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ON EQUATIONS WITH GENERALIZED PERIODIC RIGHT-HAND SIDE *

ITPO PIBHAHHSA 3 Y3AT'AJIBHEHOIO IIEPIOAUYHOIO
ITPABOIO YACTHHOIO

Periodic solutions are studied for second-order differential equations with generalized forcing. Analytical bifurcation results
are derived with application to forced harmonic and Duffing oscillators.

BuBYaIOThCS MepioAnyHi PO3B’sI3KH I IudepeHIiaTbHUX PIBHSIHE JPYTOro IOPSAKY 3 y3arajlbHEHOI MPUMYLIYIOYO0
CHIIOK. AHAIITHYHI pe3ylbTaTh Ui OiypKaliil OTPUMaHO Ta 3aCTOCOBAHO JO BUMYIICHHX TapMOHIYHMX KOJWBAaHb Ta
ocuunaropa Jaddinra.

1. Introduction. In this paper we shall investigate a weakly forced second-order differential equation

Z(t) + h(z(t)) = eF(t), (1.1)
where h € C(R",R") is an analytic function, ¢ € R is a small parameter and F': R — R" is a
4a-periodic generalized function which can behave like Dirac d-function at the points {(1 + 2k)a |
k € Z}. We apply a method of nonsmooth transformation of time proposed by Pilipchuk in [6] but we
do not use shooting and numerical computations [7]. Instead, we use the implicit function theorem
and Lyapunov - Schmidt method to obtain analytical results on the existence of periodic solutions
of (1.1). Later, we investigate particular functions h, concretely a linear and cubic case. So, we
consider a weakly forced harmonic oscillator equation

i(t) + b2x(t) = eF(t) (1.2)
and a weakly forced Duffing equation
E(t) + b23(t) = eF(t). (1.3)
Related results are also given in [8]. Finally, we note that the theory on the existence of periodic
solutions in evolution equations is well developed [2] and our paper is a contribution to this nice
theory.
2. General results. In this section we consider general equation (1.1) and look for a continuous

solution x with possible finite jumps in & and a generalized function &. Now we recall some results
of [7], for the reader’s convenience. First, we suppose the transformation

o-x( (D) ()

for sufficiently smooth functions X, Y and

T(s) = 2 arcsin < sin 7;8> . (2.2)

™

Note that 7 is a 4-periodic piecewise-linear saw-tooth function. Moreover,
T(4k+1) =1, T(4k+3)=—-1, keZ. (2.3)

The following lemma describes some properties of the derivatives of 7. Throughout the paper, we
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256 M. FECKAN, M. POSPISIL

shall use a so-called test function x : R — R, which is a sufficiently smooth function with a compact
support.

Lemma 2.1. For 7 given by (2.2) the following holds in the sense of distributions:

7/(s) = sgn cos (?),

7-”(5) :225(5—414:—3) — (s —4k—1)
keZ

with the Dirac d-function.
Proof. Taking the test function Yy,

/T'(s)x(s)ds:—/T(S)X'(s)ds:
_ _% 7Oarcsin <sm ”;)X'(s) ds = 7sgncos (”;)X(s) ds.

For the second statement we have

/ 7(5)x(s) ds = — / sgn cos (2>X'(s) ds =
3+4k 1+4k
= Z / X' (s)ds — / X' (s)ds | = 22 (x(3+4k) — x(1 4 4k)) =
REZ \14ak —1+4k kez
=N /(5(5—4k—3)—5(3—4k—1))x(s)ds
keZ \ %y

The proof is complete by changing the order of the sum and integral due to a finite number of nonzero
summands.

Lemma 2.1 is proved.
Since 7 is not invertible on the whole R, the change of coordinates is considered on subintervals
and its periodicity is used. So, (2.1) means

X<T(2>> + Y(T Cz)) t € Upeg((4F — 1)a, (4k + 1)a),
b% <T(Z>> - Y(T CL)) t € Upen (4% + 1)a, (4k + 3)a).

In particular, for t € (—a,a), 7(s) = s and 7/(s) =1, i.e.,
z(at)=X(1)+Y(1), 7€(-1,1). (2.4)
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ON EQUATIONS WITH GENERALIZED PERIODIC RIGHT-HAND SIDE 257

On the other side, for ¢t € (a,3a), 7(s) =2 — s and 7/(s) = —1, i.e.,
z(a2—-71)=X(1)-Y(r), 1€ (-11). (2.5)

Summing and subtracting equations (2.4), (2.5) we obtain the inverse transformation

X(r) = 3 (alar) + a(a(2 ~ 7)),
1 2.6)
Y(r) = §(m(a7) —xz(a(2 — 7')))

for 7 € (—1,1). Note that the values of 7 at the points of A := {1+ 2k | kK € Z} are not known.
Hence, the continuity of « on R gives a necessary condition Y (41) = 0. The generalized derivative

of (2.1) is given in the next lemma. For simplicity, we omit the argument — of 7 unless it makes
a
confusion.
Lemma 2.2. Let x be given by (2.1). Then

i(t) =at (X' ()7 +Y'(1))

in the sense of distributions.
Proof. Let x be an arbitrary test function. Then applying Lemma 2.1 we obtain

Z s Z (e((2)) o ((2)(2) ioras -

* ) acois
*igZ?<<»G@—%*>ﬁ<—%q»ﬂmp
LR () o

where the last identity follows from 7/ € {£1} on R\A, (2.3) and Y (£1) = 0.
Lemma 2.2 is proved.
The statement on the second derivative of = follows.
Lemma 2.3. Let x be given by (2.1). Then

)t ()

SIS

»

i(t) = a2 (X"(T) + X'(n)™" + Y”(T)T')

in the sense of distributions.
Proof. Taking an arbitrary test function xy we get

Z (o = -] / (oo (D) () o (o) o
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) @) e
<[ () ()6
' e ((2)) (2) e

We assume that the function F' can be written as

=) ) 2) o))

for sufficiently smooth functions @, P, f: R — R"™. Therefore after transformation (2.1), if h(z) =
(@)
=" hxa*, equation (1.1) becomes

a2(X"(r) + X' ()" + Y (1)) + Y (X (r) + Y (r)r) " =
k=0
=e(Q(r) + P(r)7' + f(m)r"). (2.7)

Note that

00 k

re) =33 (§) Xy

k=0  j=0

Since the functions 1, 7/, 7 are of different smoothness on R, and using (7/)2 = 1 on (—1,1),
equation (2.7) is split into the system

o |3]
a2 X" (1) + Z hi (k> XE=2(1) Y (1) = eQ(1),
, 27
k=0 7=0
(2.8)
—2y 1 k—2j—1 241\ _
a Y (r)+ > hy Z <2j N 1>X I ()Y 2 (1) = eP(7)
k=0 7=0
for 7 € (—1,1) with the boundary conditions
a2 X' (#£1) = ef(£1),  Y(£1)=0.
Denoting K := X +Y, L := X — Y we separate equations (2.8) to get
a K" (1) + (K (1)) = e(Q(7) + P(7)), 29

a ?L"(1) + W(L(7)) = £(Q(r) = P(7))

ISSN 1027-3190.  Ykp. mam. oscypn., 2018, m. 70, Ne 2



ON EQUATIONS WITH GENERALIZED PERIODIC RIGHT-HAND SIDE 259

for 7 € (—1,1) with the mixed boundary conditions
K(+1) = L(+1) =0,  K'(£1) + L'(+1) = 2ea®f(£1). (2.10)

Now we recall the nonlinear variation of constants formula of Alekseev [1].
Lemma 2.4. If p(c,t) is a solution of

(1) = f(2(t), tER, 2.11)
such that ¢'(c,0) is regular, then the nonautonomous problem

#(t) = fe(t) +g(t), tER 2.12)
has a solution ¢(c(t),t) with c(t) satisfying
t

c(t) = c—l—/gp’(c(s),s)_lg(s) ds, teR, (2.13)
0

for some c € R™, where the prime and the dot denote derivatives with respect to c and t, respectively.
Proof. Variational equation corresponding to (2.11) along the solution ¢(c,t) is

(e, 1)) = f(ple, )¢ (e, 1), teR.

By Liouville theorem [4] (Theorem 1.2), ¢'(c,t) is nonsingular for any ¢ € R. Now suppose that
the solution of (2.12) has the form ¢(c(t),t) with ¢(t) to be determined. Then differentiating with
respect to ¢ we obtain

#(t) = ¢'(c(t), 1)e(t) + (), t) =

Therefore

and we get (2.13). Then the statement follows.
Lemma 2.4 is proved.
Note that nonhomogeneous problem (2.12) does not have to possess a unique solution. Next, let

us consider
i(t) = f(z(t)) +eg(t), te€[ar,az],

Az(ar) = eby, (2.14)
Bzx(az) = &by

for a; < ag, b = (b],b5)* € R™ and matrices A € R¥*" B ¢ R(M=k)xn () < k < n. Then by
Lemma 2.4, a general solution of the differential equation of (2.14) is given by ¢(c(g,&,t),t) with

t
c(e, &, t) satistying c(e,&,t) = € + 5/ ¢ (cle,€,5),5) " Lg(s) ds. So we need to solve

al

ASO(§7 al) - Ebl,
B(e,€) = 2.15)
Bo(c(e, €, a2),a2) = ebs.
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For ¢ = 0, (2.15) is reduced to
B(&) == B(0,£) = 0. (2.16)

Thus we have to suppose that (2.16) has a solution &. If it is nondegenerate, i.c., DS3(&y) is
regular, then we can directly apply the implicit function theorem to (2.15). If D5(&p) is singular,
then Lyapunov— Schmidt method should be used. When f(z) in (2.14) is an affine mapping, i.e.,
f(z) = Mz + m for a matrix M and a vector m, then [(g,&, a1,az) is linear in ¢ and matrix
analysis is applied. In general nonlinear case of (2.15), the most simple case is, when we suppose:

(C1) There is a nondegenerate 1-parametric family of solutions £ € C3(R,R"™) of (2.16), i.e., it
holds B(¢§(a)) = 0, ker DB(&(e)) = [¢'(«0)]. Moreover, p({(a+T), ) = ¢(&(a),-) for any a € R.
Then we introduce the orthogonal projection

1

P(a): R" = im D(&(a)) = (ker DB(£(a))) ™ = [(a)]*,
and we split (2.15) as follows:
P(a)(B(e,é(a) +¢) —eb) =0, <€ [¢' ()],
_ (2.17)
U™ (@) (B(e, é(@) + <) —eb) = 0.

By the implicit function theorem, we can solve the first equation of (2.17) to get ¢ = ¢(«, €) for any
e small. Clearly ¢(«,0) = 0. Then inserting ¢(c, ¢) into the second equation of (2.17), we get

B(e,a) :=¢*(a) (B(e,&(a) + s(a, ) — eb) = 0. (2.18)

We compute

B(0,a) =4 ()B(&(a)) =0,
M(a) := B(0,a) = 9" (a)(B:(0,&()) — b).

Hence instead of (2.18), we consider

M(Ol), e =0,
B(g,a) =< = (2.19)
B(? oz)’ c£0.

From (2.15), we derive

07
B€(0>£) = a2
BY(Gar) [ (65) gls)ds
and
, A(pl(§7a1)v
B(0,¢) =
B@/(Su a?)'

Consequently, we obtain
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ON EQUATIONS WITH GENERALIZED PERIODIC RIGHT-HAND SIDE 261

az

M(a) = =i (a)by +95(e) | BY'(§(ar), a2) / ¢'(€(a),s) " g(s) ds — by

ai

for
@' (E(@), a1)" A" (a) + ¢’ (E(a), ag)* B¥iha(r) = 0. (2.20)
Setting
0(c,5) = (¢'(€(),8)7") ¢ (€(a), az)* B ha(a), (2.21)
we get
M(a) = [ 6°(as)g(s)ds = viahs ~ vi(a)h (2.22)

ai
Summarizing, we arrive at the following result.

Theorem 2.1. Assume [ € C*(R™,R"), g € C*([a1,a2],R™) and (Cy) holds. If there is
a simple zero oy of (2.22), i.e., M(ap) = 0 and DM (o) is regular, then there is an o €
€ CY((=04,0),R) for some § > 0 such that a(0) = a and (2.14) has a unique solution z(e,t) =
= p(&(afe)),t) + O(e) for any € € (—9,9).

Proof. The result follows from the implicit function theorem applying to B(e,a) = 0 given
by (2.19).

Remark 2.1. Under assumptions of Theorem 2.1, (2.14) has a unique solution z(e,t) = ¢(&(),
t) + O(e) for any € € (=9, 0).

Remark 2.2. Clearly M («) is T-periodic, so if it is changing the sign over its period, then we
can apply the Brouwer degree method to solve B(e, ) = 0, and we get a solution of (2.14) for ¢
small.

Note (2.21) satisfies the adjoint variational linear equation

w(t) = =D f(e(§(a), 1) w(t), t=0, (2.23)
along with
B, a1) = (' (¢(e), 1))@ (€(a), a2)* B oo () =
= —(¢'(€(a),a) )¢ (€(a), ar) A (a) =

- _A*'(/Jl (Oé),
(2.24)
O(a, az) = B*a(a),
where we apply (2.20). Assuming
(Cy) A and B are surjective,
then A* and B* are injective, and (2.24) is equivalent to
9(0&, al) € kerAL, 1/)1(0[) = _A**le((% (11),
(2.25)

H(QaG‘Q) € ker BLv ¢2(a) = B*_le(a’a2>’
since im A* = ker A+ and im B* = ker B+.
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Finally, we consider the unperturbed (2.9) and (2.10)

a2K"(1) + h(K(r)) = 0,
(2.26)
a2L"(t) + h(L(T)) =0
for 7 € (—1,1) with the mixed boundary conditions
K(£1) — L(£1) = 0, K'(£1)+ L'(£1) = 0. (2.27)

Then we claim that

(i) L(r) = K(~7+2),

(i1) K is 4-periodic.

To prove (i), we note that any solution of (2.26) is defined on R. So we fix K(7) solving
a 2K"(7) + h(K (7)) = 0 and take L(r) = K(—7 + 2). Then L(r) satisfies the 2nd equation of
(2.26), and (2.27) implies

L) =K1 =L(), L) =-K()=L(),

so the uniqueness of solutions gives E(T) = L(7). This proves (i). To prove (ii), using also (i) we
compute
K(-1)=L(-1) = K(3), K'(-1)=-L'(-1) = K'(3),

which gives (ii). Reversibly, if K (7) solves the st equation of (2.26) and it is 4-periodic, then
taking L(7) by (i), we get a solution of the 2nd equation of (2.26) with (2.27). We note then we
have a family K (7 + «) satisfying (i) and (ii).

Moreover, we consider the linearization of (2.26),

a 2U" (1) + W (K (r))U(r) = 0,

(2.28)
a 2V" (1) + I (L(r))V(r) =0
along K and L satisfying (i), (ii) with the mixed boundary conditions
U(+1) — V(£1) =0, U'(£1) + V'(£1) = 0. (2.29)

Then again it holds
(i) V(r) = U(-7+2),
(ii") U is 4-periodic.
Indeed, we take V (7) = U(—7 + 2). Then

a2V () + W (L(7))V(7) =
=a U (=74 2) + W (K (=1 +2)U(-7+2) =0,
) ‘7(7') satisfies the 2nd equation of (2.28), and (2.29) implies
V() =U@1)=V(1), V'(1)=-U"Q1)=V(),
thus we get V() = V(7). This proves (i’). To prove (ii’), we take U(7) = U(7 + 4) and derive
a 20" () + W (K (1)U (1) =
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ON EQUATIONS WITH GENERALIZED PERIODIC RIGHT-HAND SIDE 263
=a2U"(14+4)+ W(K(r +4)U(r +4) =0,

so U(7) satisfies the 1st equation of (2.28), and using (2.29) with (i), we obtain

which gives (ii’). Reversibly, if U(7) solves the 1st equation of (2.28) under (i), (ii) and it is

4-periodic, then taking V' (7) by (i’), we get a solution of the 2nd equation of (2.28) with (2.29).
Furthermore, assuming (ii), & (7) is surrounded by periodic solutions K (r,t) with periods T'(r),

ie., K(0,t) = K(t), K(r,7+T(r)) = K(r,7) and T'(0) = 4. Then W (7) = 0,K (0, ) solves

a2W" (1) + W (K(r))W(r) =0,
W(r+4)+T0)K'(t) = W(r).
Hence if

T'(0) # 0, (2.30)

then W (7) is a non 4-periodic solution of the first equation of (2.28). But K'(7) is a 4-periodic
solution of the first equation of (2.28). Summarizing, under (2.30), the dimension of solutions of
BVP (2.28), (2.29) is 1.

3. Harmonic oscillator. In this section we consider equation (1.2) under transformation (2.1).
Following the previous section we derive

@K (7) + PK(r) = <(Q(r) + P(7)),

3.1)
a2L"(1) + b L(7) = ¢(Q(1) — P(7))
for 7 € (—1,1) with the boundary conditions
K(£1) — L(+1) =0,  K'(£1) + L'(1) = 2ea®f(£1). (3.2)
Denoting K1 = K, Ly = L we rewrite (3.1), (3.2) as
Ki(r) = Ky(7),
K4(7) = —a®b* K, (1) + ed®(Q(7) + P(7)),
(3.3)
Ly(7) = La(7),
Lh(1) = —a*V’ L1 (1) + ea*(Q(1) — P(7))
along with
Ki(£1) = Li(£1) =0,  Ky(+1) + La(+1) = 2ea? f(%1). (3.4)
The unperturbed problem has the general solution
ple, ) := (01 sin abt + cg cos abt, crab cos abT — coabsin abr,
c3sin abt + ¢4 cos abr, c3ab cos abt — c4absin abT) * (3.5
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with ¢ = (¢1, ¢2, 3, ¢4)*. Note that (¢, 7) = <(I) 0) with

0o &
sin abr cos abt
b =
abcosabr  —absinabt
does not depend on c. Hence, det ¢'(c,7) = a?b? # 0. We set a; = —1, as = 1 and denote

—c1S + coC + ¢3S — esC
Bi(c) := Ap(e,—1) = ,

ab(ch’ + C2S + 630 + 045)

S C —c3S —cyC
Ba(c) :ZBsD(al):( ot el A )

ab(c1C — c2S + c3C — ¢45)

with S = sinab, C' = cosab and

1 0 -1 0
A=B= . (3.6)
0 1 0 1
Hence,
-S C S -C
B1(c) abC  abS  abC  abS
= We, W .=

Ba(c) S C -8 —C

abC  —abS abC  —abS

The following lemma describes the null space of W, ker W, and image of W, im W, with respect to
a and b.
Lemma 3.1. Let a,b > 0 be fixed. Then

2ab
0 ez
, Lz
ab
ker W = [(1>O>_1,0)*,(0,1,0,1)*], 2 ez,
T
b 1
[(170’ 1’0)*7 (07 1707_1)*]7 @ — - €7,
T 2
2ab
R* 240 4
’ Lz
i ab
mWw = [(0, 1707 1)*’ (1707 1,0)*]’ @ Z,
T
ab 1
1,0,—-1,0)%,(0,1,0,—1)* Z_Ze7
[(77 a))(aaa )],71‘ 26’

where [v1,va] denotes the linear span of vectors vy, vs.

Proof. Note that det W = —16a?b*>S?C?2. Thus for S # 0 # C, W is nonsingular. Investigating
the cases S # 0 = C and S = 0 # C separately gives the statement.
Now we consider particular cases of a and b as distinguished in Lemma 3.1.
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ON EQUATIONS WITH GENERALIZED PERIODIC RIGHT-HAND SIDE 265

Theorem 3.1. Let a,b > 0 be fixed, QQ, P, f be sufficiently smooth functions, and @ be given
by (3.5). Then ¢(c(T),T) is a solution of (3.3), (3.4), if

o(r) = e(~1) + %“ /v(a) do, (3.7)
~1
where
(Q(7) + P(7)) cos abt
o(r) = —(Q(7) + P(7)) sinabr
(Q(7) — P(7)) cos abt
—(Q(1) — P(7)) sinabr
and
if%‘b ¢ 7, then

Le—

c(—1) = 2ea®W1 (1)0 — vl(a)da) , (3.8)
ifafb € Z and
T

1
/P(a) sin(ab(1 — o)) do =0,
21

(3.9)
1
£1) ~ [ Qo) costab(1 — ) do = (1),
21
then
1
c(—-1) = 2Ea2W|(_k}arW)J- (vo - /vl(o)da> + w, (3.10)
|

for some w € ker W,

ifa—b—EEZand
T 2

P(o)sin(ab(l — o)) do = 0,

f) =

/
/

then c¢(—1) is given by (3.10) for some w € ker W,
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where
vo = (0, f(~1),0, f(1))",

vi(1) = (07 0, Pa(Z)-) sin(ab(1 — 7)), Q(7) cos(ab(1 — T)))

and |er w1 denotes the restriction onto the orthogonal complement to ker W.
Proof. Equation (3.7) follows from Lemma 2.4. It only remains to determine ¢(—1).
From (3.7) and (3.4) we get that ¢(—1) has to satisfy

0 0
A= <2ea2f<—1>>’ A= (2aa2f<1>>’

(S c  -s —C [z ; ]
palel)) = (abC’ —abS  abC —abs> Yy /1 vyl

where

In other words,

1
We(-1) + % / Wiv(o)do = 2ea?v, (3.11)
-1
where
0 0 0 0
0 0 0 0
Wy =
S c -5 -C
abC  —abS abC  —abS

2
If 2ab ¢ 7, (3.11) is equivalent to (3.8) by Lemma 3.1. If ab € Z, ¢(—1) exists if and only if
T v

1
vy — /Ul(a)da € imW.
1

Note that the first coordinate of the left-hand side of the above inclusion is zero. Hence by Lemma 3.1,
first condition of (3.9) has to be satisfied. Moreover, the second coordinate has to be equal to the
fourth, which gives the second condition. Then taking the inverse of W{(,y). one obtains the
second statement. The third case follows analogously.

Theorem 3.1 is proved.

For the original problem (1.2) we immediately obtain the next statement.

Corollary 3.1. Let the assumptions of Theorem 3.1 be fulfilled. Equation (1.2) has the solution

o1 <c <T<Z>>T<Z>> t € Upeg((4k — 1)a, (4K + 1)a),
o3 <c <T(Z>> , TG)) t € Upeg (4K + 1)a, (4k + 3)a),

where @ has coordinates p;, 1 =1,...,4.

x(t) =
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ON EQUATIONS WITH GENERALIZED PERIODIC RIGHT-HAND SIDE 267

1 1
Proof. Using (2.1) with X = 5(K +L),Y = i(K — L) and Theorem 3.1 gives the statement.
Example 3.1. Let us consider the equation

t
F(t) + b2a(t) = 6<sin2 % + () 36 -4k - 1)). (3.12)
keZ
In this case, the equality
1
Ft) = sin2 770 L 4 T <1 +sin 7T7-2(t)>7'”(t) (3.13)
holds almost everywhere, since
t — 4k, te(dk—1,4k+1], keZ,
7(t) =
2—t+4k, te (dk+1,4k+3], keZ,
and
t t
sin (”—%w) — sin =, te(dk—1,4k+1], kezZ,
nr(t) 2 2
2 . mt . mt
sin [ 7(2k+ 1) — o | =sin, te(4k+1,4k+3], keZ.
Hence 1
a=1,  Q(r) = sin? % P(r)=1,  f(r)=; (1 + sin 7;) (3.14)
Function F' is sketched in Fig. 1.
For simplicity, we take b = % Then applying Theorem 3.1,
2 *
c(=1) = 1\5[;2(15% — 176, — (157 4 64), 157 + 64, —157 + 176) .
Consequently,
15v/2m + 36051 — 2053 — 1255
- e | —(15m +240)v/2 + 360C; + 20C5 — 12C;
c = T _ o )
1572 15v/21 — 1208; — 2055 — 1255
— (157 — 240)v/2 — 1200 + 2003 — 12C5
where S; = sin %, C; = cos % for ¢ = 1,3,5. By Corollary 3.1, the solution of (3.12) has the
form
—° (360 + 8 cos 77(t) + 15v/27 sin ()
1572 4
t
—(157r+240)\/§cos”()>, t € Upeg(4k — 1,4k + 1),
4
5| —120+8cos 77 (t) + 15v/27 sin -
—(157 — 240)v/2 cos Mf)), t € Upeg (4k + 1,4k + 3)

(see Fig. 1) with 7(¢) given by (2.2).
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. . . .

. . . .

. . ' . . . 0 2 4 6 8
N

Fig. 1. Sketch of F' given by (3.13), and the solution = of (1.2) given by (3.15).

4. Duffing equation. Here we consider equation (1.3) under transformation (2.1). In this case,
system (2.9), (2.10) has the form

2K ) + RO = (Q(r) + (),

4.1)
a 2L (1) + L3 (1) = e(Q(7) — P(7))
for 7 € (—1,1) with the mixed boundary conditions
K(£1) — L(+1) =0,  K'(£1) + L'(#1) = 2ea®f(£1). (4.2)
Denoting K1 = K, L1 = L we rewrite (4.1), (4.2) as
Ki(1) = Ka(),
Kj(7) = —a?b* K7 (1) + ea®(Q(7) + P(7)),
(4.3)
( ) LQ(T)a
Ly(r) = —a®v*Li(7) + ea*(Q(r) — P(1))
along with
Ki(£1) = Li(£1) =0,  Ko(%1) + Lo(£1) = 2ea® f(+£1). (4.4)
Corresponding unperturbed system has the solution
o(e,7) = (01 cny (7), —abc% sni(7)dny(7), c3 cng(7), —abc§ sng(7) dng(T)) *, 4.5)

where
¢ = (c1,c9,c3,c4),
eng(7) = en((abr + cit1)ei, 1/V2),
sn(7) = sn((abr + ciy1)ci, 1/\/5),
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dn;(7) = dn((abt + ciy1)ci, 1/\/5)

for i« = 1,3 and cn, sn, dn are Jacobi elliptic functions [5]. The derivative of ¢(c, ) satisfies
P, 0

/ —
Oe, 1) = < 0 (1)3>, where

X (4.6)

(I)i :(I’i(C,T) = (

cn; —c;(abr + ¢i41) sn; dn; —C? S1; dni>

—abc; (2 sn; dn; +c;(abr + ¢i41) cnd) —abcs en

for i = 1, 3. Hence, det ¢/ (¢, 7) = a?b?cic3 # 0 if and only if ¢; # 0 # c3. Let us denote

a(Q(7) + P(7))sn; dny
bCl
a(Q(1) + P(7))(— cny +c1(abr + ¢2) sny dny)
be}
a(Q(7) — P(7))snzdns
ng
a(Q(7) — P(71))(— cng +c3(abt + ¢4) snz dng)
bcs

We want to apply Theorem 2.1, thus we take a1 = —1, as = 1 and consider matrices A, B given
by (3.6).

First, we look for a solution of the unperturbed problem (4.3), (4.4), i.e., of the corresponding
unperturbed problem satisfying zero boundary conditions. So we only have to find ¢ € R* such that
equations

cyeng(£1) — egeng(£1) =0,
3 sny (1) dny(£1) + ¢ snz(£1) dng(£1) =0
are satisfied for both signs. Immediately, we obtain the trivial solution:
Lemma 4.1. Let a,b > 0 be arbitrary and fixed, and ¢ be defined by (4.5). Then ¢(0, c2,0, ¢y,

7) = 0 for any ca,c4 € R is a solution of (4.3), (4.4) with e = 0.
Let ¢; = c3. Denoting U := (fab + c2)c1, V := (£ab + ¢4)c3 and omitting the argument

1
k = — of the elliptic functions we have

V2
enU —cenV =0,
4.7)
snUdnU +snVdnV =0.

Summing the squares of these equations we get
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1-k*(1-cn®U)2 —(cnUcnV —snUsnVdnUdnV) =0

where we used
dn?U =1—-k?sn?U =1—k*(1 —cn?U) = dn’V

following from the first equation of (4.7). Next, applying [9] (§22.21),

cnUcenV —snUsnVdnUdnV

en(U +V) = 1—k2sn2Usn?2V ’

(4.8)

we derive
1-k*(1-—cn®U)? —cen(U+V)(1 - k*sn®Usn® V) =0,

ie.,
(1-k*(1—cn®*U)*) (1 —cn(U+V)) =0.

Since the first bracket is nonzero, cn(U + V') = 1. Now we apply the definition of cn saying that
cnu = cos ¢, where

o]
(4.9)
0/ 1— k2 sm2 t

Hence, cn(U + V') = 1 if and only if
2jm /2
dt dt
U+V:/:4j/:4jK
1 — k2sin?t 1 — k2sin?t
0 0
for some j € Z, where K = K (k) is the complete elliptic integral of the first kind. That means,

(2ab+ co + c4)c1 = 4iK,
(4.10)
(—2ab+co + cq)c; = 45K

K

for some integers ¢, j. Therefore ¢; = (Z[‘Z)
a

m € Z\{0}. Then, from system (4.10),

9;
c4 :2ab<T; — 1) — ¢y

for some i € Z. Concluding the above, we get the following lemma.
Lemma 4.2. Let a,b > 0, m € Z, m # 0 be arbitrary and fixed, and ¢ be defined by (4.5).

Then
1 1
mK(> mK()
\/§ , €2, \/§ 5 —2ab — Co, T
ab ab

. mK
which has to be nonzero. Thus ¢; = e for some
a

for any ca € R is a solution of (4.3), (4.4) with € = 0.
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Proof. Let i € Z be arbitrary and fixed. From the above computations we get the solution

2
ab e ab m

mK<;§> C mK<\}§> 2ab<2i _ 1> —eo T

Then using

en(u + 25K) = (—1)7 en(u),

sn(u+2jK) = (—1)? sn(u), (4.11)

dn(u + 2jK) = dn(u)
for each j € Z, u € R, one can prove the statement.

On the other side, let ¢c; = —c3. Note that by [9] (§ 22.12) functions cn, dn are even and sn is
odd. Hence, from (4.8) we have

cnlUcnV +snUsnVdnUdnV
1—k2sn2Usn2V ’
Following the above arguments we derive cn(U — V') = —1 which holds if and only if U — V =
K
= 2(1+ 2j)K. Consequently, ¢; = mT for some m € Z\{0}, and
a

1+2¢
04—2ab( —;Z—1>—02.

en(U—-V) =

We summarize this result to a lemma.
Lemma 4.3. Let a,b > 0, m € Z, m # 0 be arbitrary and fixed, and ¢ be defined by (4.5).
Then

C2
ab e ab m

for any ca € R is a solution of (4.3), (4.4) with € = 0.
Proof. The statement can be proved as Lemma 4.2.
Remark 4.1. Using the properties (4.11), for the third coordinate of ¢ from Lemma 4.3 we

obtain
K K 1
®3 m77023_m752ab ——1 —C2, T | =
ab ab m

(o an( 1)) (-8

mK mK

= bcn<(ab7 — 2ab — cz)b) =

Qa a

mK mK
= @3 , C2, ,—QCLb—CQ,T .
ab ab

Analogously, it can be shown that the fourth coordinates of s from Lemmas 4.2 and 4.3 are equal.
That means that Lemmas 4.2 and 4.3 give the same solutions.
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mK mK

Denoting &(a) := < R —2ab — a> , Lemma 4.2 implies that 5(£(a)) = 0 for all
a a

a € R. Moreover, p(§(a+T),-) = ¢(&(a),-) forall « e R and T =

needs to investigate ker D3(£(«)). Note that since

dab

|m|

. To verify (C;) one only

6 = (ot -0+ (})eléo

we get

Dae) = () Dote -1+ () Dwte.

Using that Dp(§,7) is the fundamental matrix solution of the variational equation of unper-
turbed (4.3),
Ui(r) = Ua(7),
Uy(r) = =3a*0* K3 (r)Us(7),
(4.12)
Vi(r) = Va(r),
Vy (1) = =3a?b* L3 (1) Vi (1),

which leads to (2.28), we see that ker D5(£(«)) is given by (2.28) with (2.29), so we can use results
of Section 2. Taking

1
ab
1
()
in (4.5), we get that its minimal period is Tiin (1) = 1 2 . Thus we take
mK | — | + abr
()
1
4mK<>
T(T) = mein(T) = 1 \/5 .
mK|— | + abr
(%)

Clearly T(0) = 4 and 77(0) # 0, so (2.30) is satisfied, and consequently, assumption (C;) is verified.
Now, instead of calculating 6(c«, 7) from (2.21), we derive it as a solution of the adjoint variational
equation. That is the adjoint system to (4.12),

Ui (1) = 3a*0* K7 (1)Ua(7),
Uy(1) = =Un(7),
(4.13)
Vi(7) = 3a*V* Li(7)Va(7),
V3(7) = =Va(7),
which leads to (2.28) of the form
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Uy (1) + 3a*0* K3 (1)Us (1) = 0,
(4.14)
0

V' (1) + 3a*V’ Li(T)Va(r) =
Furthermore, we derive (see (3.6))
ker A = ker B = [(0,—1,0,1)", (1,0,1,0)*].
Hence (2.25) leads to
—Un(£1) + Va(1) =0, Uy(£1) + Vi(£1) = 0,

1.e.,
Un(1) = Va(d1) =0, Up(1) + V3(1) = 0,

which is just (2.29). So by Section 2, we can take Us(7) = K{(7), Va(1) = K{(—7+2) = =L} (7).
Using (4.13), we also have U;(7) = —K{(7) and Vi(7) = L{(7). We recall that in the notation of
(4.5), we have

Summarizing, in the notation of Section 2, we obtain a; = —1, as = 1 and

0(0477_> = (_90/2(5(05)77—)’ 902(§(a)? T)v 90?4(5(0‘)77_% _(/74(§(a)? 7_))*7
bl = 2(1(0, f(_l))*> 62 = 2&(0, f(l))*7

(4.15)
9(1) = a*(0,Q(7) + P(7),0,Q(7) — P(7))",
AN ay, o, w3, 14)" = (1, 32)" for (x1,x9,x3,24)" € im A",
Then by (2.25), we derive
e (§(a), —1) —¢5(§(a), 1)
e (mgm»n) B (ms(a),l) ) |
Thus formula (2.22) possesses the form
1
M(a) = / (w2(&(e), $)(Q(s5) + P(s)) — pa(€(a), s)(Q(s) — P(s))) ds +
-1
+2ap2(¢(a), =1) f(=1) = 2ap2(&(a), 1) f(1). (4.16)
Example 4.1. Let us consider the equation
B(t) + 023 (t) = E(sin2 %t + (-l 4 > ot — 4k - 1)). (4.17)

kEZ
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Then F' is given by (3.13) and sketched in Fig.1; a, @, P and f are given by (3.14). Since
wi(c,7) = pi_1(c,7) for i = 2,4 and any ¢ € R*, t € R, we obtain

M(a) = / a9 (s 54 1) = (et o) (52 5 1) ds = gale) 1) =

~2((r(ela). 1) — pr(ela), 1)) -

(4.18)

v |

1
il / (£1(€(0), 5) — @3(€(a), 5)) sinms ds — pa(E(a), 1).
21

Using

we can write M as

for

1
1
V2 ) sinmwsds =

I.:= [cn ((bs + a)T, 7

I
(Sfe) L\H

1+
1 1 «
= en|zmK| —),— |sin|(7| zF — | |d=z.
SSER
Now, if m € Z\{0} is even, then cn in I is integrated over an integer multiple of its period, i.e.,

I = /11cn <me<\}§> \2) sin <7r <z ¥ 2‘)) dz =
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1
T 1 1
=Fsin— [ cen|z2mK| — |, —= | cos(mz)dz.
Y / (0 (J5) ) et
To evaluate this integral, we make use of Fourier series expansion of cn function from [3] (8.146),

27 e~ m=1/2) (2§ — )mmz
cn(zmK) = K Z o@D cos < 5 >

Multiplying this identity by cos(mz) and integrating over (—1, 1), we get

[T 2V e~ mI=1/2)
I = 3Fsm<b> 1 Z 1 —m(2—1) 617(2]-—21)|m| =
()7
V2
To 2

B

NG 2

where ¢; ; is the Kronecker symbol. Furthermore,

1
p1(E(@), 1) — pr(E(a), ~1) = Mgﬂ) (n( (1 + j)mK@)) _

1
_ ngﬂ) (1-( l)m)cn<<1 + Z)mK<12)> —0
Therefore,
) V2Zmn? sin %

M(a) = (4.19)

- 52,|m| - 902(5((1)7 1)
b cosh ()
2
1

Next, since di%-(g(a), t) = Egbi(ﬁ(a),t) for i = 1,2 and any «,t € R, we get
a

\@mWB’ CcOos %

M(a) = !

62,|m| - 7‘?2(5(@)7 1)
b2 cosh <72T> b

4b
-periodic. This

Note that the periodicity of Jacobi elliptic functions yields that M of (4.19) is ]
m

470 . . .
means that o + 22 is a root of M whenever j € Z and « is a root of M.

m|
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Now, we look for roots of M given by (4.19). If m # +2, then

22 (1

o Jon() )
(v 3)ou() )

1 1 1 1
dn?(t. — )| =1— Zsn?(t —
”(ﬁ) 2S“<’¢é>

>

=
for all £ € R, the roots of M isely the roots of <<1+0‘> K(l) 1>A1'
or a y € 1o0ts O are precise € 1001Ss O sn — |'m — |, —F= |- 1n
p y ; ) 75 ) Avplying

the definition of sn saying that snu = sin ¢ where u is given by (4.9), one can see that snu = 0 if
and only if v = 25K for j € Z. Therefore, M(agm) =0 for

M(a) =

Since

2j :
af,, = <m — 1>b, jEZ, (4.20)
and m € Z\{0,£2} even. Note that all a?,m with j even are just ag?m shifted by an integer multiple
4b
|m|
cn(t, k) solves the equation

of period . Analogously, o}, with j odd are shifted af ,,. Using cn®u + sn”u = 1 and that

i(t) = (2k* — 1)a(t) — 2k*23(t), tER, (4.21)
we get at these points

3K (1

M'(a?,,) = b?\@) Cn<<1 + (Z>mK<\}§) %) £0.

Proposition 4.1. For each m € Z\{0,%+2} even and j = 0,1, there exists 6 > 0 such that
(4.17) has a unique solution x; ,, given by

1 1
mK( mK | —=
7) ()
—y (br(t) + a?,m)T7 2 + O(e),
Thmest) = PeUreatth = LaR+ 1) 42
1 1
mK | — mK | —=
<b\ﬁ> Cn((bT(t) —2b— Oé%m)(b\/ﬁ), \}g) + 0(8),
t € Upez(4k + 1,4k +3),

for any € € (=9,0), where oz? is given by (4.20).

,m
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Proof. By Theorem 2.1 we obtain a solution

(a) o),

b 5 aj,m(e)a b 5

® —ajm(e), 7|, ajm(0) = ozg-)’m,

of the corresponding form of (4.3) for ¢ given by (4.5). Then the statement is proved as Corollary 3.1
along with Remark 2.1.

Finally, if |m| = 2, it is not possible to find analytically the roots of

o () ()

+ X

bcosh <727> b
() () )

However, we can determine the number of its simple roots. Clearly, « is a simple root of M if and
only if it is a simple root of the function M () := bM (ab) which is 2-periodic and independent of
b. The graphs of M for m = +2 are given in Fig. 2. One can see that there are six simple roots
a? . j=0,1,...,5 of M in [0,2b).

j7m’
15
.
E /\
0.5 1.5

(@)

Fig. 2. Graphs of M for m = —2 (a) and m = 2 (b), respectively.

Proposition 4.2. For each m = +2 and j = 0,1,...,5, there exists § > 0 such that (4.17) has

a unique solution x; ., given by (4.22) for any € € (—6,6) with O‘?,m numerically computed roots of
M given by (4.23).
Remark 4.2. 1. The unperturbed solutions of (4.17) for m = 2,4 are sketched in Fig. 3.
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EEEEE

Fig. 3. Sketch of solutions o, (0,t) of (4.17) for m = 2,4.

2. If m # +2 is even, then we analytically showed that 0 is a simple root of M. Next, from
(4.11), if m = 42 then sn(mK) = (—1)™/?sn(0) = 0. Hence by (4.23), 0 is a root of M. Moreover,

M'(0) =

m | V2rd _4K3< 1 > . 8.01858m
V2

b2 T b2 70,
cosh<2)

where we used cn(mK) = (—1)"™/2cn(0) = (—1)™/2 and (4.21). So, 0 is a simple root of M
whenever m is even.
On the other hand, if m € Z is odd, then directly from (4.18),

M(0) = —¢2(£(0),1) =

m2K? 1
o) on() (o) )
()
= (-0 A0

where we used
sn(mK) = sn(K + (m — 1K) = (~1)" /2 sn(K) = (~1)(m/?,

dn(K) = Vi- 1 = —

(see [9]). So there is no solution persisting from ¢(£(0),t) if m € Z is odd.
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3. Integrating (4.18) over its period we get

Tm] 1 4b/|m|

d

M(a)dao= [ b (sim2 LI 1> —1(&(a), 8) daw —
0/ _/1 2 0/ do
4b/|m| p
—<sin2 % — 1) / %gpg(f(a), s)do | ds—
0
4b/|m| p
—b @901(5(04)7 1)da = 0.

0

Since M is not identically zero, it is changing its sign over the period interval, and Remark 2.2 can
be applied. This justifies the above analytical results on the existence of at least one root of M, and
also proves the existence of a solution of (4.17) for ¢ close to 0.
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