2019
Том 71
№ 10

Всі номери

Тюркмен Є.

Публікацій: 2
Стаття (англійською)

$\scr{Z^{ \ast}}$ - напiвлокальнi модулi та власний клас $\scr{RS}$

Тюркмен Є.

↓ Абстракт

Укр. мат. журн. - 2019. - 71, № 3. - С. 400-411

Над довiльним кiльцем модуль $M$ називається $\scr{Z^{ \ast}}$ -напiвлокальним, якщо кожний пiдмодуль $U$ модуля $M$ має $\scr{Z^{\ast}}$ -доповнення $V$ в $M$, тобто $M = U + V$ i $U \cap V \subseteq \scr{Z^{\ast}} (V)$, де $\scr{Z^{\ast}}(V) = \{ m \in V | Rm$ — малий модуль$\}$ — $\mathrm{R}\mathrm{a}\mathrm{d}$-малий пiдмодуль. У цiй роботi вивчаються базовi властивостi таких модулiв, як вiдповiдного узагальнення напiвлокальних модулiв. Зокрема, показано, що клас $\scr{Z^{ \ast}}$ -напiвлокальних модулiв є замкненим вiдносно пiдмодулiв, прямих сум i фактор-модулiв. Крiм того, доведено, що кiльце $R \in \scr{Z^{ \ast}}$ -напiвлокальним тодi i тiльки тодi, коли кожен iн’єктивний лiвий $R$-модуль є напiвлокальним. Також встановлено, що клас $\scr{RS}$ усiх коротких послiдовностей $E :0 \xrightarrow{\psi} M \xrightarrow{\phi} K \rightarrow 0$ таких, що $\mathrm{Im}(\psi)$ має $\scr{Z^{ \ast}}$-доповнення в $N$, є власним класом над лiвими спадковими кiльцями. Вивчено також деякi гомологiчнi об’єкти власного класу $\scr{RS}$.

Коротке повідомлення (англійською)

Сильно радикально доповненi модулi

Бюкасік Є., Тюркмен Є.

↓ Абстракт   |   Повний текст (.pdf)

Укр. мат. журн. - 2011. - 63, № 8. - С. 1140-1146

Зошiнгер вивчав модулi, радикали яких мають доповнення, i назвав цi модулi радикально-доповненими. Мотивуючись цим, будемо називати модуль сильно радикально доповненим (або, скорочено, srs-модулем) якщо кожен пiдмодуль, що мiстить радикал, має доповнення. Доведено, що кожен (скiнченнопороджений) лiвий модуль є srs-модулем тодi i тiльки тодi, коли кiльце є лiвим (напiв)досконалим. Над локальною дедекiндовою областю srs-модулi та радикально доповненi модулi збiгаються. Над нелокальною дедекiндовою областю srs-модуль є сумою свого пiдмодуля скруту i радикального пiдмодуля.