UDC 517.5

A. H. H. Al-Khaladi (College Comput. Sci. and Math., Tikrit Univ., Iraq)

ENTIRE FUNCTIONS SHARE TWO HALF SMALL FUNCTIONS ЦІЛІ ФУНКЦІЇ ПОДІЛЯЮТЬ ДВІ НАПІВМАЛІ ФУНКЦІЇ

The paper generalizes a result by P. Li and C. C. Yang [Illinois J. Math. -2000. -44. -P. 349-362] and extends the previous work of G. Qiu [Kodai Math. J. -2000. -23. -P. 1-11].

У роботі узагальнено результат П. Лі та Ц. Ц. Янга [Illinois J. Math. -2000. -44. - Р. 349-362] та розширено результати попередньої роботи Г. Кіу [Kodai Math. J. -2000. -23. - Р. 1-11].

1. Introduction and main results. Throughout f denotes an entire function, i.e., a function that is analytic in the whole complex plane, and f' denotes its derivative. We use the same signs as given in Nevanlinna theory (see [3,4]). In particular S(r,f) denotes any quantity satisfying S(r,f)=0 and f' denotes a set of finite linear measure. A meromorphic function f' is said to be a small function of f' if f'

$$ar{N}_{k)}\left(r,rac{1}{f-lpha}
ight), \qquad ar{N}_{(k}\left(r,rac{1}{f-lpha}
ight) \quad ext{ and } \quad ar{N}_{=k}\left(r,rac{1}{f-lpha}
ight),$$

where in counting the zeros of $f - \alpha$ we ignore the multiplicities.

If $g(z) - \alpha(z) = 0$ whenever $f(z) - \alpha(z) = 0$, then we write $f = \alpha \Rightarrow g = \alpha$ (some times we say f and g share half α IM). Thus f and g share α IM if and only if $f = \alpha \Leftrightarrow g = \alpha$, where $f = \alpha \Leftrightarrow g = \alpha$ means $f = \alpha \Rightarrow g = \alpha$ and $g = \alpha \Rightarrow f = \alpha$.

On the problems of uniqueness of an entire and its first derivative that share some values. E. Mues and N. Steinmets (see [5]) proved the following:

Theorem A. If a nonconstant entire function f and its derivative f' share two distinct finite values IM, then $f \equiv f'$.

Li and Yang (see [1]) extended this result as follows:

Theorem B. Let f be a nonconstant entire function and a, b be two distinct complex numbers. If $f = a \Rightarrow f' = a$ and $f = b \Rightarrow f' = b$, then only one of the following cases holds:

(I)
$$f \equiv f'$$
;

(II) if
$$ab \neq 0$$
, then $f(z) = a + ce^{\frac{b}{b-a}z}$ or $f(z) = b + ce^{\frac{a}{a-b}z}$;

(III) if ab = 0, then $f(z) = (a+b)(ce^{\frac{1}{4}z}-1)^2$, where c is a nonzero constant.

On the other hand G. Qiu (see [2]) generalized Theorem A to the following:

Theorem C. Let f be a nonconstant entire function, α and β be two distinct small functions of f with $\alpha \not\equiv \infty$ and $\beta \not\equiv \infty$. If f and f' share α and β IM, then $f \equiv f'$.

In this paper, we will generalize and extends the above results to obtain the following results:

Theorem 1. Let f be a nonconstant entire function, α and β be two distinct small functions of f with $\alpha \not\equiv \infty$ and $\beta \not\equiv \infty$. If $f = \alpha \Rightarrow f' = \alpha$ and $f = \beta \Rightarrow f' = \beta$, then exactly one of the following four cases must occur:

- (i) $f \equiv f'$;
- (ii) if $\alpha \not\equiv \alpha'$ and $\beta \not\equiv \beta'$, then $f(z) = \beta + c(\beta \alpha)e^{\int_0^z (\frac{\alpha \alpha'}{\alpha \beta})(t)dt}$ or $f(z) = \alpha + c(\beta \alpha) \times e^{\int_0^z (\frac{\beta \beta'}{\beta \alpha})(t)dt}$;

(iii) if
$$\alpha \equiv \alpha'$$
 and $\beta \not\equiv \beta'$, then $f(z) = \alpha + (\beta - \alpha) \left(1 + ce^{\frac{1}{4} \int_0^z (\frac{\beta - \beta'}{\beta - \alpha})(t) dt}\right)^2$ or if $\alpha \not\equiv \alpha'$ and $\beta \equiv \beta'$, then $f(z) = \beta + (\alpha - \beta) \left(1 + ce^{\frac{1}{4} \int_0^z (\frac{\alpha - \alpha'}{\alpha - \beta})(t) dt}\right)^2$, where c is a nonzero constant;

$$\begin{aligned} &\text{(iv)} \ \ \textit{if} \ \alpha \equiv \alpha' \ \textit{and} \ \beta \equiv \beta', \ \textit{then} \ T(r,f) = N_{=2}\left(r,\frac{1}{f-\alpha}\right) + S(r,f) = N_{1)}\left(r,\frac{1}{f'-\alpha}\right) + \\ &+ S(r,f) = T(r,f') + S(r,f) = N_{1)}\left(r,\frac{1}{f'-\beta}\right) + S(r,f) = N_{=2}\left(r,\frac{1}{f-\beta}\right) + S(r,f). \end{aligned}$$

From Theorem 1, we deduce the following corollaries:

Corollary 1. Let f be a nonconstant entire function, α and β be two distinct small functions of f with $\alpha \not\equiv \infty$ and $\beta \not\equiv \infty$. If $f = \alpha \Rightarrow f' = \alpha$ and $f = \beta \Rightarrow f' = \beta$, and if $\alpha \not\equiv \alpha'$ or $\beta \not\equiv \beta'$, then f as in Theorem 1 (i)–(iii).

Corollary 2. Let f be a nonconstant entire function, α and β be two distinct small functions of f with $\alpha \not\equiv \infty$ and $\beta \not\equiv \infty$. If $f = \alpha \Rightarrow f' = \alpha$ and $f = \beta \Rightarrow f' = \beta$, and if $\bar{N}\left(r, \frac{1}{f - \alpha}\right) = \bar{N}\left(r, \frac{1}{f' - \alpha}\right) + S(r, f)$, then f as in Theorem 1 (i)–(iii).

Corollary 3. Let f be a nonconstant entire function, α and β be two distinct small functions of f with $\alpha \not\equiv \infty$ and $\beta \not\equiv \infty$. If $f = \alpha \Leftrightarrow f' = \alpha$ and $f = \beta \Rightarrow f' = \beta$, then only one of the following cases holds:

- (i) $f \equiv f'$;
- (ii) if $\alpha \not\equiv \alpha'$ and $\beta \not\equiv \beta'$, then $f(z) = \beta + c(\beta \alpha)e^{\int_0^z (\frac{\alpha \alpha'}{\alpha \beta})(t)dt}$;
- (iii) if $\alpha \equiv \alpha'$ and $\beta \not\equiv \beta'$, then $\alpha \equiv \beta'$ and $f(z) = \alpha + (\beta \beta')(1 + ce^{\frac{1}{4}z})^2$ or if $\alpha \not\equiv \alpha'$ and $\beta \equiv \beta'$, then $f(z) = \beta + (\alpha \beta)(1 + ce^{\frac{1}{4}\int_0^z (\frac{\alpha \alpha'}{\alpha \beta})(t)dt})^2$, where c is a nonzero constant.

Remark 1. If $\alpha \equiv a$ and $\beta \equiv b$ are constants, then Corollary 1 becomes Theorem B. Therefore, Corollary 1 is generalization Theorem B.

- 2. If f and f' share α IM, then $\bar{N}\left(r,\frac{1}{f-\alpha}\right)=\bar{N}\left(r,\frac{1}{f'-\alpha}\right)$ and hence the case (iv) in Theorem 1 is impossible. Therefore Corollary 2 is extension of Theorem C.
- 3. Also in Theorem 1, if $\alpha(z) \equiv z$ and $\beta(z) \equiv 1$, then $f(z) = 1 + (z-1)e^{z-1}$. That is Theorem 1 is strictly an extension and generalization of Theorems B and C.
 - **4.** It is obvious that Corollary 3 is an extension of Theorem C.

2. Some lemmas. For the proof of our results we need the following lemmas:

Lemma 1 [2]. Let f be a nonconstant entire function, α_1 and α_2 be two distinct small functions of f with $\alpha_1 \not\equiv \infty$ and $\alpha_2 \not\equiv \infty$. Set

$$\Delta(f) = \begin{vmatrix} f - \alpha_1 & \alpha_1 - \alpha_2 \\ f' - \alpha'_1 & \alpha'_1 - \alpha'_2 \end{vmatrix} = \begin{vmatrix} f - \alpha_2 & \alpha_1 - \alpha_2 \\ f' - \alpha'_2 & \alpha'_1 - \alpha'_2 \end{vmatrix}. \tag{2.1}$$

Then

$$\Delta(f) \not\equiv 0,\tag{2.2}$$

$$m\left(r, \frac{\Delta(f)f}{(f - \alpha_1)(f - \alpha_2)}\right) = S(r, f), \tag{2.3}$$

$$m\left(r, \frac{\Delta(f)}{f - \alpha_i}\right) = S(r, f), \quad i = 1, 2,$$
(2.4)

$$\sum_{j=1}^{2} N\left(r, \frac{1}{f - \alpha_j}\right) - N\left(r, \frac{1}{\Delta(f)}\right) \le \sum_{j=1}^{2} \bar{N}\left(r, \frac{1}{f - \alpha_j}\right) + S(r, f). \tag{2.5}$$

Lemma 2 [1]. Let f be a nonconstant meromorphic function and α , β , γ be small functions of f with $\alpha \not\equiv 0$ or $\gamma \not\equiv 0$. Furthermore, let $g = \alpha f^2 + \beta f + \gamma$. If $\bar{N}(r,f) + \bar{N}\left(r,\frac{1}{f}\right) = S(r,f)$ and $N_{11}\left(r,\frac{1}{g}\right) = S(r,f)$, then $\beta^2 - 4\alpha\gamma \equiv 0$.

Lemma 3 [3, p. 47]. Let f be a nonconstant meromorphic function and a_1 , a_2 , a_3 be distinct small functions of f, then

$$T(r,f) \le \sum_{j=1}^{3} \bar{N}\left(r, \frac{1}{f - a_j}\right) + S(r,f).$$

3. Proof of Theorem 1. Suppose that $f \not\equiv f'$ and that the auxiliary function

$$\omega = \frac{\Delta(f)(f - f')}{(f - \alpha)(f - \beta)},\tag{3.1}$$

where $\Delta(f)$ is defined by (2.1), $\alpha_1 = \alpha$ and $\alpha_2 = \beta$. From (2.2) we know that $\Delta(f) \not\equiv 0$. Therefore it follows that $\omega \not\equiv 0$. It is easy to see from (2.5) that $N(r,\omega) = S(r,f)$. By (2.3) we obtain

$$m(r,\omega) \le m\left(r, \frac{\Delta(f)f}{(f-\alpha)(f-\beta)}\right) + m\left(r, 1 - \frac{f'}{f}\right) = S(r,f).$$

Thus

$$T(r,\omega) = S(r,f). \tag{3.2}$$

From the fact $f = \alpha \Rightarrow f' = \alpha$, $f = \beta \Rightarrow f' = \beta$ and Lemma 3 we know that

$$T(r,f) \leq \bar{N}\left(r,\frac{1}{f-\alpha}\right) + \bar{N}\left(r,\frac{1}{f-\beta}\right) + \bar{N}(r,f) + S(r,f) \leq$$

$$\leq \bar{N}\left(r, \frac{1}{f'-\alpha}\right) + \bar{N}\left(r, \frac{1}{f'-\beta}\right) + S(r, f) \leq$$
$$\leq 2T(r, f') + S(r, f) \leq 2T(r, f) + S(r, f).$$

It follows that every S(r,f) is also an S(r,f') and vice versa. From now on we will write S(r) for the common error term. Let $F = \frac{f-\alpha}{\beta-\alpha}$. Then from (2.1) we get

$$\Delta(f) = (\beta - \alpha)^2 F'. \tag{3.3}$$

Substituting F and $\Delta(f)$ into (3.1), ω is expressed to

$$\omega = \frac{F'[\alpha - \alpha' + (\beta - \beta' - \alpha + \alpha')F - (\beta - \alpha)F']}{F(F - 1)},$$
(3.4)

which may also be written $F^2 = a_1F + a_2F' + a_3FF' + a_4F'^2$, where $T(r, a_j) = S(r)$, j = 1, 2, 3, 4. From the definition of F and the last formula we see that

$$2T(r,f) + S(r) = 2T(r,F) = 2m(r,F) + 2N(r,F) =$$

$$= 2m(r,F) + S(r) \le$$

$$\le m(r,F) + m(r,F') + 2m\left(r,\frac{F'}{F}\right) + S(r) \le$$

$$\le m(r,F) + m(r,F') + S(r) \le$$

$$\le 2m(r,F) + S(r).$$

That is T(r, F') = T(r, F) + S(r) = T(r, f) + S(r). We rewrite (3.4) in the form

$$\left[F - \frac{1}{2} - \frac{\beta - \beta' - \alpha + \alpha'}{2\omega}F'\right]^{2} =$$

$$= \left[\left(\frac{\beta - \beta' - \alpha + \alpha'}{2\omega}\right)^{2} - \frac{\beta - \alpha}{\omega}\right]F'^{2} + \frac{\beta - \beta' + \alpha - \alpha'}{2\omega}F' + \frac{1}{4}.$$
(3.5)

In the following we shall treat three cases:

Case 1: $\alpha \not\equiv \alpha'$ and $\beta \not\equiv \beta'$. Since $f = \alpha \Rightarrow f' = \alpha$ and $f = \beta \Rightarrow f' = \beta$, so the zeros of $f - \alpha$ and $f - \beta$ with multiplicities longer than one are zeros of $\alpha - \alpha'$ and $\beta - \beta'$ respectively. It follows that

$$\bar{N}_{(2}\left(r, \frac{1}{f-\alpha}\right) + \bar{N}_{(2}\left(r, \frac{1}{f-\beta}\right) = S(r).$$

From this, (3.1) and (3.2) we deduce that

$$\bar{N}\left(r, \frac{1}{\Delta(f)}\right) \le N\left(r, \frac{1}{\omega}\right) + \bar{N}_{(2}\left(r, \frac{1}{f - \alpha}\right) + \bar{N}_{(2}\left(r, \frac{1}{f - \beta}\right) = S(r),$$

and so from (3.3),

ISSN 1027-3190. Укр. мат. журн., 2018, т. 70, № 7

$$\bar{N}\left(r, \frac{1}{F'}\right) + \bar{N}\left(r, F'\right) = S(r).$$

Appling Lemma 2 to equation (3.5) we find that

$$\left(\frac{\beta - \beta' + \alpha - \alpha'}{2\omega}\right)^2 - \left[\left(\frac{\beta - \beta' - \alpha + \alpha'}{2\omega}\right)^2 - \frac{\beta - \alpha}{\omega}\right] \equiv 0.$$

That is $\omega \equiv \frac{(\alpha - \alpha')(\beta - \beta')}{\alpha - \beta}$. Substituting this into (3.5) gives

$$\left[F - 1 - \left(\frac{\alpha - \beta}{\alpha - \alpha'}\right)F'\right]\left[F + \left(\frac{\alpha - \beta}{\beta - \beta'}\right)F'\right] \equiv 0,$$

which implies that

$$f(z) = \beta + c(\beta - \alpha)e^{\int_0^z (\frac{\alpha - \alpha'}{\alpha - \beta})(t)dt} \qquad \text{or} \qquad f(z) = \alpha + c(\beta - \alpha)e^{\int_0^z (\frac{\beta - \beta'}{\beta - \alpha})(t)dt},$$

where c is a nonzero constant.

Case 2: $\alpha \equiv \alpha'$ and $\beta \not\equiv \beta'$ or $\alpha \not\equiv \alpha'$ and $\beta \equiv \beta'$. Without loss of generality, we can assume that $\alpha \equiv \alpha'$ and $\beta \not\equiv \beta'$. According to the discussion in Case 1 we know that $\bar{N}_{(2}\left(r,\frac{1}{f-\beta}\right)=S(r)$, and so from the definition of F we obtain $\bar{N}_{(2}\left(r,\frac{1}{F-1}\right)=S(r)$. Since the zeros of $f-\alpha$ are all the zeros of $f'-\alpha=f'-\alpha'$, it follows that $N_{(2)}\left(r,\frac{1}{f-\alpha}\right)=S(r)$. Further, we can conclude from (3.1) that the zeros of $f-\alpha$ which multiplicity f'(2) are the zeros of f'. Thus, from (3.2) we get

$$\bar{N}_{(3)}\left(r, \frac{1}{f-\alpha}\right) \le N\left(r, \frac{1}{\omega}\right) + S(r) = S(r).$$

Thus

$$\bar{N}\left(r, \frac{1}{f-\alpha}\right) = \bar{N}_{=2}\left(r, \frac{1}{f-\alpha}\right) + S(r).$$

From this and the definition of F we get

$$\bar{N}\left(r, \frac{1}{F}\right) = \bar{N}_{=2}\left(r, \frac{1}{F}\right) + S(r).$$

From (3.4) we easily see that the zero of F' must be the zero of F with multiplicity 2 if it is not zero of ω . Let $h = \frac{F}{F'^2}$. Then we have

$$\bar{N}\left(r, \frac{1}{h}\right) + \bar{N}(r, h) = S(r). \tag{3.6}$$

Equation (3.4) can be written as

$$(\beta - \alpha)(F' - \delta F)^2 = F\left[\left((\beta - \alpha)\delta^2 - \omega\right)F + \omega\right],\tag{3.7}$$

where $\delta = \frac{\beta - \beta'}{2(\beta - \alpha)}$. If $(\beta - \alpha)\delta^2 - \omega \not\equiv 0$, then from (3.7), we find that

$$F(z_0) = \left(\frac{-\omega}{(\beta - \alpha)\delta^2 - \omega}\right)(z_0) \quad \Rightarrow \quad F'(z_0) = \left(\frac{-\omega\delta}{(\beta - \alpha)\delta^2 - \omega}\right)(z_0),$$

and thus $h(z_0) = \left(\frac{\omega - (\beta - \alpha)\delta^2}{\omega \delta^2}\right)(z_0)$. Noting that $F(z_1) = 1$ implies that $F'(z_1) = 1$ $=\left(\frac{\beta-\beta'}{\beta-\alpha}\right)(z_1)$ and thus $h(z_1)=\left(\frac{\beta-\alpha}{\beta-\beta'}\right)^2(z_1)$, by Lemma 3, we get

$$\begin{split} T(r,F) &\leq \bar{N}\left(r,\frac{1}{F-1}\right) + \bar{N}\left(r,\frac{1}{F+\frac{\omega}{(\beta-\alpha)\delta^2-\omega}}\right) + S(r) \leq \\ &\leq \bar{N}\left(r,\frac{1}{h-(\frac{\beta-\alpha}{\beta-\beta'})^2}\right) + \bar{N}\left(r,\frac{1}{h-\frac{\omega-(\beta-\alpha)\delta^2}{\omega\delta^2}}\right) + S(r) \leq \\ &\leq 2T(r,h) + S(r). \end{split}$$

Therefore ω , α and β are small functions of h. From the definition of h and equation (3.7), we obtain

$$\left(hF' - \frac{\beta - \beta'}{2\omega}\right)^2 = h + \frac{(\beta - \beta')^2}{4\omega^2} - \frac{\beta - \alpha}{\omega}.$$

Therefore $h + \frac{(\beta - \beta')^2}{4\omega^2} - \frac{\beta - \alpha}{\omega}$ has no simple zero. Hence by Lemma 2, we get $\frac{(\beta - \beta')^2}{4\omega^2}$ $-\frac{\beta-\alpha}{\alpha}\equiv 0$. That is $\omega\equiv\frac{(\beta-\beta')^2}{4(\beta-\alpha)}$. Thus (3.7) becomes

$$\left(\frac{1}{\delta}F' - F\right)^2 = F. \tag{3.8}$$

Let $G = \frac{1}{\delta}F' - F$. We get $F = G^2$ and thus F' = 2GG'. From (3.8) we have $\left(\frac{2}{\delta}G' - G\right)^2 \equiv 1$. Hence either $\frac{2}{\delta}G'-G\equiv 1$ or $\frac{2}{\delta}G'-G\equiv -1$. If $\frac{2}{\delta}G'-G\equiv -1$, then we find that $f=\alpha-(\beta-\alpha)(1+ce^{\frac{1}{2}s})$, where $s=\int_0^z \delta(t)dt$ and c is a nonzero constant. From this and $f=\beta\Rightarrow f'=\beta$ we arrive at a contradiction. Therefore $\frac{2}{\delta}G'-G\equiv 1$. From this it is easy to see that $f=\alpha+(\beta-\alpha)(1+ce^{\frac{1}{2}s})^2$, where $s=\int_0^z \delta(t)dt$ and c is a nonzero constant. Case 3: $\alpha\equiv\alpha'$ and $\beta\equiv\beta'$. By the discussion in Case 2 we know that

$$N_{1}\left(r, \frac{1}{f - \alpha}\right) + N_{1}\left(r, \frac{1}{f - \beta}\right) = S(r)$$

$$(3.9)$$

and

$$N_{(3)}\left(r, \frac{1}{f - \alpha}\right) + N_{(3)}\left(r, \frac{1}{f - \beta}\right) \le 3N\left(r, \frac{1}{\omega}\right) \le 3T(r, \omega) + O(1) = S(r). \tag{3.10}$$

ISSN 1027-3190. Укр. мат. журн., 2018, т. 70, № 7

From $\alpha \equiv \alpha', \; \beta \equiv \beta'$ and (3.4) we deduce that

$$m\left(r, \frac{1}{F'}\right) \le m\left(r, \frac{1}{\omega}\right) + m\left(r, \frac{F'}{F(F-1)}\right) + S(r) \le$$
$$\le T(r, \omega) + m\left(r, \frac{F'}{F}\right) + m\left(r, \frac{F'}{F-1}\right) + S(r) = S(r),$$

so that

$$\begin{split} m\left(r,\frac{1}{f-\alpha}\right) + m\left(r,\frac{1}{f-\beta}\right) &= m\left(r,\frac{1}{F}\right) + m\left(r,\frac{1}{F-1}\right) + S(r) = \\ &= m\left(r,\frac{1}{F(F-1)}\right) + S(r) \leq \\ &\leq m\left(r,\frac{1}{F'}\right) + S(r) = S(r). \end{split}$$

Combining this, (3.9) and (3.10) we obtain

$$T(r,f) = N_{=2}\left(r, \frac{1}{f-\alpha}\right) + S(r) = N_{=2}\left(r, \frac{1}{f-\beta}\right) + S(r). \tag{3.11}$$

Set

$$\Gamma = 2\frac{f'' - \beta}{f' - \beta} - \frac{f' - \beta}{f - \beta}.$$
(3.12)

Since $\beta \equiv \beta'$, $m(r, \Gamma) = S(r)$. It follows from (3.12) that if z_{β} is a zero of $f - \beta$ with multiplicity 2, then $\Gamma(z_{\beta}) = O(1)$. Thus, from (3.11) we get

$$N(r,\Gamma) \le \bar{N}\left(r, \frac{1}{f'-\beta}\right) - \bar{N}_{=2}\left(r, \frac{1}{f-\beta}\right) + S(r). \tag{3.13}$$

Also, if z_{α} is a zero of $f - \alpha$ with multiplicity 2, then

$$[2(f'' - \beta) - (\Gamma + 1)(\alpha - \beta)](z_{\alpha}) = 0.$$
(3.14)

On the other hand, differentiating (3.1) twice and then using $f(z_{\alpha}) = \alpha$, we arrive at $[2(f'' - \alpha) - \omega](z_{\alpha}) = 0$. If we now eliminate $f''(z_{\alpha})$ between this and (3.14) we obtain

$$[\omega - (\Gamma - 1)(\alpha - \beta)](z_{\alpha}) = 0. \tag{3.15}$$

Set

$$\Omega = 2\frac{f'' - \alpha}{f' - \alpha} - \frac{f' - \alpha}{f - \alpha}.$$

Similarly as the above, we have $m(r, \Omega) = S(r)$,

$$N(r,\Omega) \le \bar{N}\left(r,\frac{1}{f'-\alpha}\right) - \bar{N}_{=2}\left(r,\frac{1}{f-\alpha}\right) + S(r)$$

and

$$[\omega - (\Omega - 1)(\alpha - \beta)](z_{\beta}) = 0.$$

We discuss the following four subcases:

Subcase 3.1: $\omega-(\Gamma-1)(\alpha-\beta)\equiv 0$ and $\omega-(\Omega-1)(\alpha-\beta)\equiv 0$. Then $\Gamma\equiv\Omega$. Hence $\left(\frac{f'-\beta}{f'-\alpha}\right)^2=c\left(\frac{f-\beta}{f-\alpha}\right)$, where c is a nonzero constant. Therefore 2T(r,f')+S(r)=T(r,f). This is impossible because f is an entire function.

Subcase 3.2: $\omega - (\Gamma - 1)(\alpha - \beta) \not\equiv 0$ and $\omega - (\Omega - 1)(\alpha - \beta) \not\equiv 0$. Then from (3.15), (3.1) and (3.13) we deduce that

$$\begin{split} \bar{N}_{=2}\left(r,\frac{1}{f-\alpha}\right) &\leq N\left(r,\frac{1}{\omega-(\Gamma-1)(\alpha-\beta)}\right) + S(r) \leq \\ &\leq T(r,\omega) + T(r,\Gamma) + S(r) = \\ &= N(r,\Gamma) + S(r) \leq \\ &\leq \bar{N}\left(r,\frac{1}{f'-\beta}\right) - \bar{N}_{=2}\left(r,\frac{1}{f-\beta}\right) + S(r). \end{split}$$

Together with (3.11) we have

$$T(r,f) \le \bar{N}\left(r, \frac{1}{f'-\beta}\right) + S(r) \le T(r,f') + S(r) \le T(r,f) + S(r).$$
 (3.16)

Consequently,

$$N_{(2)}\left(r, \frac{1}{f' - \beta}\right) + m\left(r, \frac{1}{f' - \beta}\right) = S(r). \tag{3.17}$$

Similarly, from $\omega - (\Omega - 1)(\alpha - \beta) \not\equiv 0$ we get

$$N_{(2}\left(r, \frac{1}{f'-\alpha}\right) + m\left(r, \frac{1}{f'-\alpha}\right) = S(r).$$

From this, (3.11), (3.16) and (3.17) we arrive at the conclusion (iv).

Subcase 3.3: $\omega - (\Gamma - 1)(\alpha - \beta) \not\equiv 0$ and $\omega - (\Omega - 1)(\alpha - \beta) \equiv 0$. Since $\omega - (\Gamma - 1)(\alpha - \beta) \not\equiv 0$, by the discussion in Subcase 3.2 we have (3.16) and (3.17). From $\omega - (\Omega - 1)(\alpha - \beta) \equiv 0$, we find that $\bar{N}_{(2)}\left(r, \frac{1}{f' - \alpha}\right) = S(r)$ and

$$f' = \alpha \Rightarrow f = \alpha. \tag{3.18}$$

Otherwise $f'(z_0) = \alpha \Rightarrow f(z_0) \neq \alpha$ holds for a sequence z_0 whose counting function is an S(r). We set

$$\nu = \frac{\Delta(f')(f - f')}{(f' - \alpha)(f' - \beta)}.$$
(3.19)

From (2.1) we conclude that $\nu \not\equiv 0$. Again by (2.4), (3.11), (3.17) and (3.16) we see that

ISSN 1027-3190. Укр. мат. журн., 2018, т. 70, № 7

$$m(r,\nu) = m\left(r, \frac{\Delta(f')\left(\frac{f-\beta}{f'-\beta} - 1\right)}{f'-\alpha}\right) \le m\left(r, \frac{\Delta(f')}{f'-\alpha}\right) + m\left(r, \frac{f-\beta}{f'-\beta}\right) + S(r) \le$$

$$\le m\left(r, \frac{f-\beta}{f'-\beta}\right) + S(r) = N\left(r, \frac{1}{f-\beta}\right) - N\left(r, \frac{1}{f'-\beta}\right) + S(r) =$$

$$= T(r,f) - T(r,f') + S(r) = S(r). \tag{3.20}$$

From (3.19), (2.5), (3.18), (3.11), (3.17) we deduce that

$$N(r,\nu) \leq \bar{N}\left(r,\frac{1}{f'-\alpha}\right) - \bar{N}\left(r,\frac{1}{f-\alpha}\right) + \bar{N}\left(r,\frac{1}{f'-\beta}\right) - \bar{N}\left(r,\frac{1}{f-\beta}\right) =$$

$$= N_{1}\left(r,\frac{1}{f'-\alpha}\right) - \bar{N}_{=2}\left(r,\frac{1}{f-\alpha}\right) + N_{1}\left(r,\frac{1}{f'-\beta}\right) - \bar{N}_{=2}\left(r,\frac{1}{f-\beta}\right) +$$

$$+S(r) = N_{1}\left(r,\frac{1}{f'-\beta}\right) - \bar{N}_{=2}\left(r,\frac{1}{f-\beta}\right) + S(r). \tag{3.21}$$

Let z_1 be a common zero of $f - \alpha$ (or $f - \beta$) and $f' - \alpha$ (or $f' - \beta$) with multiplicities 2 and 1 respectively. From (3.1) and (3.19) it follows that $(\omega - 2\nu)(z_1) = 0$. If $\omega - 2\nu \not\equiv 0$, then from (3.2), (3.20), (3.21), (3.17), (3.11) and (3.16) we conclude that

$$\bar{N}_{=2}\left(r, \frac{1}{f - \alpha}\right) + \bar{N}_{=2}\left(r, \frac{1}{f - \beta}\right) \le N\left(r, \frac{1}{\omega - 2\nu}\right) \le T(r, \omega) + T(r, \nu) + O(1) =$$

$$= m(r, \nu) + N(r, \nu) + S(r) =$$

$$= N_{1}\left(r, \frac{1}{f' - \beta}\right) - \bar{N}_{=2}\left(r, \frac{1}{f - \beta}\right) + S(r) \le$$

$$\le T(r, f') - \frac{1}{2}T(r, f) + S(r) =$$

$$= \frac{1}{2}T(r, f) + S(r).$$

That is $2T(r,f) \le T(r,f) + S(r)$, a contradiction. Therefore we have $\omega - 2\nu \equiv 0$. From this it is easy to arrive at the contradiction.

Subcase 3.4: $\omega - (\Gamma - 1)(\alpha - \beta) \equiv 0$ and $\omega - (\Omega - 1)(\alpha - \beta) \not\equiv 0$. Similarly as the Subcase 3.3, we will arrive at the same contradiction.

Theorem 1 is proved.

4. Proof of corollaries. We proof only Corollary 3; proofs of the remaining corollaries are easy. If $\alpha \not\equiv \alpha'$ and $\beta \not\equiv \beta'$, then $f(z) = \alpha + c(\beta - \alpha)e^{\int_0^z (\frac{\beta - \beta'}{\beta - \alpha})(t)dt}$. By differentiating both sides of this last function with respect to z, we obtain

$$f'(z) - \alpha = c(\beta - \alpha') \left(e^{\int_0^z (\frac{\beta - \beta'}{\beta - \alpha})(t)dt} + \frac{\alpha' - \alpha}{c(\beta - \alpha')} \right).$$

But this is a contradiction to our assumption that $f = \alpha \Leftrightarrow f' = \alpha$. If $\alpha \equiv \alpha'$ and $\beta \not\equiv \beta'$, then

$$f(z) = \alpha + (\beta - \alpha) \left(1 + ce^{\frac{1}{4} \int_0^z (\frac{\beta - \beta'}{\beta - \alpha})(t)dt} \right)^2.$$

Differentiating once gives

$$f'(z) - \alpha = \left(1 + ce^{\frac{1}{4}\int_0^z (\frac{\beta - \beta'}{\beta - \alpha})(t)dt}\right) \left(\beta' - \alpha + c[\beta' - \alpha + 1/2(\beta - \beta')]e^{\frac{1}{4}\int_0^z (\frac{\beta - \beta'}{\beta - \alpha})(t)dt}\right).$$

Since $f = \alpha \Leftrightarrow f' = \alpha$, we have either $\beta' - \alpha + 1/2(\beta - \beta') \equiv 0$ or $\beta' - \alpha \equiv 0$. If $\beta' - \alpha + 1/2(\beta - \beta') \equiv 0$, then we can write

$$f(z) - \alpha = (\beta - \alpha) \left(1 + \frac{c}{\sqrt{\beta - \alpha}} \right)^2.$$

This is impossible. Therefore $\beta'-\alpha\equiv 0$, in this case $f(z)=\alpha+(\beta-\beta')\left(1+ce^{\frac{1}{4}z}\right)^2$. Finally, if $f=\alpha\Leftrightarrow f'=\alpha$, then it is clear that $\bar{N}\left(r,\frac{1}{f-\alpha}\right)=\bar{N}\left(r,\frac{1}{f'-\alpha}\right)$. Thus the case (iv) in Theorem 1 does not appear. Now complete the proof of Corollary 3.

References

- 1. *Li P., Yang C. C.* When an entire function and its linear differential polynomial share two values // Illinois J. Math. 2000. 44. P. 349 362.
- 2. Oiu G. Uniqueness of entire functions that share some small functions // Kodai Math. J. 2000. 23. P. 1-11.
- 3. Hayman W. K. Meromorphic functions. Oxford: Clarendon Press, 1964.
- 4. Yang C. C., Yi H. X. Uniqueness theory of meromorphic functions. Kluwer Acad. Publ., 2004.
- 5. *Mues E., Steinmets N.* Meromorphe funktionen die mit ihrer ableitung werte teiken // Manuscripta Math. 1979. **29**. P. 195 206.

Received 21.10.13