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Z*-SEMILOCAL MODULES AND THE PROPER CLASS RS
Z*-HAIMBJOKAJIbHI MOJAYJII TA BIACHUM KJAC RS

Over an arbitrary ring, a module M is said to be Z*-semilocal if every submodule U of M has a Z*-supplement V'
inM,ie, M=U+Vad UNV C Z*(V), where Z*(V) = {m € V | Rm is a small module} is the Rad-small
submodule. In this paper, we study basic properties of these modules as a proper generalization of semilocal modules. In
particular, we show that the class of Z*-semilocal modules is closed under submodules, direct sums, and factor modules.
Moreover, we prove that a ring R is Z™-semilocal if and only if every injective left R-module is semilocal. In addition,

we show that the class RS of all short exact sequences E: 0 — M Ly N -2 K — 0 such that Im(%)) has a
Z*-supplement in N is a proper class over left hereditary rings. We also study some homological objects of the proper
class RS.

Han jnoBinbHUM KinblieM Momyns M HasuBaeTbes Z ™ -nanienoxanvhum, KO KOXHUN migmomyns U momyas M mae
Z*-nonosuennst V B M, 106t0 M =U+V iUNV C Z°(V), ne Z*(V) = {m € V | Rm — manuii Mmonyis} —
Rad-manmii migmonyme. V 1iii po6OTi BUBYatOThCS 0a30Bi BIACTUBOCTI TaKHX MOJYINIB, SK BIAMOBIJHOTO y3araibHEHHS
HAIIBJIOKAIBHUX MOYIB. 30KpeMa, MIOKa3aHo, 0 KJiac Z ™ -HaIlBIOKAIBHIX MO/YJIIB € 3aMKHEHUM BiJJHOCHO i IMOJLYIIiB,
npsiIMEX CyM i (akrop-mozyiiB. Kpim Toro, 1oBeaeHo, mo Kinbie R € Z™-HamiBioKaabHUM TOJI 1 TINBKH TOJI, KOJIH KOXKEH
iH’€KTUBHUIL JTiBUI R-MOIyJb € HaMiBIOKAIbHAM. TaKoX BCTAHOBJIEHO, IO Kimac RS ycix KOPOTKuX mociigoBHocted I :

P P .
0— M — N — K — 0 Takux, mwo Im(t)) mae Z*-nonoBuennst B N, € BIaCHAM KJIaCOM HaJ[ JTIBUMHU CIAJKOBUMU
KUTBISIMA. BUBYCHO TakoX [esIKi TOMOJIOTIUHI 06’ €KTH BIACHOTO Kiacy R.S.

1. Introduction. Throughout this study, all rings are associative with identity and all modules are
unital left R-modules. Let R be a ring and M be a left R-module. The Jacobson radical of M will
be denoted by Rad(M), and the injective hull of the module M will be denoted by E(M). The
notation N C M (N C M) means that N is a (proper) submodule of M. A non-zero submodule
L C M is said to be essential in M, denoted as L <M, if LN N # 0 for every non-zero submodule
N C M. Dually, a proper submodule N C M is said to be small in M, denoted by N <« M, if
M # N + K for every proper submodule K of M (see [14], 19.1). A module M is said to be
small if M is a small submodule of some R-module (see [7]). It is shown in [7] (Theorem 1) that
a module M is small if and only if M is a small submodule of E(M). It is clear that every small
submodule of M is a small module. For a module M, we consider the following submodule of M:

Z¥(M) ={m e M | Rm is a small module}.

Since Rad(M) is the sum of all small submodules of M, we get Rad(M) C Z*(M). It is easy to see
that Z*(M) = MNRad(E(M)). Clearly, Z*(M) = M if and only if M C Rad(E(M)). A module
M is said to be Rad-small (according to [13], cosingular) if Z*(M) = M. Since Z*(Z*(M)) =
= Z*(M), Z*(M) is the largest Rad-small submodule of M. Small modules are Rad-small. Also,
a finitely generated Rad-small module is small.

Let M be a module and U, V' C M be submodules. V is called a supplement (Rad-supplement,
respectively) of U in M if M = U+ V and UNV <« V (UNV C Rad(V)). M is called
supplemented (Rad-supplemented, respectively) if every submodule of M has a (Rad-) supplement
in M. Characterizations and structures of supplemented and Rad-supplemented modules are ex-
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Z*-SEMILOCAL MODULES AND THE PROPER CLASS RS 401

tensively studied by many authors. We specifically mention [4, 14, 15] among papers concerning
supplemented and Rad-supplemented modules.

Since Rad(V) C Z*(V), it is natural to introduce another notion that we called a submodule
V of M a Z*-supplement of U in M provided M = U +V and UNV C Z*(V). Follo-
wing [13] (Lemma 2.6 and Proposition 3.10), we characterize modules whose submodules have a
Z*-supplement.

Lemma 1.1. Let R be a ring and M be an R-module. Then the following statements are
equivalent:

(1) Every submodule U of M has a Z*-supplement V in M.

(2) For any submodule U of M, there exists a submodule V of M such that M = U +V and
Unv C Z*(M).

(3) If U is a submodule of M, then M = U +V and U NV is Rad-small for some submodule
V of M.

4) W is semisimple.

We say that a module M Z*-semilocal if M has one of the equal conditions of Lemma 1.1 as
a proper generalization of semilocal modules. In Section 2, we obtain the basic properties of these
modules. We show that the class of Z*-semilocal modules is closed under submodules, direct sums
and factor modules. We prove that a ring R is Z*-semilocal if and only if every left R-module is
Z*-semilocal if and only if every injective left R-module is semilocal. Let RS be the class of all

short exact sequences E: 0 — M i) N i> K — 0 such that Im (¢) has a Z*-supplement in
N. In Section 3, we show that RS is a proper class over left hereditary rings. We study on some
homological objects of the proper class RS in the same section. In particular, we show that over left
hereditary rings the proper class RS is coinjectively generated by all Rad-small modules.

The following lemma will be frequently used in this paper.

Lemma 1.2 (see [13], Lemma 2.6). The class of Rad-small left R-modules is closed under sub-
modules, direct sums and factor modules.

M
2. Z*-semilocal modules and rings. Let M be a module. M is called semilocal if ——————
Rad(M)

is semisimple, and a ring R is called semilocal if is a semisimple ring (see [8]).

Rad(R

It is clear that every semilocal module is Z* -semilo<cal), but the following example shows that the
converse is not true, in general. Firstly, we need the following simple fact.

Lemma 2.1. Every Rad-small module is Z*-semilocal.

Proof. Let M be a Rad-small module. Then Z*(M) = M. Thus, it is Z*-semilocal.

Example 2.1. Let M =y 7. Since M is a small submodule of the injective hull of E(M), it is
Rad-small. So, Z*(M) = M. Applying Lemma 2.1, M is Z*-semilocal. On the other hand, M is
not semilocal.

Recall from [8] that a module M is weakly supplemented if every submodule U of M has a
weak supplement V' in M, thatis, M = U + V and U NV <« M. Every supplemented module is
weakly supplemented and weakly supplemented modules are semilocal.

Corollary 2.1. Let M be a module over an arbitrary ring. Suppose that Z*(M) is a small
submodule of M. Then the following statements are equivalent:

(1) M is weakly supplemented,

ISSN 1027-3190.  Vkp. mam. ocypn., 2019, m. 71, Ne 3



402 E. TURKMEN

(2) M is semilocal,

(3) M is Z*-semilocal.

Proof. (1) = (2) and (2) = (3) are clear.

(3) = (1) Let U C M. By (3), there exists a submodule V' of M such that M = U + V and
UNV C Z*(M). Since Z*(M) is a small submodule of M, it follows from [14] (19.3.(4)) that
UNV <« M. Thus, V is a weak supplement of U in M. Hence, M is weakly supplemented.

Recall that a module M is radical it M = Rad(M), that is, M has no maximal submodules.

Lemma 2.2. Every radical module is Rad-small.

Proof. For a radical module M, let m € M. Then Rm < M. So, Rm is small. Thus,
m e Z*(M).

Let M be a module. By P(M), we denote the sum of all radical submodules of M. P(M) is
the largest radical submodule of M. By using Lemmas 2.1 and 2.2, we obtain the following fact.

Corollary 2.2. P(M) is Z*-semilocal for every module M.

It is well known that any submodule of a semilocal module need not be semilocal. For example,
77: Cz, Q. But, we have the following proposition.

Proposition 2.1. Every submodule of a Z*-semilocal module is Z*-semilocal.

Proof. Let M be a Z*-semilocal module and U C N C M be submodules. Since M is
Z*-semilocal, we can write M = U +V and U NV 1s Rad-small for some submodule V' of M.
By using the modular law, N = NNM =NNU+V)=U+(NNnV),and UN(NNV) =
=UNN)NV =UnNYV is Rad-small. Hence, N is Z*-semilocal.

Proposition 2.2. Every factor module of a Z*-semilocal module is Z*-semilocal.

Proof. For a Z*-semilocal module M, let N C U C M be submodules. Then there exists a
M U V+N
submodule V' of M such that M = U+ V and UNV is Rad-small. Therefore, N-N + —i]\_r .

By using the canonical epimorphism 7: M — N we obtain that

UnNV)+N UN(V+N) UﬂV+N

mUnv) = N N N N

M
is Rad-small by Lemma 1.2. Hence, the factor module ~ is Z*-semilocal.

Theorem 2.1. Every direct sum of Z*-semilocal modules is Z*-semilocal.
Proof. Let {M,;};cr be any collection of Z*-semilocal modules, where I is any index set. Put

M = @ierM;. 1t follows from [13] (Lemma 2.3) that
M @M Biet M;
2 (M) ®ierZ (M)~ 2 (M)

(3
Z*(M;)

Corollary 2.3. Any sum of Z*-semilocal submodules of a module M is Z*-semilocal.

Proof. Let {N,};cs be the family of Z*-semilocal submodules of the module M. Then, we can
write the epimorphism ¥ : ®;c; N; — Zz‘el N; via ¥((a;)ier) = Zz’elo a;, where I is the finite
set of the index set I. By Theorem 2.1, the external direct sum @;c7/NV; is a Z*-semilocal module.
It follows from Proposition 2.2 that the submodule Ziel N; is Z*-semilocal.

is semisimple as a direct sum of these semisimple modules . Therefore, M is Z*-semilocal.
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Remark 2.1. Let R be a ring with identity. Suppose that rpR is a Z*-semilocal R-module.

R
Then, by Lemma 1.1, Z(R) is a semisimple left R-module. Therefore, m is a semisimple
i R . . . R . . _
m-module and so Z(R) is a semisimple ring. It follows that Z(R) is a semisimple right

R-module. That is, Ry is a Z*-semilocal R-module. Similarly, if Ry is a Z*-semilocal R-module,
it can be shown that pR is a Z*-semilocal R-module. By using this fact, we say that R is «a
Z*-semilocal ring if pR (or Rp) is a Z*-semilocal R-module.

It is shown in [8] (Theorem 3.5) that a ring R is semilocal if and only if every left R-module is
semilocal. Now, we give an analogue of this fact for Z*-semilocal rings.

Lemma 2.3. Let E be an injective module. Then E is Z*-semilocal if and only if it is semilocal.

Proof. Let E be a Z*-semilocal module and U C FE. Then there exists a submodule V' of F such
that E =U 4V and U NV is Rad-small. Since E is injective, Z*(E) = ENRad(E) = Rad(E).
So UNV C Rad(F). Hence, F is semilocal.

Theorem 2.2. The following statements are equivalent for a ring R:

(1) R is Z*-semilocal,

(2) every left R-module is Z*-semilocal,

(3) every injective left R-module is semilocal.

Proof. (1) = (2) Let M be any left R-module. Then, for an index set I, there exists an
epimorphism ¥: RY) — M. Since R is Z*-semilocal, it follows from Theorem 2.1 that the left
free R-module RY) is Z*-semilocal. Therefore, M is Z*-semilocal by Proposition 2.2.

(2) = (3) It is obvious.

(3) = (2) For any module M, the injective hull E(M) is semilocal. Therefore, E(M) is
Z*-semilocal. Applying Proposition 2.1, we deduce that M is Z*-semilocal.

(2) = (1) 1t follows from (2) that pR is Z*-semilocal. Thus, R is a Z*-semilocal ring.

In [13], aring R is called left cosingular if p R is Rad-small. Every commutative domain (which
is not field) is left (right) cosingular. It is proven in [13] (Lemma 2.8) that R is a left cosingular
ring if and only if every injective left R-module is radical. By using this fact, Theorem 2.2 and
Lemma 2.1, we obtain that every left cosingular ring is Z*-semilocal. Now, we shall show that a
Z*-semilocal ring need not be left cosingular in the following example.

Example 2.2. Let n > 1 be a non-prime positive element of Z. Then the ring Z, is
Z*-semilocal but not cosingular.

A ring R is called left hereditary if every factor module of an injective left R-module is injective
(see [6]).

Lemma 2.4 (see [7], Theorem 3). Let R be a left hereditary ring and E: 0 — M ANy VN
K 0 be a short exact sequence of left R-modules. Then M and K are small modules if
and only if N is a small module.

We give an analogous characterization of this fact for Rad-small modules.

Lemma 2.5. Let R be a left hereditary ring and E: 0 — M i> N -2 K — 0 be a short
exact sequence of left R-modules. Then M and K are Rad-small modules if and only if N is a
Rad-small module.

Proof. (=) To simplify the notation, we think of M as a submodule of N. Since M is Rad-
N
small, we get M C Rad(E(M)). Therefore, M C Rad(E(N)). Moreover, Y is Rad-small in
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E(N
](\4 ) is injective over a left hereditary ring R. Thus, N C Rad(F(NV)). This means that N is

Rad-small.
(«<=) It follows from Lemma 1.2.
Lemma 2.6. Let R be a left hereditary ring and M be a left R-module. Suppose that a

submodule N of M is Rad-small. Then Z* <M> = = ](VM)

N
Proof. By the hypothesis, we have N C Z*(M). It follows that

ZM) 4N _Z(M) . <M> |

N N N
M R N
Let m+ N € Z* (N) Then R(m + N) = % is a Rad-small module. Now, consider the
following exact sequence:
. - N
0—>RmﬂNi>Rm—>RmT+—>0,

where ¢ is the canonical injection and 7 is the canonical projection. Applying Lemma 2.5, since R
M Z5(M
is left hereditary, Rm is Rad-small and so m € Z*(M). This means that Z* (N) - L

N
M\  Z*(M)
Hence, Z*( — | = .
ence, <N) N

Proposition 2.3. Let R be a left hereditary ring and M be a left R-module. If a submodule N
M
of M is Rad-small, M is Z*-semilocal if and only if N is Z*-semilocal.

Proof. (=) By Proposition 2.2.
(<) Let U C M be a submodule. By the hypothesis, we can write

M U+N V U+N _V
NN +N and N HN

| M
1s Rad-small for some submodule v of N Then M = U + V. Now,

N N N N N N

U+N V. _(U+N)OV _ UOV+NC2*<M> _ZX(M)
B B = N

according to Lemma 2.6. So, U NV C Z*(M). Thus, M is Z*-semilocal.

In [14], over an arbitrary ring a module P is said to be a small cover of a module M if there
exists an epimorphism f: P — M with Ker (f) < P. A submodule K of M is small in M if
and only if M is a small cover of T By using Proposition 2.3, we obtain the following result.

Corollary 2.4. Let R be a left hereditary ring and M be a Z*-semilocal R-module. Then every
small cover of M is Z*-semilocal.
Proof. Let f: P — M be a small cover. Then Ker (f) is a small submodule of P and

P
Ker (f)

so Ker (f) is Rad-small. Since M is Z*-semilocal, we get is Z*-semilocal. Applying

Proposition 2.3, we deduce that P is Z*-semilocal.
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3. The proper class RS.
Definition 3.1. Let P be a class of short exact sequences of left R-modules and R-module

homomorphisms. If a short exact sequence E: 0 — M i> N i> K — 0 belongs to P, then 1
is said to be a P-monomorphism and ¢ is said to be an P-epimorphism.

The class P is said to be a proper class (in the sense of Buchsbaum) if it has the following
properties:

(P1) If the short exact sequence E: 0 — M PN K 0 is in P, then P contains
every short exact sequence isomorphic to E.

(P2) P contains all splitting short exact sequences.

(P3) The composite of two P-monomorphisms is a P-monomorphism if this composite is de-
fined.

(P5) The composite of two P-epimorphisms is a P-epimorphism if this composite is defined.

(P4) If 91, 1o are monomorphisms and 911 is a P-monomorphism, then ; is a P-mono-
morphism.

(P)y) If ¢1, ¢ are epimorphisms and ¢a¢ is an P-epimorphism, then ¢ is an P-epimorphism.

Example 3.1. We list some examples of proper classes:

(1) The smallest proper class Split of all splitting short exact sequences of left R-modules.

(2) The largest proper class Abs of all short exact sequences of left R-modules.

(3) The proper class Supp of all short exact sequences 0 —> M i> N i> K — 0 such that
Im(%)) is a supplement of some submodule of N (see [5]).

(4) The proper class Co-N eat of all short exact sequences 0 — M i> N %K 0 such
that Im(¢)) is a Rad-supplement of some submodule of N (see [10]).

(5) Over left hereditary rings the proper class SS of all short exact sequences 0 — M i>

Yy N % K — 0 such that Im (¢) has a small supplement in N, that is, N = Im(¢) + V and
Im(¢)) NV is a small module (see [1]).
Now, we have the following implications on the the above classes of left R-modules:

Split C Supp C Co-Neat C Abs and Split C Supp €SS C Abs.

Let RS be the class of all short exact sequences E: 0 — M YN S K 0 such that
Im(v) has a Z*-supplement in N, that is, Im(¢)) + V' = N and Im(x0) NV is Rad-small for some
submodule V' of N. It is obvious that Co-Neat C RS and SS C RS. The following example
shows that RS contains properly the class SS and the class Co-Neat.

Example 3.2. (1) Let R be a local Dedekind domain (i.e., DVR) with quotient K # R <e.g.,
the ring Z,) containing all rational numbers of the form % with p 1 b for any prime p in Z).
Put N = R and M = Rad(NN). Consider the extension E: 0 — M —= N "5 K — 0,
where K = —. Then E is an element of RS. Howewer, it is not in SS because M has no (weak)
supplements in the projective module V.

Z
2) Let N =5 Z and M =y 27Z. Put K =y (2Z> Then the extension E: 0 — M —

3 N 55 K — 0 is in the class RS by Theorem 2.2. On the other hand, E is not an element of
Co-Neat since M is not Rad-supplement in V.
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Proposition 3.1. Let R be an arbitrary ring. If every injective left R-module has a small
radical, then RS = SS.

Proof. Let E: 0 — M YN i> K — 0 be any element of the class RS. Then there
exists a submodule V' of N such that N = M +V and M NV is Rad-small. Therefore, M NV C
C Rad(E(M Nn'V)). By the assumption and [6] (11.5.5, § 11.6.3), we obtain that M NV is a small
submodule of the injective hull E(M N V). It means that M has a small supplement in N. Hence,
RS =SS.

A ring R is said to be a left max ring if every non-zero left R-module has a maximal submodule.
Now we have the following:

Corollary 3.1. Let R be a left max ring. Then RS = SS.

Proof. Since R is left max, every left R-module has a small radical. Hence, the proof follows
from Proposition 3.1.

Example 3.3. Consider the non-Noetherian commutative ring which is the direct product
Hj; F;, where F; = F' is any field. Suppose that R is the subring of the ring consisting of

all sequences (7, )nen such that there exist » € F, m € N with r,, = r for all n > m. Let N =g R.
N
Then N is a regular module which is not semisimple. Put M = Soc (V) and K = A Then the

extension E: 0 — M — N 5 K — 0 is not in RS.

Theorem 3.1. A ring R is a Z*-semilocal ring if and only if RS = Abs.

Proof. By Theorem 2.2.

Observe from Theorem 3.1 that over Z*-semilocal rings (in particular, semilocal rings or com-
mutative domains), RS is a proper class.

The following the structure of the Abelian group Extr (K, M) is given in the book [9, p. 63 -71],
and we recall them for the convenience of the reader:

Let R be an arbitrary ring with identity and E: 0 — M Yo N %5 K — 0 be a short exact
sequence of left R-modules and module homomorphisms. Then E is called an extension of M by K.
By Extr(K, M) we will denote the set of all equivalence classes of extensions of M by K. Let E; :

O—>M£>N1 &K—)OandEyO%M&Ng E>K—>0beanyelementsof
Extr(K, M). We define the direct sum of E; and Es as follows:

B @Ry 0—MaM -5 N, &Ny - Ko K —s 0,

where ¥ (my,m2) = (Y1 ® ¥2)(m1,me) = (Y1(ma), 2(me)) for all (m1,mz) € M & M and
(25(711,77,2) = (¢1 (&) ¢2)(n1,n2) = (¢1(7”L1), qbg(ﬂg)) for all (nl,ng) € N1 @ Ns. Then E; @ Es is
a short exact sequence. The Baer sum of E; and Eo, Ey + Ey = v (E1 @ Ey) Ak, where the
diagonal map A (k) = (k, k) for all k € K and the codiagonal map <7 ps(m1, ma) = my +ma for
all (my,mg2) € M @ M. Therefore, Extr (K, M) is an Abelian group under Baer sum of extensions.
Note that the split extension 0 — M — M & K — K — 0 is the zero element of this group
and the inverse of an extension E: 0 — M 5 N -5 K — 0 is the extension (—In)E.

The set Extp (K, M) of all short exact sequences of Extr (K, M) that belongs to a proper class
P is a subgroup of the group of Extr(K, M).

Theorem 3.2 (see [12], Theorem 1.1). Let P be a class of short exact sequences for left
R-modules. If Extp(K, M) is a subfunctor of Extr(K, M), Extp(K,M) is a subgroup of
Extr(K, M) for every R-modules M, K and the composition of two P-monomorphism
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(or P-epimorphisms) is a P-monomorphism (an ‘P-epimorphism, respectively), then P is a proper
class.

Using Theorem 3.2, we shall prove that RS is a proper class over left hereditary rings.

Lemma 3.1. Let f: M — M’ be any homomorphism of left R-modules. Then

fe: Extp(K, M) — Extp (K, M')

preserves the elements of the class RS.

Prooj? LetE: 0 — M i> N -2 K —0be any element of RS. Take the left R-module
N' = M EBN, where H = {(—f(m),%(m)) € M’ ® N | m € M} is a submodule of M’ & N.
Define these homomorphisms of left R-modules ¢’ : M’ — N’ via ¢’ (m') = (m/,0) + H, ¢':
N' — K via ¢’ ((m/,n)) = ¢(n) and h: N — N’ via h(n) = (0,n) + H. Then f.(E) = fE:

0— M 5N 25 K —0eBxt r (K, M') and we obtain the following commutative diagram
with exact rows:

E: 0 M N K——0
b
fE: 0 m N K 0

that is, ¢ f = h1) and ¢'h = ¢. Since the extension E: 0 — M YN % K — 0is in the class
RS of left R-modules, there exists a submodule V' of N such that N = Im (¢)) +V and Im (¢)) NV
is Rad-small. By using the above commutative diagram, we obtain that N’ = Im (¢)') 4+ Im (h) and
Im (k) NIm (¢") = h(Im () NV). It follows from Lemma 1.2 that Im (h) NIm (¢’) is Rad-small
as a homomorphic image of the Rad-small module Im (1)) N V. So Im (k) is a Z*-supplement of
Im (¢') in N'. Thus, fE = f,(E) € RS.

Observe from Lemma 3.1 that if, for all modules M and K, E € Extrs(K, M), then the inverse
extension (—Iy/)E € Extrs(K, M).

Lemma 3.2. Let g: K' — K be any homomorphism of left R-modules. Then

g": Extp(K, M) — Extp (K', M)

preserves the elements of the class RS.

Proof. LetE: 0 — M Yo N % K — 0 be a short exact sequence in RS. Consider the
left R-submodule N’ = {(n,k') € N @ K’ | ¢(n) = g (k')} of the left R-module N @& K’. Define
these homomorphisms ¢': N’ — K’ via ¢/ (n, k') = k', h: N' — N via h(n,k’) = n and ¢’ :
M — N’ via ¢'(m) = (¢(m),0). Then we can write the following commutative diagram with
rows:

Eg: 0 MY N K 0
[t
E: 0 MY SN2 K 0

where g*(E) = Eg. Since E is an element of RS, there exists a submodule V' of N such that
N = Im () +V = and Im(¢) NV is Rad-small. To show N’ = Im (¢') + h=1(V), let a
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be any element of N’. Then we can write h(a) ¥(m) + v where m € M and v € V. Since
p(m ) (") (m), we have a — ¢'(m) € (V) and this implies that N’ = Im (¢') + h~1(V).
Let (n, k") be any element of Im (¢ ) h=Y(V). Since Im (¢)') = Ker (¢'), we obtain that
(n k') =k = 0. Then g (k') = ¢(n) = 0, that is, n € Ker (¢). Therefore, n € Im (1)) because
m (¢) = Ker (¢). It follows that n € Im (¢)) N V. Since Im (¢») NV is Rad-small, the module
Rn is small, and so R (n, k') is small. Thus, Im (¢') N h=1(V) is Rad-small. Hence, h~1(V) is a
Z*-supplement of Im (¢/) in N'.
Lemma 3.3. IfE;,Es € EXtRs(K M) then E1 ® Eq € EXtRS(K e K,Me M)

Proof. Let E; : 0—>M—>N — K — 0 and Ey: 0—>M—>N2—>K—>O
be two elements of Extrs(K, M). Then, for i = 1,2, N; = M + V; and M NV, is Rad-small
for some submodules V; of N;. Since (M & M)+ (V1 @ Vo) = N1 @ Ny and (M & M) N (Vi &
DVa)=(MnNVy)@® (M N V), it follows from Lemma 1.2 that the short exact sequence E; & Eo :
0— MaeM -2 Ny aN, 2 KeK —0isin Extrs(K & K, M © M), where ¢ = 11 @ 1)y
and ¢ = ¢1 D P2.

Corollary 3.2. Extrs(K, M) is a subgroup of the extension Extr(K, M) for every module K
and M. Moreover, Extrs(K, M ) is a subfunctor of the functor Extr (K, M )

Proof. Let E; : 0—>M—>N —>K—>0andE2 0—>M—>N2—>K—>O
be any elements of Extgrs(K, M). It follows from Lemmas 3.1, 3.2 and 3.3 that the Baer sum
E; + Ey of these extensions E; and E; is in Extrs(K, M). Hence, Extrs(K, M) is a subgroup
of Extr(K, M).

Theorem 3.3. Let R be a left hereditary ring. Then RS is a proper class.

Proof. By Theorem 3.2 and Corollary 3.2, it suffices to show that the composition of two
RS-epimorphisms is an RS-epimorphism. Let f: N — N’ and g: N’ — K be RS-epimor-
phisms. Now we have the following commutative diagram with exact rows and columns:

0 0
OHKer(f)MM%Ker(g) —0
iKer(g)
0 — s Ker(f) Nl N 0
g
K——K
0 0

where ixe, (s and iger(g) are the canonical inclusions. By the hypothesis, we can write N =

N M
= Ker (f)+V and Ker (f)NV is Rad-small for some submodule V' of N, and Rer (/) = Ker 0 +
MAL . L

and ———— is Rad-small for some submodule of . Therefore, M =
Ker (f) Ker (f) Ker(f) = Ker(f)
=MNN=MnKer(f)+V)=Ker(f)+ MNV, MNL =Ker(f)+ MNV NL and

ISSN 1027-3190.  Vkp. mam. ocypn., 2019, m. 71, Ne 3



Z*-SEMILOCAL MODULES AND THE PROPER CLASS RS 409

L = Ker(f) + LN V. It follows that N = M + (V N L). Applying Lemma 2.5, we deduce that
M NV N L is Rad-small. This means that the composition gf is an RS-epimorphism.

Let M be a class of short exact sequences. The smallest proper class containing M is said to
be generated by M and denoted by (M). Since the intersection of any proper classes is proper, we
have (M) =N{P | M C P and P is proper class}.

By RSmall, we will denote the class of all short exact sequences E: 0 — M i> N i>
%y K — 0 such that Im(¢)) C Rad(NV), and by WRS we will denote the class of all short exact

sequences E: 0 — M Yo N % K — 0 such that Im (1) has a weak Rad-supplement in NN,
that is, Im (¢)) +V = N and Im (¢) NV C Rad(N) for some submodule V' of N.

Clearly, RSmall € WRS C RS, and so (RSmall) C (WRS) C RS whenever RS is a
proper class. Motivated by [1] (Corollary 3.13), we shall prove that (RSmall) = WRS) = RS in
the following theorem.

Theorem 3.4. For the proper class RS, (RSmall) = (WRS) = RS.

Proof- Let E:0 — M i) N % K — 0 be any element of the proper class RS.

Then, for some submodule V' of N, we can write N = M + V and M NV is Rad-small. Put

M N
L = M NV. Therefore, the extension E: 0 — T — T ®, K —» 0 is in the class (RSmall)y,

where ¢ is the canonical injection, 7: N — T the canonical projection and ¢ = ®7. Since

7w and ® are (RSmall)-epimorphisms, we get that ¢ is (RSmall)-epimorphism. It means that
RS C (RSmall).

Let P be a proper class. A module M is said to be P-injective (respectively, P-coinjective) if the
subgroup Extp (K, M) = 0 (respectively, Extp (K, M) = Extr(K, M)) for all left R-modules K.

Now we prove that weak Rad-supplement submodules of RS-coinjective modules are RS-
coinjective.

Proposition 3.2. Let R be a left hereditary ring and M be a RS-coinjective R-module. Then
every weak Rad-supplement submodule of M is RS-coinjective.

Proof. Let A be a weak Rad-supplement submodule of M. Then the extension E: 0 — A —

s M 5 — — 0 is an element of the class WRS and so it is in RS. Hence, by [11]
(Proposition 1.8), A is RS-coinjective.

Now we characterize RS-coinjective modules via weak Rad-supplements in the following the-
orem which is adapted of [3] (Theorem 4.1).

Theorem 3.5. For a module M over a left hereditary ring R, the following statements are
equivalent:

(1) M is RS-coinjective,

(2) M has a weak Rad-supplement in E(M).

Proof. (1) = (2) Let 6: M — E(M) be the essential monomorphism. Without loss of
generality, we take M C E(M). By (1), there exists a submodule V' of E(M) such that M +V =
= E(M) and M NV is Rad-small. Since E(M) is injective, Z*(E(M)) = Rad(E(M)), and so
M NV CRad(E(M)). Thus, V is a weak Rad-supplement of M in E(M).

(2) = (1) is clear by [11] (Proposition 1.7).

Corollary 3.3. Let R be a left hereditary ring. Then rpR is RS-coinjective if and only if there
exists a submodule S of E(rR) such that E(rR) = R+ S and RN S C Rad(E(rR)).

The following fact is a direct consequence of Theorem 3.5.
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Corollary 3.4. Every Rad-small module over a left hereditary ring is RS -coinjective.

Proof. Let M be a Rad-small module. Then, M C Rad(E(M)). Therefore, E(M) = E(M) +
+ M and M N E(M) C Rad(E(M)). So E(M) is a weak Rad-supplement of M in the injective
hull E(M). Hence, M is RS-coinjective by Theorem 3.5.

The smallest proper class for which every module from the class of modules M is coinjective is
denoted by k(M). Such classes are said to be coinjectively generated by M.

Proposition 3.3. Let R be a left hereditary ring. The proper class RS is coinjectively generated
by all Rad-small left R-modules.

Proof. We shall show that RS = k(RSmall). It follows from Corollary 3.4 that every Rad-
small R-module is RS-coinjective, and so k(RSmall) C RS. By Proposition 3.2, we get RS =
= (RSmall) C k(RSmall). Hence, RS = k(RSmall).

Let P be a proper class. The global dimension of P is defined as

gldim P = {n | Ext%H(K, M) =0 for all M and K left R-modules }.

If there no such n, then gl.dim P = oco.

Theorem 3.6. gl.dim RS < 1.

Proof. 1t follows from Theorem 3.3 and [2].

Recall that a ring R is said to be a left V-ring if every simple left R-module is injective. The
following next theorem characterizes the left hereditary rings in which RS-coinjective modules are
injective.

Theorem 3.7. The following statements are equivalent for a left hereditary ring R:

(1) every RS-coinjective module is injective,

(2) every Rad-small module is injective,

(3) every small module is injective,

(4) R is a left V-ring.

Proof. (1) = (2) If follows from Corollary 3.4.

(2) = (3) Since small modules are Rad-small.

(3) = (4) By [14] (23.1), it suffices to prove that, for any left R-module M, Rad(M) = 0.
Let m € Rad(M). Then Rm is a small submodule of M. By (3), we can write the decomposition
M = Rm & K for some submodule K of M. It follows that m = 0. Hence, we obtain that
Rad(M) = 0.

(4) = (1) Let M be a RS-coinjective module and N be any extension of M. Then N =
=M+V and M NV CRad(E(M NV)) for some submodule V' of N. Since R is a left V-ring,
by [14] (23.1), we get M NV C Rad(E(M NV)) = 0. Thus, M is a direct summand of N.
It means that M is injective.

Let P be a proper class. A module M is said to be P-projective (respectively, P-coprojective)
if the subgroup Extp(M, K) = 0 (respectively, Extp (M, K) = Extr(M, K)) for all left R-modu-
le K.

Theorem 3.8. Let M be a module over a left hereditary ring. Then, the following statements
are equivalent:

(1) M is RS-projective.

(2) Extr(M, K) = 0 for every Rad-small module K.
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Proof. (1) = (2) is clear.
2)= (1) Let0 — A ANy BN C —> 0 be any element of RS. So, B = A+ D and

AN D is Rad-small for some submodule D of B. Put F' = AN D. Then the short exact sequence

A 4 B D ) o S . .
0 — I 2N o =2 50 splits, where 4; is the canonical injection and 7; is the canonical

projection. Now we can write the following commutative diagram:

(4 ¢

0 A B C 0
J/WF \Lr Ic
A il B f7T1

0 I Ia C 0

where 7 and 7 are canonical projections. Applying the functor Hom (M, .), we get

Hom (M, B)%Hom (M,C)——0

T x

Hom (M, ) Y5 Hom (M, C) —— 0

Extr(M, F)

Then (fm1)« is an epimorphism. It follows from (2) that Extr(M, F') = 0. So m, is an epimor-
phism. This means that ¢, is an epimorphism. Consequently, M is RS-projective.
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