E. Türkmen (Amasya Univ., Turkey)

\mathcal{Z}^* -SEMILOCAL MODULES AND THE PROPER CLASS \mathcal{RS} \mathcal{Z}^* -НАПІВЛОКАЛЬНІ МОДУЛІ ТА ВЛАСНИЙ КЛАС \mathcal{RS}

Over an arbitrary ring, a module M is said to be \mathcal{Z}^* -semilocal if every submodule U of M has a \mathcal{Z}^* -supplement V in M, i.e., M=U+V and $U\cap V\subseteq \mathcal{Z}^*(V)$, where $\mathcal{Z}^*(V)=\{m\in V\mid Rm \text{ is a small module}\}$ is the Rad-small submodule. In this paper, we study basic properties of these modules as a proper generalization of semilocal modules. In particular, we show that the class of \mathcal{Z}^* -semilocal modules is closed under submodules, direct sums, and factor modules. Moreover, we prove that a ring R is \mathcal{Z}^* -semilocal if and only if every injective left R-module is semilocal. In addition, we show that the class \mathcal{RS} of all short exact sequences $\mathbb{E}:0\longrightarrow M\stackrel{\psi}{\longrightarrow}N\stackrel{\phi}{\longrightarrow}K\longrightarrow 0$ such that $\mathrm{Im}(\psi)$ has a \mathcal{Z}^* -supplement in N is a proper class over left hereditary rings. We also study some homological objects of the proper class \mathcal{RS} .

Над довільним кільцем модуль M називається \mathcal{Z}^* -напівлокальним, якщо кожний підмодуль U модуля M має \mathcal{Z}^* -доповнення V в M, тобто M=U+V і $U\cap V\subseteq \mathcal{Z}^*(V)$, де $\mathcal{Z}^*(V)=\{m\in V\mid Rm$ — малий модуль} — Rad-малий підмодуль. У цій роботі вивчаються базові властивості таких модулів, як відповідного узагальнення напівлокальних модулів. Зокрема, показано, що клас \mathcal{Z}^* -напівлокальних модулів є замкненим відносно підмодулів, прямих сум і фактор-модулів. Крім того, доведено, що кільце R є \mathcal{Z}^* -напівлокальним тоді і тільки тоді, коли кожен ін'єктивний лівий R-модуль є напівлокальним. Також встановлено, що клас \mathcal{RS} усіх коротких послідовностей \mathbb{E} : $0\longrightarrow M\stackrel{\psi}{\longrightarrow} N\stackrel{\phi}{\longrightarrow} K\longrightarrow 0$ таких, що $\mathrm{Im}(\psi)$ має \mathcal{Z}^* -доповнення в N, є власним класом над лівими спадковими кільцями. Вивчено також деякі гомологічні об'єкти власного класу \mathcal{RS} .

1. Introduction. Throughout this study, all rings are associative with identity and all modules are unital left R-modules. Let R be a ring and M be a left R-module. The Jacobson radical of M will be denoted by $\operatorname{Rad}(M)$, and the injective hull of the module M will be denoted by E(M). The notation $N \subseteq M$ ($N \subset M$) means that N is a (proper) submodule of M. A non-zero submodule $L \subseteq M$ is said to be *essential* in M, denoted as $L \subseteq M$, if $L \cap N \neq 0$ for every non-zero submodule $N \subseteq M$. Dually, a proper submodule $N \subset M$ is said to be *small* in M, denoted by $N \ll M$, if $M \neq N + K$ for every proper submodule K of M (see [14], 19.1). A module M is said to be *small* if M is a small submodule of some R-module (see [7]). It is shown in [7] (Theorem 1) that a module M is *small* if and only if M is a small submodule of E(M). It is clear that every small submodule of M is a small module. For a module M, we consider the following submodule of M:

$$\mathcal{Z}^*(M) = \{ m \in M \mid Rm \text{ is a small module} \}.$$

Since $\operatorname{Rad}(M)$ is the sum of all small submodules of M, we get $\operatorname{Rad}(M) \subseteq \mathcal{Z}^*(M)$. It is easy to see that $\mathcal{Z}^*(M) = M \cap \operatorname{Rad}(E(M))$. Clearly, $\mathcal{Z}^*(M) = M$ if and only if $M \subseteq \operatorname{Rad}(E(M))$. A module M is said to be Rad -small (according to [13], cosingular) if $\mathcal{Z}^*(M) = M$. Since $\mathcal{Z}^*(\mathcal{Z}^*(M)) = \mathcal{Z}^*(M)$, $\mathcal{Z}^*(M)$ is the largest Rad -small submodule of M. Small modules are Rad -small. Also, a finitely generated Rad -small module is small.

Let M be a module and U, $V \subseteq M$ be submodules. V is called a *supplement* (Rad-supplement, respectively) of U in M if M = U + V and $U \cap V \ll V$ ($U \cap V \subseteq \operatorname{Rad}(V)$). M is called supplemented (Rad-supplemented, respectively) if every submodule of M has a (Rad-) supplement in M. Characterizations and structures of supplemented and Rad-supplemented modules are ex-

tensively studied by many authors. We specifically mention [4, 14, 15] among papers concerning supplemented and Rad-supplemented modules.

Since $\operatorname{Rad}(V) \subseteq \mathcal{Z}^*(V)$, it is natural to introduce another notion that we called a submodule V of M a \mathcal{Z}^* -supplement of U in M provided M = U + V and $U \cap V \subseteq \mathcal{Z}^*(V)$. Following [13] (Lemma 2.6 and Proposition 3.10), we characterize modules whose submodules have a \mathcal{Z}^* -supplement.

Lemma 1.1. Let R be a ring and M be an R-module. Then the following statements are equivalent:

- (1) Every submodule U of M has a \mathbb{Z}^* -supplement V in M.
- (2) For any submodule U of M, there exists a submodule V of M such that M = U + V and $U \cap V \subseteq \mathcal{Z}^*(M)$.
- (3) If U is a submodule of M, then M = U + V and $U \cap V$ is Rad-small for some submodule V of M.
 - (4) $\frac{M}{\mathcal{Z}^*(M)}$ is semisimple.

We say that a module M \mathcal{Z}^* -semilocal if M has one of the equal conditions of Lemma 1.1 as a proper generalization of semilocal modules. In Section 2, we obtain the basic properties of these modules. We show that the class of \mathcal{Z}^* -semilocal modules is closed under submodules, direct sums and factor modules. We prove that a ring R is \mathcal{Z}^* -semilocal if and only if every left R-module is \mathcal{Z}^* -semilocal if and only if every injective left R-module is semilocal. Let \mathcal{RS} be the class of all short exact sequences $\mathbb{E}: 0 \longrightarrow M \stackrel{\psi}{\longrightarrow} N \stackrel{\phi}{\longrightarrow} K \longrightarrow 0$ such that $\mathrm{Im}\,(\psi)$ has a \mathcal{Z}^* -supplement in N. In Section 3, we show that \mathcal{RS} is a proper class over left hereditary rings. We study on some homological objects of the proper class \mathcal{RS} in the same section. In particular, we show that over left hereditary rings the proper class \mathcal{RS} is coinjectively generated by all Rad-small modules.

The following lemma will be frequently used in this paper.

Lemma 1.2 (see [13], Lemma 2.6). The class of Rad-small left R-modules is closed under sub-modules, direct sums and factor modules.

2. \mathbb{Z}^* -semilocal modules and rings. Let M be a module. M is called semilocal if $\frac{M}{\operatorname{Rad}(M)}$ is semisimple, and a ring R is called semilocal if $\frac{R}{\operatorname{Rad}(R)}$ is a semisimple ring (see [8]).

It is clear that every semilocal module is \mathcal{Z}^* -semilocal, but the following example shows that the converse is not true, in general. Firstly, we need the following simple fact.

Lemma 2.1. Every Rad-small module is \mathcal{Z}^* -semilocal.

Proof. Let M be a Rad-small module. Then $\mathcal{Z}^*(M) = M$. Thus, it is \mathcal{Z}^* -semilocal.

Example 2.1. Let $M =_{\mathbb{Z}} \mathbb{Z}$. Since M is a small submodule of the injective hull of E(M), it is Rad-small. So, $Z^*(M) = M$. Applying Lemma 2.1, M is Z^* -semilocal. On the other hand, M is not semilocal.

Recall from [8] that a module M is weakly supplemented if every submodule U of M has a weak supplement V in M, that is, M = U + V and $U \cap V \ll M$. Every supplemented module is weakly supplemented and weakly supplemented modules are semilocal.

Corollary 2.1. Let M be a module over an arbitrary ring. Suppose that $\mathcal{Z}^*(M)$ is a small submodule of M. Then the following statements are equivalent:

(1) M is weakly supplemented,

- (2) M is semilocal,
- (3) M is \mathcal{Z}^* -semilocal.

Proof. $(1) \Longrightarrow (2)$ and $(2) \Longrightarrow (3)$ are clear.

(3) \Longrightarrow (1) Let $U \subseteq M$. By (3), there exists a submodule V of M such that M = U + V and $U \cap V \subseteq \mathcal{Z}^*(M)$. Since $\mathcal{Z}^*(M)$ is a small submodule of M, it follows from [14] (19.3.(4)) that $U \cap V \ll M$. Thus, V is a weak supplement of U in M. Hence, M is weakly supplemented.

Recall that a module M is radical if M = Rad(M), that is, M has no maximal submodules.

Lemma 2.2. Every radical module is Rad-small.

Proof. For a radical module M, let $m \in M$. Then $Rm \ll M$. So, Rm is small. Thus, $m \in \mathcal{Z}^*(M)$.

Let M be a module. By P(M), we denote the sum of all radical submodules of M. P(M) is the largest radical submodule of M. By using Lemmas 2.1 and 2.2, we obtain the following fact.

Corollary 2.2. P(M) is \mathbb{Z}^* -semilocal for every module M.

It is well known that any submodule of a semilocal module need not be semilocal. For example, $\mathbb{Z}\mathbb{Z}\subseteq\mathbb{Z}\mathbb{Q}$. But, we have the following proposition.

Proposition 2.1. Every submodule of a \mathbb{Z}^* -semilocal module is \mathbb{Z}^* -semilocal.

Proof. Let M be a \mathcal{Z}^* -semilocal module and $U\subseteq N\subseteq M$ be submodules. Since M is \mathcal{Z}^* -semilocal, we can write M=U+V and $U\cap V$ is Rad-small for some submodule V of M. By using the modular law, $N=N\cap M=N\cap (U+V)=U+(N\cap V)$, and $U\cap (N\cap V)=U\cap V$ is Rad-small. Hence, N is \mathcal{Z}^* -semilocal.

Proposition 2.2. Every factor module of a \mathbb{Z}^* -semilocal module is \mathbb{Z}^* -semilocal.

Proof. For a \mathcal{Z}^* -semilocal module M, let $N\subseteq U\subseteq M$ be submodules. Then there exists a submodule V of M such that M=U+V and $U\cap V$ is Rad-small. Therefore, $\frac{M}{N}=\frac{U}{N}+\frac{V+N}{N}$.

By using the canonical epimorphism $\pi: M \longrightarrow \frac{M}{N}$, we obtain that

$$\pi(U\cap V)=\frac{(U\cap V)+N}{N}=\frac{U\cap (V+N)}{N}=\frac{U}{N}\cap \frac{V+N}{N}$$

is Rad-small by Lemma 1.2. Hence, the factor module $\frac{M}{N}$ is \mathcal{Z}^* -semilocal.

Theorem 2.1. Every direct sum of \mathbb{Z}^* -semilocal modules is \mathbb{Z}^* -semilocal.

Proof. Let $\{M_i\}_{i\in I}$ be any collection of \mathcal{Z}^* -semilocal modules, where I is any index set. Put $M=\oplus_{i\in I}M_i$. It follows from [13] (Lemma 2.3) that

$$\frac{M}{\mathcal{Z}^*(M)} = \frac{\bigoplus_{i \in I} M_i}{\bigoplus_{i \in I} \mathcal{Z}^*(M_i)} \cong \bigoplus_{i \in I} \frac{M_i}{\mathcal{Z}^*(M_i)}$$

is semisimple as a direct sum of these semisimple modules $\frac{M_i}{\mathcal{Z}^*(M_i)}$. Therefore, M is \mathcal{Z}^* -semilocal.

Corollary 2.3. Any sum of \mathbb{Z}^* -semilocal submodules of a module M is \mathbb{Z}^* -semilocal.

Proof. Let $\{N_i\}_{i\in I}$ be the family of \mathcal{Z}^* -semilocal submodules of the module M. Then, we can write the epimorphism $\Psi\colon \oplus_{i\in I} N_i \longrightarrow \sum_{i\in I} N_i$ via $\Psi((a_i)_{i\in I}) = \sum_{i\in I_0} a_i$, where I_0 is the finite set of the index set I. By Theorem 2.1, the external direct sum $\oplus_{i\in I} N_i$ is a \mathcal{Z}^* -semilocal module. It follows from Proposition 2.2 that the submodule $\sum_{i\in I} N_i$ is \mathcal{Z}^* -semilocal.

Remark 2.1. Let R be a ring with identity. Suppose that R is a Z^* -semilocal R-module. Then, by Lemma 1.1, $\frac{R}{Z^*(R)}$ is a semisimple left R-module. Therefore, $\frac{R}{Z^*(R)}$ is a semisimple $\frac{R}{Z^*(R)}$ -module and so $\frac{R}{Z^*(R)}$ is a semisimple ring. It follows that $\frac{R}{Z^*(R)}$ is a semisimple right R-module. That is, R_R is a Z^* -semilocal R-module. Similarly, if R_R is a Z^* -semilocal R-module, it can be shown that R is a Z^* -semilocal R-module. By using this fact, we say that R is a Z^* -semilocal ring if R (or R) is a Z^* -semilocal R-module.

It is shown in [8] (Theorem 3.5) that a ring R is semilocal if and only if every left R-module is semilocal. Now, we give an analogue of this fact for \mathcal{Z}^* -semilocal rings.

Lemma 2.3. Let E be an injective module. Then E is \mathcal{Z}^* -semilocal if and only if it is semilocal. **Proof.** Let E be a \mathcal{Z}^* -semilocal module and $U \subseteq E$. Then there exists a submodule V of E such that E = U + V and $U \cap V$ is Rad-small. Since E is injective, $\mathcal{Z}^*(E) = E \cap \operatorname{Rad}(E) = \operatorname{Rad}(E)$. So $U \cap V \subseteq \operatorname{Rad}(E)$. Hence, E is semilocal.

Theorem 2.2. The following statements are equivalent for a ring R:

- (1) R is \mathcal{Z}^* -semilocal,
- (2) every left R-module is \mathbb{Z}^* -semilocal,
- (3) every injective left R-module is semilocal.
- **Proof.** (1) \Longrightarrow (2) Let M be any left R-module. Then, for an index set I, there exists an epimorphism $\Psi: R^{(I)} \longrightarrow M$. Since R is \mathcal{Z}^* -semilocal, it follows from Theorem 2.1 that the left free R-module $R^{(I)}$ is \mathcal{Z}^* -semilocal. Therefore, M is \mathcal{Z}^* -semilocal by Proposition 2.2.
 - $(2) \Longrightarrow (3)$ It is obvious.
- (3) \Longrightarrow (2) For any module M, the injective hull E(M) is semilocal. Therefore, E(M) is \mathcal{Z}^* -semilocal. Applying Proposition 2.1, we deduce that M is \mathcal{Z}^* -semilocal.
 - $(2) \Longrightarrow (1)$ It follows from (2) that ${}_RR$ is \mathcal{Z}^* -semilocal. Thus, R is a \mathcal{Z}^* -semilocal ring.

In [13], a ring R is called *left cosingular* if R is Rad-small. Every commutative domain (which is not field) is left (right) cosingular. It is proven in [13] (Lemma 2.8) that R is a left cosingular ring if and only if every injective left R-module is radical. By using this fact, Theorem 2.2 and Lemma 2.1, we obtain that every left cosingular ring is Z^* -semilocal. Now, we shall show that a Z^* -semilocal ring need not be left cosingular in the following example.

Example 2.2. Let n > 1 be a non-prime positive element of \mathbb{Z} . Then the ring \mathbb{Z}_n is \mathbb{Z}^* -semilocal but not cosingular.

A ring R is called *left hereditary* if every factor module of an injective left R-module is injective (see [6]).

Lemma 2.4 (see [7], Theorem 3). Let R be a left hereditary ring and $\mathbb{E}: 0 \longrightarrow M \stackrel{\psi}{\longrightarrow} N \stackrel{\phi}{\longrightarrow} K \longrightarrow 0$ be a short exact sequence of left R-modules. Then M and K are small modules if and only if N is a small module.

We give an analogous characterization of this fact for Rad-small modules.

Lemma 2.5. Let R be a left hereditary ring and $\mathbb{E}: 0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} K \longrightarrow 0$ be a short exact sequence of left R-modules. Then M and K are Rad-small modules if and only if N is a Rad-small module.

Proof. (\Longrightarrow) To simplify the notation, we think of M as a submodule of N. Since M is Radsmall, we get $M\subseteq \operatorname{Rad}(E(M))$. Therefore, $M\subseteq \operatorname{Rad}(E(N))$. Moreover, $\frac{N}{M}$ is Radsmall in

 $\frac{E(N)}{M}$ is injective over a left hereditary ring R. Thus, $N \subseteq \operatorname{Rad}(E(N))$. This means that N is

 (\Leftarrow) It follows from Lemma 1.2.

Lemma 2.6. Let R be a left hereditary ring and M be a left R-module. Suppose that a submodule N of M is Rad-small. Then $\mathcal{Z}^*\left(\frac{M}{N}\right) = \frac{\mathcal{Z}^*(M)}{N}$.

Proof. By the hypothesis, we have $N \subseteq \mathcal{Z}^*(M)$. It follows that

$$\frac{\mathcal{Z}^*(M) + N}{N} = \frac{\mathcal{Z}^*(M)}{N} \subseteq \mathcal{Z}^*\left(\frac{M}{N}\right).$$

Let $m+N\in\mathcal{Z}^*\left(\frac{M}{N}\right)$. Then $R(m+N)=\frac{Rm+N}{N}$ is a Rad-small module. Now, consider the following exact sequence:

$$0 \longrightarrow Rm \cap N \stackrel{i}{\longrightarrow} Rm \stackrel{\pi}{\longrightarrow} \frac{Rm + N}{N} \longrightarrow 0,$$

where i is the canonical injection and π is the canonical projection. Applying Lemma 2.5, since R is left hereditary, Rm is Rad-small and so $m \in \mathcal{Z}^*(M)$. This means that $\mathcal{Z}^*\left(\frac{M}{N}\right) \subseteq \frac{\mathcal{Z}^*(M)}{N}$.

Hence,
$$\mathcal{Z}^*\left(\frac{M}{N}\right) = \frac{\mathcal{Z}^*(M)}{N}$$
.

Proposition 2.3. Let R be a left hereditary ring and M be a left R-module. If a submodule Nof M is Rad-small, M is \mathbb{Z}^* -semilocal if and only if $\frac{M}{N}$ is \mathbb{Z}^* -semilocal.

Proof. (\Longrightarrow) By Proposition 2.2.

 (\longleftarrow) Let $U\subseteq M$ be a submodule. By the hypothesis, we can write

$$\frac{M}{N} = \frac{U+N}{N} + \frac{V}{N}$$
 and $\frac{U+N}{N} \cap \frac{V}{N}$

is Rad-small for some submodule $\frac{V}{N}$ of $\frac{M}{N}$. Then M = U + V. Now,

$$\frac{U+N}{N}\cap \frac{V}{N} = \frac{(U+N)\cap V}{N} = \frac{U\cap V+N}{N} \subseteq \mathcal{Z}^*\left(\frac{M}{N}\right) = \frac{\mathcal{Z}^*(M)}{N}$$

according to Lemma 2.6. So, $U \cap V \subseteq \mathcal{Z}^*(M)$. Thus, M is \mathcal{Z}^* -semilocal.

In [14], over an arbitrary ring a module P is said to be a *small cover* of a module M if there exists an epimorphism $f: P \longrightarrow M$ with $\operatorname{Ker}(f) \ll P$. A submodule K of M is small in M if and only if M is a small cover of $\frac{M}{K}$. By using Proposition 2.3, we obtain the following result. Corollary 2.4. Let R be a left hereditary ring and M be a \mathcal{Z}^* -semilocal R-module. Then every

small cover of M is \mathbb{Z}^* -semilocal.

Proof. Let $f: P \longrightarrow M$ be a small cover. Then $\operatorname{Ker}(f)$ is a small submodule of P and so $\operatorname{Ker}(f)$ is Rad-small. Since M is \mathcal{Z}^* -semilocal, we get $\frac{P}{\operatorname{Ker}(f)}$ is \mathcal{Z}^* -semilocal. Applying Proposition 2.3, we deduce that P is \mathbb{Z}^* -semilocal.

3. The proper class \mathcal{RS} .

Definition 3.1. Let \mathcal{P} be a class of short exact sequences of left R-modules and R-module homomorphisms. If a short exact sequence $\mathbb{E}: 0 \longrightarrow M \xrightarrow{\psi} N \xrightarrow{\phi} K \longrightarrow 0$ belongs to \mathcal{P} , then ψ is said to be a \mathcal{P} -monomorphism and ϕ is said to be an \mathcal{P} -epimorphism.

The class \mathcal{P} is said to be a *proper class* (in the sense of Buchsbaum) if it has the following properties:

- (P₁) If the short exact sequence $\mathbb{E}: 0 \longrightarrow M \stackrel{\psi}{\longrightarrow} N \stackrel{\phi}{\longrightarrow} K \longrightarrow 0$ is in \mathcal{P} , then \mathcal{P} contains every short exact sequence isomorphic to \mathbb{E} .
 - (P_2) \mathcal{P} contains all splitting short exact sequences.
- (P_3) The composite of two \mathcal{P} -monomorphisms is a \mathcal{P} -monomorphism if this composite is defined.
 - (P_3) The composite of two \mathcal{P} -epimorphisms is a \mathcal{P} -epimorphism if this composite is defined.
- (P₄) If ψ_1 , ψ_2 are monomorphisms and $\psi_2\psi_1$ is a \mathcal{P} -monomorphism, then ψ_1 is a \mathcal{P} -monomorphism.
 - (P_4') If ϕ_1 , ϕ_2 are epimorphisms and $\phi_2\phi_1$ is an \mathcal{P} -epimorphism, then ϕ_2 is an \mathcal{P} -epimorphism. **Example 3.1.** We list some examples of proper classes:
 - (1) The smallest proper class Split of all splitting short exact sequences of left R-modules.
 - (2) The largest proper class Abs of all short exact sequences of left R-modules.
- (3) The proper class Supp of all short exact sequences $0 \longrightarrow M \stackrel{\psi}{\longrightarrow} N \stackrel{\phi}{\longrightarrow} K \longrightarrow 0$ such that $Im(\psi)$ is a supplement of some submodule of N (see [5]).
- (4) The proper class Co-Neat of all short exact sequences $0 \longrightarrow M \stackrel{\psi}{\longrightarrow} N \stackrel{\phi}{\longrightarrow} K \longrightarrow 0$ such that $\operatorname{Im}(\psi)$ is a Rad-supplement of some submodule of N (see [10]).
- (5) Over left hereditary rings the proper class SS of all short exact sequences $0 \longrightarrow M \stackrel{\psi}{\longrightarrow} N \stackrel{\phi}{\longrightarrow} K \longrightarrow 0$ such that $\operatorname{Im}(\psi)$ has a small supplement in N, that is, $N = \operatorname{Im}(\psi) + V$ and $\operatorname{Im}(\psi) \cap V$ is a small module (see [1]).

Now, we have the following implications on the the above classes of left R-modules:

$$Split \subseteq Supp \subseteq Co-Neat \subseteq Abs$$
 and $Split \subseteq Supp \subseteq SS \subseteq Abs$.

Let \mathcal{RS} be the class of all short exact sequences $\mathbb{E}: 0 \longrightarrow M \stackrel{\psi}{\longrightarrow} N \stackrel{\phi}{\longrightarrow} K \longrightarrow 0$ such that $\mathrm{Im}(\psi)$ has a \mathcal{Z}^* -supplement in N, that is, $\mathrm{Im}(\psi) + V = N$ and $\mathrm{Im}(\psi) \cap V$ is Rad-small for some submodule V of N. It is obvious that $\mathcal{C}o\text{-}\mathcal{N}eat \subseteq \mathcal{RS}$ and $\mathcal{SS} \subseteq \mathcal{RS}$. The following example shows that \mathcal{RS} contains properly the class \mathcal{SS} and the class $\mathcal{C}o\text{-}Neat$.

Example 3.2. (1) Let R be a local Dedekind domain (i.e., DVR) with quotient $K \neq R$ (e.g., the ring $\mathbb{Z}_{(p)}$ containing all rational numbers of the form $\frac{a}{b}$ with $p \nmid b$ for any prime p in \mathbb{Z}). Put $N = R^{(\mathbb{N})}$ and $M = \operatorname{Rad}(N)$. Consider the extension $\mathbb{E} \colon 0 \longrightarrow M \stackrel{\iota}{\longrightarrow} N \stackrel{\pi}{\longrightarrow} K \longrightarrow 0$, where $K = \frac{N}{M}$. Then \mathbb{E} is an element of \mathcal{RS} . However, it is not in \mathcal{SS} because M has no (weak) supplements in the projective module N.

(2) Let $N =_{\mathbb{Z}} \mathbb{Z}$ and $M =_{\mathbb{Z}} 2\mathbb{Z}$. Put $K =_{\mathbb{Z}} \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)$. Then the extension $\mathbb{E} : 0 \longrightarrow M \stackrel{\iota}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} K \longrightarrow 0$ is in the class \mathcal{RS} by Theorem 2.2. On the other hand, \mathbb{E} is not an element of $\mathcal{C}o\text{-}Neat$ since M is not Rad-supplement in N.

Proposition 3.1. Let R be an arbitrary ring. If every injective left R-module has a small radical, then RS = SS.

Proof. Let $\mathbb{E}: 0 \longrightarrow M \stackrel{\psi}{\longrightarrow} N \stackrel{\phi}{\longrightarrow} K \longrightarrow 0$ be any element of the class \mathcal{RS} . Then there exists a submodule V of N such that N = M + V and $M \cap V$ is Rad-small. Therefore, $M \cap V \subseteq \operatorname{Rad}(E(M \cap V))$. By the assumption and [6] (11.5.5, \S 11.6.3), we obtain that $M \cap V$ is a small submodule of the injective hull $E(M \cap V)$. It means that M has a small supplement in N. Hence, $\mathcal{RS} = \mathcal{SS}$.

A ring R is said to be a *left max ring* if every non-zero left R-module has a maximal submodule. Now we have the following:

Corollary 3.1. Let R be a left max ring. Then RS = SS.

Proof. Since R is left max, every left R-module has a small radical. Hence, the proof follows from Proposition 3.1.

Example 3.3. Consider the non-Noetherian commutative ring which is the direct product $\prod_{i\geq 1}^\infty F_i$, where $F_i=F$ is any field. Suppose that R is the subring of the ring consisting of all sequences $(r_n)_{n\in\mathbb{N}}$ such that there exist $r\in F,\ m\in\mathbb{N}$ with $r_n=r$ for all $n\geq m$. Let $N=_RR$. Then N is a regular module which is not semisimple. Put $M=\operatorname{Soc}(N)$ and $K=\frac{N}{M}$. Then the extension $\mathbb{E}: 0\longrightarrow M\stackrel{\iota}{\longrightarrow} N\stackrel{\pi}{\longrightarrow} K\longrightarrow 0$ is not in \mathcal{RS} .

Theorem 3.1. A ring R is a Z^* -semilocal ring if and only if $\mathcal{RS} = \mathcal{A}bs$.

Proof. By Theorem 2.2.

Observe from Theorem 3.1 that over \mathcal{Z}^* -semilocal rings (in particular, semilocal rings or commutative domains), \mathcal{RS} is a proper class.

The following the structure of the Abelian group $\operatorname{Ext}_R(K, M)$ is given in the book [9, p. 63 – 71], and we recall them for the convenience of the reader:

Let R be an arbitrary ring with identity and $\mathbb{E}: 0 \longrightarrow M \stackrel{\psi}{\longrightarrow} N \stackrel{\phi}{\longrightarrow} K \longrightarrow 0$ be a short exact sequence of left R-modules and module homomorphisms. Then \mathbb{E} is called *an extension* of M by K. By $\operatorname{Ext}_R(K,M)$ we will denote the set of all equivalence classes of extensions of M by K. Let $\mathbb{E}_1: 0 \longrightarrow M \stackrel{\psi_1}{\longrightarrow} N_1 \stackrel{\phi_1}{\longrightarrow} K \longrightarrow 0$ and $\mathbb{E}_2: 0 \longrightarrow M \stackrel{\psi_2}{\longrightarrow} N_2 \stackrel{\phi_2}{\longrightarrow} K \longrightarrow 0$ be any elements of $\operatorname{Ext}_R(K,M)$. We define the direct sum of \mathbb{E}_1 and \mathbb{E}_2 as follows:

$$\mathbb{E}_1 \oplus \mathbb{E}_2 : 0 \longrightarrow M \oplus M \stackrel{\psi}{\longrightarrow} N_1 \oplus N_2 \stackrel{\phi}{\longrightarrow} K \oplus K \longrightarrow 0,$$

where $\psi(m_1,m_2)=(\psi_1\oplus\psi_2)(m_1,m_2)=(\psi_1(m_1),\psi_2(m_2))$ for all $(m_1,m_2)\in M\oplus M$ and $\phi(n_1,n_2)=(\phi_1\oplus\phi_2)(n_1,n_2)=(\phi_1(n_1),\phi_2(n_2))$ for all $(n_1,n_2)\in N_1\oplus N_2$. Then $\mathbb{E}_1\oplus\mathbb{E}_2$ is a short exact sequence. The *Baer sum* of \mathbb{E}_1 and \mathbb{E}_2 , $\mathbb{E}_1+\mathbb{E}_2=\bigtriangledown_M(\mathbb{E}_1\oplus\mathbb{E}_2)\triangle_K$, where the *diagonal* map $\triangle_K(k)=(k,k)$ for all $k\in K$ and the *codiagonal* map $\bigtriangledown_M(m_1,m_2)=m_1+m_2$ for all $(m_1,m_2)\in M\oplus M$. Therefore, $\mathrm{Ext}_R(K,M)$ is an Abelian group under Baer sum of extensions. Note that the split extension $0\longrightarrow M\longrightarrow M\oplus K\longrightarrow K\longrightarrow 0$ is the zero element of this group and the inverse of an extension $\mathbb{E}:0\longrightarrow M\stackrel{\psi}{\longrightarrow} N\stackrel{\phi}{\longrightarrow} K\longrightarrow 0$ is the extension $(-I_M)\mathbb{E}$.

The set $\operatorname{Ext}_{\mathcal{P}}(K,M)$ of all short exact sequences of $\operatorname{Ext}_R(K,M)$ that belongs to a proper class \mathcal{P} is a subgroup of the group of $\operatorname{Ext}_R(K,M)$.

Theorem 3.2 (see [12], Theorem 1.1). Let \mathcal{P} be a class of short exact sequences for left R-modules. If $\operatorname{Ext}_{\mathcal{P}}(K,M)$ is a subfunctor of $\operatorname{Ext}_{R}(K,M)$, $\operatorname{Ext}_{\mathcal{P}}(K,M)$ is a subgroup of $\operatorname{Ext}_{R}(K,M)$ for every R-modules M, K and the composition of two \mathcal{P} -monomorphism

(or P-epimorphisms) is a P-monomorphism (an P-epimorphism, respectively), then P is a proper class.

Using Theorem 3.2, we shall prove that RS is a proper class over left hereditary rings.

Lemma 3.1. Let $f: M \longrightarrow M'$ be any homomorphism of left R-modules. Then

$$f_* : \operatorname{Ext}_R(K, M) \longrightarrow \operatorname{Ext}_R(K, M')$$

preserves the elements of the class RS.

Proof. Let $\mathbb{E}: 0 \longrightarrow M \stackrel{\psi}{\longrightarrow} N \stackrel{\phi}{\longrightarrow} K \longrightarrow 0$ be any element of \mathcal{RS} . Take the left R-module $N' = \frac{M' \oplus N}{H}$, where $H = \left\{ (-f(m), \psi(m)) \in M' \oplus N \mid m \in M \right\}$ is a submodule of $M' \oplus N$. Define these homomorphisms of left R-modules $\psi' : M' \longrightarrow N'$ via $\psi'(m') = (m', 0) + H$, $\phi' : N' \longrightarrow K$ via $\phi'((m', n)) = \phi(n)$ and $h : N \longrightarrow N'$ via h(n) = (0, n) + H. Then $f_*(\mathbb{E}) = f\mathbb{E}: 0 \longrightarrow M' \stackrel{\psi'}{\longrightarrow} N' \stackrel{\phi'}{\longrightarrow} K \longrightarrow 0 \in \operatorname{Ext}_R(K, M')$ and we obtain the following commutative diagram with exact rows:

$$\mathbb{E}: 0 \longrightarrow M \xrightarrow{\psi} N \xrightarrow{\phi} K \longrightarrow 0$$

$$\downarrow f \qquad \downarrow h \qquad \parallel$$

$$f\mathbb{E}: 0 \longrightarrow M' \xrightarrow{\psi'} N' \xrightarrow{\phi'} K \longrightarrow 0$$

that is, $\psi'f = h\psi$ and $\phi'h = \phi$. Since the extension $\mathbb{E}: 0 \longrightarrow M \xrightarrow{\psi} N \xrightarrow{\phi} K \longrightarrow 0$ is in the class \mathcal{RS} of left R-modules, there exists a submodule V of N such that $N = \operatorname{Im}(\psi) + V$ and $\operatorname{Im}(\psi) \cap V$ is Rad-small. By using the above commutative diagram, we obtain that $N' = \operatorname{Im}(\psi') + \operatorname{Im}(h)$ and $\operatorname{Im}(h) \cap \operatorname{Im}(\psi') = h(\operatorname{Im}(\psi) \cap V)$. It follows from Lemma 1.2 that $\operatorname{Im}(h) \cap \operatorname{Im}(\psi')$ is Rad-small as a homomorphic image of the Rad-small module $\operatorname{Im}(\psi) \cap V$. So $\operatorname{Im}(h)$ is a \mathcal{Z}^* -supplement of $\operatorname{Im}(\psi')$ in N'. Thus, $f\mathbb{E} = f_*(\mathbb{E}) \in \mathcal{RS}$.

Observe from Lemma 3.1 that if, for all modules M and K, $\mathbb{E} \in \operatorname{Ext}_{\mathcal{RS}}(K, M)$, then the inverse extension $(-I_M)\mathbb{E} \in \operatorname{Ext}_{\mathcal{RS}}(K, M)$.

Lemma 3.2. Let $g: K' \longrightarrow K$ be any homomorphism of left R-modules. Then

$$g^* : \operatorname{Ext}_R(K, M) \longrightarrow \operatorname{Ext}_R(K', M)$$

preserves the elements of the class RS.

Proof. Let $\mathbb{E}\colon 0\longrightarrow M\stackrel{\psi}{\longrightarrow} N\stackrel{\phi}{\longrightarrow} K\longrightarrow 0$ be a short exact sequence in \mathcal{RS} . Consider the left R-submodule $N'=\{(n,k')\in N\oplus K'\mid \phi(n)=g\left(k'\right)\}$ of the left R-module $N\oplus K'$. Define these homomorphisms $\phi'\colon N'\longrightarrow K'$ via $\phi'\left(n,k'\right)=k',\ h\colon N'\longrightarrow N$ via $h\left(n,k'\right)=n$ and $\psi'\colon M\longrightarrow N'$ via $\psi'(m)=(\psi(m),0)$. Then we can write the following commutative diagram with rows:

$$\mathbb{E}g: \ 0 \longrightarrow M \xrightarrow{\psi'} N' \xrightarrow{\phi'} K' \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow_h \qquad \downarrow_g$$

$$\mathbb{E}: \ 0 \longrightarrow M \xrightarrow{\psi} N \xrightarrow{\phi} K \longrightarrow 0$$

where $g^*(\mathbb{E}) = \mathbb{E}g$. Since \mathbb{E} is an element of \mathcal{RS} , there exists a submodule V of N such that $N = \operatorname{Im}(\psi) + V = \operatorname{and} \operatorname{Im}(\psi) \cap V$ is Rad-small. To show $N' = \operatorname{Im}(\psi') + h^{-1}(V)$, let a

ISSN 1027-3190. Укр. мат. журн., 2019, т. 71, № 3

be any element of N'. Then we can write $h(a) = \psi(m) + v$ where $m \in M$ and $v \in V$. Since $\psi(m) = (h\psi')(m)$, we have $a - \psi'(m) \in h^{-1}(V)$ and this implies that $N' = \text{Im } (\psi') + h^{-1}(V)$.

Let (n,k') be any element of $\operatorname{Im}(\psi')\cap h^{-1}(V)$. Since $\operatorname{Im}(\psi')=\operatorname{Ker}(\phi')$, we obtain that $\phi'(n,k')=k'=0$. Then $g(k')=\phi(n)=0$, that is, $n\in\operatorname{Ker}(\phi)$. Therefore, $n\in\operatorname{Im}(\psi)$ because $\operatorname{Im}(\psi)=\operatorname{Ker}(\phi)$. It follows that $n\in\operatorname{Im}(\psi)\cap V$. Since $\operatorname{Im}(\psi)\cap V$ is Rad-small, the module Rn is small, and so R(n,k') is small. Thus, $\operatorname{Im}(\psi')\cap h^{-1}(V)$ is Rad-small. Hence, $h^{-1}(V)$ is a \mathcal{Z}^* -supplement of $\operatorname{Im}(\psi')$ in N'.

Lemma 3.3. If $\mathbb{E}_1, \mathbb{E}_2 \in \operatorname{Ext}_{RS}(K, M)$, then $\mathbb{E}_1 \oplus \mathbb{E}_2 \in \operatorname{Ext}_{RS}(K \oplus K, M \oplus M)$.

Proof. Let $\mathbb{E}_1: 0 \longrightarrow M \xrightarrow{\psi_1} N_1 \xrightarrow{\phi_1} K \longrightarrow 0$ and $\mathbb{E}_2: 0 \longrightarrow M \xrightarrow{\psi_2} N_2 \xrightarrow{\phi_2} K \longrightarrow 0$ be two elements of $\operatorname{Ext}_{\mathcal{RS}}(K,M)$. Then, for $i=1,2,\ N_i=M+V_i$ and $M\cap V_i$ is Rad-small for some submodules V_i of N_i . Since $(M\oplus M)+(V_1\oplus V_2)=N_1\oplus N_2$ and $(M\oplus M)\cap (V_1\oplus V_2)=(M\cap V_1)\oplus (M\cap V_2)$, it follows from Lemma 1.2 that the short exact sequence $\mathbb{E}_1\oplus \mathbb{E}_2:0\longrightarrow M\oplus M \xrightarrow{\psi} N_1\oplus N_2 \xrightarrow{\phi} K\oplus K\longrightarrow 0$ is in $\operatorname{Ext}_{RS}(K\oplus K,M\oplus M)$, where $\psi=\psi_1\oplus\psi_2$ and $\phi=\phi_1\oplus\phi_2$.

Corollary 3.2. $\operatorname{Ext}_{\mathcal{RS}}(K,M)$ is a subgroup of the extension $\operatorname{Ext}_R(K,M)$ for every module K and M. Moreover, $\operatorname{Ext}_{\mathcal{RS}}(K,M)$ is a subfunctor of the functor $\operatorname{Ext}_R(K,M)$.

Proof. Let $\mathbb{E}_1: 0 \longrightarrow M \xrightarrow{\psi_1} N_1 \xrightarrow{\phi_1} K \longrightarrow 0$ and $\mathbb{E}_2: 0 \longrightarrow M \xrightarrow{\psi_2} N_2 \xrightarrow{\phi_2} K \longrightarrow 0$ be any elements of $\operatorname{Ext}_{\mathcal{RS}}(K,M)$. It follows from Lemmas 3.1, 3.2 and 3.3 that the Baer sum $\mathbb{E}_1 + \mathbb{E}_2$ of these extensions \mathbb{E}_1 and \mathbb{E}_2 is in $\operatorname{Ext}_{\mathcal{RS}}(K,M)$. Hence, $\operatorname{Ext}_{\mathcal{RS}}(K,M)$ is a subgroup of $\operatorname{Ext}_R(K,M)$.

Theorem 3.3. Let R be a left hereditary ring. Then RS is a proper class.

Proof. By Theorem 3.2 and Corollary 3.2, it suffices to show that the composition of two \mathcal{RS} -epimorphisms is an \mathcal{RS} -epimorphism. Let $f: N \longrightarrow N'$ and $g: N' \longrightarrow K$ be \mathcal{RS} -epimorphisms. Now we have the following commutative diagram with exact rows and columns:

where $i_{\mathrm{Ker}\,(f)}$ and $i_{\mathrm{Ker}\,(g)}$ are the canonical inclusions. By the hypothesis, we can write N=Ker(f)+V and $Ker(f)\cap V$ is Rad-small for some submodule V of N, and $\frac{N}{\mathrm{Ker}\,(f)}=\frac{M}{\mathrm{Ker}\,(f)}+V$ and $\frac{M\cap L}{\mathrm{Ker}\,(f)}$ is Rad-small for some submodule $\frac{L}{\mathrm{Ker}\,(f)}$ of $\frac{N}{\mathrm{Ker}\,(f)}$. Therefore, $M=M\cap N=M\cap Ker(f)+V=Ker(f)+M\cap V$, $M\cap L=Ker(f)+M\cap V\cap L$ and

 $L = \operatorname{Ker}(f) + L \cap V$. It follows that $N = M + (V \cap L)$. Applying Lemma 2.5, we deduce that $M \cap V \cap L$ is Rad-small. This means that the composition gf is an \mathcal{RS} -epimorphism.

Let \mathcal{M} be a class of short exact sequences. The smallest proper class containing \mathcal{M} is said to be *generated* by \mathcal{M} and denoted by $\langle \mathcal{M} \rangle$. Since the intersection of any proper classes is proper, we have $\langle \mathcal{M} \rangle = \bigcap \{ \mathcal{P} \mid \mathcal{M} \subseteq \mathcal{P} \text{ and } \mathcal{P} \text{ is proper class} \}.$

By $\mathcal{RS}mall$, we will denote the class of all short exact sequences $\mathbb{E}: 0 \longrightarrow M \stackrel{\psi}{\longrightarrow} N \stackrel{\phi}{\longrightarrow} K \longrightarrow 0$ such that $\operatorname{Im}(\psi) \subseteq \operatorname{Rad}(N)$, and by \mathcal{WRS} we will denote the class of all short exact sequences $\mathbb{E}: 0 \longrightarrow M \stackrel{\psi}{\longrightarrow} N \stackrel{\phi}{\longrightarrow} K \longrightarrow 0$ such that $\operatorname{Im}(\psi)$ has a weak Rad-supplement in N, that is, $\operatorname{Im}(\psi) + V = N$ and $\operatorname{Im}(\psi) \cap V \subseteq \operatorname{Rad}(N)$ for some submodule V of N.

Clearly, $\mathcal{RS}mall \subseteq \mathcal{WRS} \subseteq \mathcal{RS}$, and so $\langle \mathcal{RS}mall \rangle \subseteq \langle \mathcal{WRS} \rangle \subseteq \mathcal{RS}$ whenever \mathcal{RS} is a proper class. Motivated by [1] (Corollary 3.13), we shall prove that $\langle \mathcal{RS}mall \rangle = \langle \mathcal{WRS} \rangle = \mathcal{RS}$ in the following theorem.

Theorem 3.4. For the proper class RS, $\langle RSmall \rangle = \langle WRS \rangle = RS$.

Proof. Let $\mathbb{E}\colon 0\longrightarrow M\stackrel{\psi}{\longrightarrow} N\stackrel{\phi}{\longrightarrow} K\longrightarrow 0$ be any element of the proper class \mathcal{RS} . Then, for some submodule V of N, we can write N=M+V and $M\cap V$ is Rad-small. Put $L=M\cap V$. Therefore, the extension $\mathbb{E}\colon 0\longrightarrow \frac{M}{L}\stackrel{\iota}{\longrightarrow} \frac{N}{L}\stackrel{\Phi}{\longrightarrow} K\longrightarrow 0$ is in the class $\langle\mathcal{RS}mall\rangle$, where ι is the canonical injection, $\pi\colon N\longrightarrow \frac{N}{L}$ is the canonical projection and $\phi=\Phi\pi$. Since π and Φ are $\langle\mathcal{RS}mall\rangle$ -epimorphisms, we get that ϕ is $\langle\mathcal{RS}mall\rangle$ -epimorphism. It means that $\mathcal{RS}\subseteq\langle\mathcal{RS}mall\rangle$.

Let \mathcal{P} be a proper class. A module M is said to be \mathcal{P} -injective (respectively, \mathcal{P} -coinjective) if the subgroup $\operatorname{Ext}_{\mathcal{P}}(K,M)=0$ (respectively, $\operatorname{Ext}_{\mathcal{P}}(K,M)=\operatorname{Ext}_{R}(K,M)$) for all left R-modules K.

Now we prove that weak Rad-supplement submodules of \mathcal{RS} -coinjective modules are \mathcal{RS} -coinjective.

Proposition 3.2. Let R be a left hereditary ring and M be a RS-coinjective R-module. Then every weak Rad-supplement submodule of M is RS-coinjective.

Proof. Let A be a weak Rad-supplement submodule of M. Then the extension $\mathbb{E}: 0 \longrightarrow A \stackrel{\iota}{\longrightarrow} \frac{M}{\longrightarrow} \frac{M}{A} \longrightarrow 0$ is an element of the class \mathcal{WRS} and so it is in \mathcal{RS} . Hence, by [11] (Proposition 1.8), A is \mathcal{RS} -coinjective.

Now we characterize \mathcal{RS} -coinjective modules via weak Rad-supplements in the following theorem which is adapted of [3] (Theorem 4.1).

Theorem 3.5. For a module M over a left hereditary ring R, the following statements are equivalent:

- (1) M is RS-coinjective,
- (2) M has a weak Rad-supplement in E(M).

Proof. (1) \Longrightarrow (2) Let $\delta: M \longrightarrow E(M)$ be the essential monomorphism. Without loss of generality, we take $M \subseteq E(M)$. By (1), there exists a submodule V of E(M) such that M+V=E(M) and $M \cap V$ is Rad-small. Since E(M) is injective, $\mathcal{Z}^*(E(M)) = \operatorname{Rad}(E(M))$, and so $M \cap V \subseteq \operatorname{Rad}(E(M))$. Thus, V is a weak Rad-supplement of M in E(M).

 $(2) \Longrightarrow (1)$ is clear by [11] (Proposition 1.7).

Corollary 3.3. Let R be a left hereditary ring. Then ${}_RR$ is \mathcal{RS} -coinjective if and only if there exists a submodule S of $E({}_RR)$ such that $E({}_RR) = R + S$ and $R \cap S \subseteq \operatorname{Rad}(E({}_RR))$.

The following fact is a direct consequence of Theorem 3.5.

Corollary 3.4. Every Rad-small module over a left hereditary ring is RS-coinjective.

Proof. Let M be a Rad-small module. Then, $M \subseteq \operatorname{Rad}(E(M))$. Therefore, E(M) = E(M) + M and $M \cap E(M) \subseteq \operatorname{Rad}(E(M))$. So E(M) is a weak Rad-supplement of M in the injective hull E(M). Hence, M is \mathcal{RS} -coinjective by Theorem 3.5.

The smallest proper class for which every module from the class of modules \mathcal{M} is coinjective is denoted by $\underline{k}(\mathcal{M})$. Such classes are said to be *coinjectively generated* by \mathcal{M} .

Proposition 3.3. Let R be a left hereditary ring. The proper class \mathcal{RS} is coinjectively generated by all Rad-small left R-modules.

Proof. We shall show that $\mathcal{RS} = \underline{k}(\mathcal{RS}mall)$. It follows from Corollary 3.4 that every Radsmall R-module is \mathcal{RS} -coinjective, and so $\underline{k}(\mathcal{RS}mall) \subseteq \mathcal{RS}$. By Proposition 3.2, we get $\mathcal{RS} = \langle \mathcal{RS}mall \rangle \subseteq \underline{k}(\mathcal{RS}mall)$. Hence, $\mathcal{RS} = \underline{k}(\mathcal{RS}mall)$.

Let \mathcal{P} be a proper class. The *global dimension* of \mathcal{P} is defined as

$$\operatorname{gl.dim} \mathcal{P} = \left\{ n \mid \operatorname{Ext}^{n+1}_{\mathcal{P}}(K, M) = 0 \text{ for all } M \text{ and } K \text{ left } R\text{-modules} \right\}.$$

If there no such n, then gl.dim $\mathcal{P} = \infty$.

Theorem 3.6. gl.dim $\mathcal{RS} \leq 1$.

Proof. It follows from Theorem 3.3 and [2].

Recall that a ring R is said to be a *left V-ring* if every simple left R-module is injective. The following next theorem characterizes the left hereditary rings in which \mathcal{RS} -coinjective modules are injective.

Theorem 3.7. The following statements are equivalent for a left hereditary ring R:

- (1) every RS-coinjective module is injective,
- (2) every Rad-small module is injective,
- (3) every small module is injective,
- (4) R is a left V-ring.

Proof. (1) \Longrightarrow (2) If follows from Corollary 3.4.

- $(2) \Longrightarrow (3)$ Since small modules are Rad-small.
- (3) \Longrightarrow (4) By [14] (23.1), it suffices to prove that, for any left R-module M, $\mathrm{Rad}(M)=0$. Let $m\in\mathrm{Rad}(M)$. Then Rm is a small submodule of M. By (3), we can write the decomposition $M=Rm\oplus K$ for some submodule K of M. It follows that m=0. Hence, we obtain that $\mathrm{Rad}(M)=0$.
- (4) \Longrightarrow (1) Let M be a \mathcal{RS} -coinjective module and N be any extension of M. Then N=M+V and $M\cap V\subseteq \operatorname{Rad}(E(M\cap V))$ for some submodule V of N. Since R is a left V-ring, by [14] (23.1), we get $M\cap V\subseteq \operatorname{Rad}(E(M\cap V))=0$. Thus, M is a direct summand of N. It means that M is injective.

Let \mathcal{P} be a proper class. A module M is said to be \mathcal{P} -projective (respectively, \mathcal{P} -coprojective) if the subgroup $\operatorname{Ext}_{\mathcal{P}}(M,K)=0$ (respectively, $\operatorname{Ext}_{\mathcal{P}}(M,K)=\operatorname{Ext}_{R}(M,K)$) for all left R-module K.

Theorem 3.8. Let M be a module over a left hereditary ring. Then, the following statements are equivalent:

- (1) M is RS-projective.
- (2) $\operatorname{Ext}_R(M,K) = 0$ for every Rad-small module K.

Proof. $(1) \Longrightarrow (2)$ is clear.

(2) \Longrightarrow (1) Let $0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$ be any element of \mathcal{RS} . So, B = A + D and $A \cap D$ is Rad-small for some submodule D of B. Put $F = A \cap D$. Then the short exact sequence $0 \longrightarrow \frac{A}{F} \xrightarrow{i_1} \frac{B}{F} \xrightarrow{\pi_1} \frac{D}{F} \longrightarrow 0$ splits, where i_1 is the canonical injection and π_1 is the canonical projection. Now we can write the following commutative diagram:

$$0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$$

$$\downarrow^{\pi_F} \qquad \downarrow^{\pi} \qquad \downarrow^{I_C}$$

$$0 \longrightarrow \frac{A}{F} \xrightarrow{i_1} \frac{B}{F} \xrightarrow{f\pi_1} C \longrightarrow 0$$

where π_F and π are canonical projections. Applying the functor $\mathrm{Hom}\,(M,.)$, we get

$$\operatorname{Hom}(M,B) \xrightarrow{\phi_*} \operatorname{Hom}(M,C) \longrightarrow 0$$

$$\downarrow^{\pi_*} \qquad \qquad \parallel$$

$$\operatorname{Hom}\left(M,\frac{B}{F}\right) \xrightarrow{(f\pi_1)_*} \operatorname{Hom}(M,C) \longrightarrow 0$$

$$\downarrow$$

$$\operatorname{Ext}_R(M,F)$$

Then $(f\pi_1)_*$ is an epimorphism. It follows from (2) that $\operatorname{Ext}_R(M,F)=0$. So π_* is an epimorphism. This means that ϕ_* is an epimorphism. Consequently, M is \mathcal{RS} -projective.

References

- 1. *Alizade R., Büyükaşık E., Durgun Y.* Small supplements, weak supplements and proper classes // Hacet. J. Math. and Statistics. 2016. **45**, № 3. P. 449 461.
- 2. Alizade R. Global dimension of some proper class // Uspekhi Mat. Nauk. 1985. 1 P. 181 182.
- 3. Alizade R., Demirci Y. M., Durgun Y., Pusat D. The proper class generated by weak supplements // Communs Algebra. 2014. 42. P. 56–72.
- 4. Buchsbaum D. A. A note on homology in categories // Ann. Math. 1959. 69. P. 66-74.
- 5. Generalov A. I. The ω -cohigh purity in a categories of modules. Plenum Publ. Corp., 1983.
- 6. Kasch F. Modules and rings. Acad. Press Inc., 1982.
- 7. Leonard W. W. Small modules // Proc. Amer. Math. Soc. 1966. 17. P. 527 531.
- 8. Lomp C. On semilocal modules and rings // Communs Algebra. 1999. 27, № 4. P. 1921 1935.
- 9. Mac Lane S. Homology. New York: Acad. Press Inc., 1963.
- 10. Mermut E. Homological approach to complements and supplements: PhD Thesis. 2004.
- 11. Misina A. P., Skornjakov L. A. Abelian groups and modules. Amer. Math. Soc., 1960.
- 12. Nunke R. J. Purity and subfunctors of the identity // Topics in Abelian Groups: Proc. Symp., New Mexico State Univ. 1963. 3. P. 121–171.
- 13. Özcan A. Ç. Modules with small cyclic submodules in their injective hulls // Communs Algebra. 2002. 30, № 4. P. 1575 1589.
- 14. Wisbauer R. Foundations of modules and rings. Gordon and Breach, 1991.
- 15. Zöschinger H. Komplementierte moduln über Dedekindringen // J. Algebra. 1974. 29. P. 42 56.

Received 01.06.16, after revision — 09.02.17