2019
Том 71
№ 7

Всі номери

Кротов В. Г.

Публікацій: 2
Стаття (російською)

Квазибезусловная базисность системы Фабера – Шаудера

Григорян М. Г., Кротов В. Г.

↓ Абстракт

Укр. мат. журн. - 2019. - 71, № 2. - С. 210-219

Доведено, що для будь-якого $0 < \delta < 1$ iснує така вимiрна множина $E_{\delta} \subset [0, 1], \mathrm{m}\mathrm{e}\mathrm{s} (E_{\delta }) > 1 \delta $, що для будь-якої функцiї $f \in C[0, 1]$ можна знайти функцiю $\widetilde f \in C[0, 1]$, яка збiгається з $f$ на $E_{\delta}$ , i ряд Фур’є – Фабера –Шаудера для $\widetilde f$ збiгається безумовно в $C[0, 1]$. При цьому модулi ненульових коефiцiєнтiв Фур’є – Фабера –Шаудера функцiї $\widetilde f$ збiгаються з елементами заданої послiдовностi $\{ b_n\} $, що задовольняє умову $$b_n \downarrow 0,\; \sum^{\infty }_{n=1} frac{b_n}{n} = +\infty .$$

Стаття (російською)

Количественная форма $C$-свойства Лузина

Кротов В. Г.

↓ Абстракт   |   Повний текст (.pdf)

Укр. мат. журн. - 2010. - 62, № 3. - С. 387–395

Доведено наступне твердження, яке є кількісною формою теореми Лузіна про $C$-властивість. Нехай $(X, d, μ)$—обмежений метричний простір із метрикою $d$ і регулярною борелевого мірою $μ$, що пов'язані умовою подвоєння. Тоді для будь-якої вимірної на $X$ функції $f$ існують додатна зростаюча функція $η ∈ Ω \;\left(η(+0) = 0\right.$ і $η(t)t^{−a}$ спадає при деякому $\left. a > 0\right)$, вимірна на $X$ невід'ємна функція $g$ та множина $E ⊂ X, μE = 0$, для яких $$|f(x)−f(y)| ⩽ [g(x)+g(y)]η(d(x,y)),\;x,y ∈ X\setminus E.$$ Якщо $f ∈ L^p(X),\; p >0$, то можна вибрати $g \in L^p (X)$.