2018
Том 70
№ 9

Всі номери

Виговська Л.В.

Публікацій: 1
Коротке повідомлення (російською)

Неравенства для внутренних радиусов симметричных неналегающих областей

Бахтин А. К., Выговская Л.В., Денега И. В.

↓ Абстракт

Укр. мат. журн. - 2018. - 70, № 9. - С. 1282-1288

Розглянуто таку задачу: Нехай $a_0 = 0, | a_1| = ... = | a_n| = 1,\; a_k \in B_k {\subset C}$, де $B_0, ... ,B_n$ — взаємно неперетиннi областi i $B_1, ... ,B_n$ — симетричнi вiдносно одиничного кола. Знайти точну верхню межу для добутку $r^{\gamma} (B_0, 0) \prod^n_{k=1} r(B_k, a_k)$, де $r(B_k, a_k)$ — внутрiшнiй радiус областi $B_k$ вiдносно точки $a_k$. Для $\gamma = 1$ i $n \geq 2$ цю задачу розв’язав Л. В. Ковальов. У данiй роботi одержано розв’язок цiєї задачi для $\gamma \in (0, \gamma_n], \gamma_n = 0,38 n^2$ i $n \geq 2$ при додатковiй умовi на кути мiж сусiднiми лiнiями сегментiв $[0, a_k]$.