. Ya.

Full text (.pdf)

Ukr. Mat. Zh. - 1975. - 27, № 3. - pp. 406–411