2018
Том 70
№ 9

Всі номери

Озкартепе П.

Публікацій: 2
Стаття (англійською)

Про взаємний вплив ваги та граничного контура для алгебраїчних полiномiв у вагових просторах лебега. II

Озкартепе П.

↓ Абстракт

Укр. мат. журн. - 2017. - 69, № 12. - С. 1633-1651

Ми продовжуємо дослiдження модулiв алгебраїчних полiномiв на граничному контурi з ваговою функцiєю у випадку, коли цей контур та вагова функцiя мають деякi сингулярностi вiдносно їх квазiнорми у ваговому просторi Лебега. Зокрема, точнi оцiнки було отримано для полiномiв, ортонормальних на кривiй вiдносно вагової функцiї з нулями на цiй кривiй.

Стаття (англійською)

Поведінка алгебраїчного полінома в необмежених областях з кусковими Діні-гладкими межами

Абдуллаєв Ф. Г., Озкартепе П.

↓ Абстракт   |   Повний текст (.pdf)

Укр. мат. журн. - 2014. - 66, № 5. - С. 579–597

Нехай $G ⊂ ℂ$ — скінченна множина, обмежена жордановою кривою $L := ∂G, \Omega :=\mathrm{e}\mathrm{x}\mathrm{t}\overline{G}$ (відносно $\overline{\mathbb{C}}$), $Δ := \{w : |w| > 1\},$ $w = Φ(z)$ — однолисте конформне відображення $Ω$ на $ Δ$, нормоване так, що $Φ (∞) = ∞, Φ′(∞) > 0$. Також нехай $h(z)$ — вагова функція, а $A p (h,G), p > 0$, — клас функцій $f$, аналітичних в $G$, що задовольняють умову $${\left\Vert f\right\Vert}_{A_p\left(h,G\right)}^p:={\displaystyle \int {\displaystyle \underset{G}{\int }h(z){\left|f(z)\right|}^pd{\sigma}_z<\infty, }}$$ де $σ$ — двовимірна міра Лебега. Нехай $P_n (z)$ — довільний алгебраїчний поліном степеня не більшого за $n ∈ ℕ$. Відома лема Бернштейна-Волша стверджує, що $$\begin{array}{cc}\hfill \left|{P}_n(z)\right|\le {\left|\varPhi (z)\right|}^n{\left\Vert {P}_n\right\Vert}_{C\left(\overline{G}\right)},\hfill & \hfill z\in \Omega .\hfill \end{array}$$ У даній роботі продовжено дослідження оцінки (*), в якій норму ${\left\Vert {P}_n\right\Vert}_{C\left(\overline{G}\right)}$ замінено на ${\left\Vert {P}_n\right\Vert}_{A_p\left(h,G\right)},\;p > 0$ для вагової функції типу Якобі в областях з кусковими Діні-гладкими межами.