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ENTIRE FUNCTIONS SHARE TWO HALF SMALL FUNCTIONS
LTI ®YHKIIT OALISIOTH JIBI HATIIBMAJII ®YHKIIT

The paper generalizes a result by P. Li and C. C. Yang [Illinois J. Math. — 2000. — 44. — P. 349-362] and extends the
previous work of G. Qiu [Kodai Math. J. — 2000. - 23. - P. 1-11].

VY poborti y3araneHeno pesyasrar [1. JIi Ta L. L. fnra [Illinois J. Math. — 2000. — 44. — P. 349-362] Ta po3mupeHo
pesynsraru nomnepensboi podoru I Kiy [Kodai Math. J. — 2000. — 23. - P. 1-11].

1. Introduction and main results. Throughout f denotes an entire function, i.c., a function that is
analytic in the whole complex plane, and f’ denotes its derivative. We use the same signs as given
in Nevanlinna theory (see [3, 4]). In particular S(r, f) denotes any quantity satisfying S(r, f) =
=o(T(r, f)) as r — oo, except possibly on a set of finite linear measure. A meromorphic function
« is said to be a small function of f if T'(r, ) = S(r, f). We say that two nonconstant meromorphic
functions f and g share the value or small function o IM (ignoring multiplicities), if f — « and

o 1 .
g — « have the same zeros. Let k be a positive integer, we denote by Ny | 7, fi the counting
-«

1
function of zeros of f — a with multiplicity < k and by N (r, f> the counting function of
-«

1
zeros of f — o with multiplicity > k. We denote by N_j (r, f> counting function of zeros of
-«

f — a which have the multiplicity £ . In the same manner we define

~ 1 _ 1 _ 1
Nk) (r, 7}0 —a) , N(;€ <r, 7f — 04) and N_; <r, 7}0 — a) ,

where in counting the zeros of f — o we ignore the multiplicities.

If g(z) — a(z) = 0 whenever f(z) — a(z) = 0, then we write f = @ = g = « (some times we
say f and g share half o IM). Thus f and g share o IM if and only if f = o & g = a, where
f=asg=ameans f=a=g=aandg=a= f=aqa.

On the problems of uniqueness of an entire and its first derivative that share some values. E. Mues
and N. Steinmets (see [5]) proved the following:

Theorem A. If a nonconstant entire function [ and its derivative f' share two distinct finite
values IM, then [ = f'.

Li and Yang (see [1]) extended this result as follows:

Theorem B. Let f be a nonconstant entire function and a, b be two distinct complex numbers.
If f=a= f' =aand f =b= [ =b, then only one of the following cases holds:

o f=r , )

(I1) if ab # 0, then f(z) = a+ cet=a~ or f(z) =b+ cea—b7;
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(M) if ab =0, then f(z) = (a + b)(ceiz —1)%, where c is a nonzero constant.

On the other hand G. Qiu (see [2]) generalized Theorem A to the following:

Theorem C. Let f be a nonconstant entire function, o and 3 be two distinct small functions of
f with o % 00 and B # oo . If f and f' share o and 3 IM, then [ = f.

In this paper, we will generalize and extends the above results to obtain the following results:

Theorem 1. Let f be a nonconstant entire function, o and 3 be two distinct small functions of
fwitha#occand B# . If f=a= f =«aand f = = f' = B, then exactly one of the
following four cases must occur:

0 f=f" ,

(ii) ifa Z o and B #£ [, then f(z) =+ (B — a)efoz a4, f(z)=a+cB—a)x

wedo ) @i,

’

1 z — 2
(i) ifa =o' and B B, then f(2) = a+ (B — ) <1 +ceido <%i>(t)dt> orif a £ o and

2
B =0, then f(z) =8+ (a—p) <1 + cet i o (5 )(t)d‘t , where c is a nonzero constant,

10) +S(r f) = Ny (rfl_Q> +

f15>+ﬂ )

(iv) if a = and B = (', then T(r, f) = N—g (7’,
£ S 1) = TR L)+ 50 0) = Ny (r g ) + () = N

From Theorem 1, we deduce the following corollaries:

Corollary 1. Let f be a nonconstant entire function, o and 3 be two distinct small functions of
fwithaZoccand f#£o0. If f=a= f'=aand f=0= f =8,and if « £ or § £ [,
then f as in Theorem 1 (1)—(iii).

Corollary 2. Let f be a nonconstant entire function, o and [3 be two distinct small functions of

fwithoz?—ooandﬁ?éoo.lffzaiflzaandf:6z>flzﬂ’andifN<T7f1a):

1
=N|{r, 7 > + S(r, f), then f as in Theorem 1 (i)—(iii).

Corollary 3. Let f be a nonconstant entire function, o and B be two distinct small functions
of fwitha#ocoand 8# co. If f=a < f'=«aand f =B = [ = 3, then only one of the
following cases holds:

M f=7; ,

(i) if @ Z o' and B# B, then [(2) =+ c(f — a)elo (5O,

(iii) if a =’ and % (', then o = B’ and f( )=a+(8-75)(1 +ceiz)2 orif a # o and
B=p then f(z) =8+ (a—B)(1 + ce* i Jo (=5 )dt)Q, where c is a nonzero constant.

Remark 1. If a = a and § = b are constants, then Corollary 1 becomes Theorem B. Therefore,

Corollary 1 is generalization Theorem B.

- 1
2. If f and f’ share o IM, then N {7, 7
-«

Theorem 1 is impossible. Therefore Corollary 2 is extension of Theorem C.

3. Alsoin Theorem 1, if a(z) = z and 3(z) = 1, then f(2) = 1+ (z—1)e*~ L. That is Theorem
1 is strictly an extension and generalization of Theorems B and C.

4. It is obvious that Corollary 3 is an extension of Theorem C.

- 1
= N | r,—— ] and hence the case (iv) in
f—a
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2. Some lemmas. For the proof of our results we need the following lemmas:
Lemma 1[2]. Let f be a nonconstant entire function, o and oo be two distinct small
functions of f with a; # 00 and g # co. Set

| o ar—ax | | fmar ar—oe
SR e S R D
Then
A(f) #0, (2.2)
A(f)f > _
m(r, F—o)(f —oa) =S(r, f), (2.3)
m (7“, fA—(fol) =S(rf), i=1,2, (2.4)

2

]Z;N <r, f1a]> - N <r, Aéf)) < JZZ;N (r, fl%) +S(r, f). (2.5)

Lemma 2 [1]. Let f be a nonconstant meromorphic function and «, 3, v be small functions

of f with o # 0 or v % 0. Furthermore, let g = af® + Bf + . IfN(T,f)—%—N(r,}) =S(r, f)

1
and Ny <r, g) = S(r, f), then 3> — 4ary = 0.

Lemma 3 [3, p. 47]. Let f be a nonconstant meromorphic function and a1, as, as be distinct
small functions of f, then

T(r, ) < jz;zv (n f_laj> + S f).

3. Proof of Theorem 1. Suppose that f # f’ and that the auxiliary function
L AN 1)
(f —e)(f =B)

where A(f) is defined by (2.1), a1 = « and ag = . From (2.2) we know that A(f) £ 0. Therefore
it follows that w # 0. It is easy to see from (2.5) that N(r,w) = S(r, f). By (2.3) we obtain

3.1)

Thus
T(r,w) = S(r, f). (3.2)

From the fact f =a = f'=«, f = = f' = and Lemma 3 we know that

T(r,f) <N (n fia> N (r ) L N(r f) + S(r f) <

1
-8
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S N<T’f/1—(l> +N <raf,1_/8> +S<’l",f) S
<2T(r, f') + S(r, f) < 2T(r, f) + S(r, f).

It follows that every S(r, f) is also an S(r, f’) and vice versa. From now on we will write S(r) for

the common error term. Let F' = B_ia. Then from (2.1) we get
—
A(f)=(B—a)’F'. (3.3)

Substituting F' and A(f) into (3.1), w is expressed to

_Fla—ad' +(8-0 —a+a)F — (8- a)F]
w = FE D) : (3.4)

which may also be written F? = a1 F + ayF' + a3FF' + asF"*, where T(r,a;) =9S(r), 7 =1, 2,
3, 4. From the definition of F' and the last formula we see that

2T(r, )+ S(r) =2T(r,F) =2m(r,F) + 2N (r, F) =

=2m(r, F)+ S(r) <

/

<m(r,F)+m(r, F’) +2m (r, ?) +S(r) <
< m(r, F) + m(r, F') + 8(r) <
<2m(r,F)+ S(r).
Thatis T'(r, F') = T(r, F) + S(r) = T(r, f) + S(r). We rewrite (3.4) in the form

2
F_l_ﬁ_ﬁl_a—i_O/F/
2 2w

(BB -a+d\* B-a
N 2w w
In the following we shall treat three cases:

Casel: aZd and 3% .Since f =a= f'=aand f = = f' = 3, so the zeros of
f —aand f — B with multiplicities longer than one are zeros of o — o’ and 3 — 3 respectively. It

follows that . .
N <7“, 7}8 — a> + Nz <r, 7f — ﬁ) = S(r).

From this, (3.1) and (3.2) we deduce that

¥(vatn) =¥ (0) e () + e (rpmp) =90

and so from (3.3),

1

_ /+ _ /
P B%a aF+4. (3.5)
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N (n ;) LN (rF) = S(r).

Appling Lemma 2 to equation (3.5) we find that

<5—5'+a—a'>2 <ﬁ—5’—a+a’)2ﬁ—a _,
2w 2w w |

(a=a)(B-F)
a—f

- Gma) el (=5)

F() = B+c(B—a)el EDOE o f() = a4 o(B— a)el FEDOL

That is w =

. Substituting this into (3.5) gives

0,

which implies that

where c is a nonzero constant.
Case2: a=d and B # ' or a # o' and 8 = '. Without loss of generality, we can assume

- 1
that o = o’ and B # . According to the discussion in Case 1 we know that N(, <r, fﬁ) =

= S(r), and so from the definition of F' we obtain Ny (r, ) = S(r). Since the zeros of

1
f—a) = S('f') Further, we
can conclude from (3.1) that the zeros of f — « which multiplicity p (> 3) are the zeros of w. Thus,
from (3.2) we get

- 1

N(3 <’I", f _

N <7~, j,ia) N <r, fia> +S().

From this and the definition of F' we get

N (r, ;) N <7~, ;) S0,

From (3.4) we easily see that the zero of F’ must be the zero of F' with multiplicity 2 if it is not

1
F—-1

[ — a are all the zeros of f' —a = f' — o/, it follows that Ny <r,

a) <N <r, i}) +S(r) = S(r).

Thus

zero of w. Let h = —5- Then we have
F/

_ 1 _
N (r, h) + N(r,h) = S(r). (3.6)
Equation (3.4) can be written as

(B—a)(F' —6F)?=F[((B—a)f*—w)F+uw], (3.7)
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where 0 = 2(55__601). If (8 — a)d? — w # 0, then from (3.7), we find that
_ ) —ws
F(z0) = ((ﬂ—a)wé?—w> (20) = F'(20)= ((B_a(;;g_w> (20),
and thus h(zg) = <C‘W> (20). Noting that F(z1) = 1 implies that F'(z1) =
= (6 — Bl) (z1) and thus h(z1) = (ﬂ — a)2 (21), by Lemma 3, we get
f—a p—p ’ ’

_ 1 - 1
< _ <
T(r,F) <N <r, o 1> N (T‘,F+ (5_(&52_“}) +5(r) <

_ 1 - 1
<N | TV e ) T80 S
( h— (Bﬁ—ﬁ’)2> ( h— (552 )52>

<2T(r,h) + S(r).

Therefore w, o and S are small functions of h. From the definition of A and equation (3.7), we

obtain ) )
B-p (B=p) B-o
F — =h — .
<h 2w + 42 w
_ A2 _ _an2
Therefore h + (6-5) — f-a has no simple zero. Hence by Lemma 2, we get M —
42 w Ao?
— f-a =0. Thatis w = M Thus (3.7) becomes
w 4B — a)
1 2
<6F/ — F) =F. (3.9)

1 9 2
Let G = gF’ — F. We get F = G2 and thus F' = 2GG’. From (3.8) we have (56" - G) =1.

2 2 2
Hence either SG/_G =1or gG/— =-—1.1If SG/_ = —1, then we find that f = a—(8—a)(1+
—&-ceés), where s = foz d(t)dt and c is a nonzero constant. From this and f = 8 = f’ = (3 we arrive

2
at a contradiction. Therefore SG,_G = 1. From this it is easy to see that f = a—i—(ﬁ—a)(l—i—ce%s)Q,

where s = [ 6(t)dt and c is a nonzero constant.
Case 3: o =o' and 8 = (. By the discussion in Case 2 we know that

1 1
Ny <r, fa> + Ny (r, fﬁ) =5(r) (3.9)

and

N (7”7 o i a> + N3 (r, fiﬁ> <3N (r, 1) <3T(r,w) +0(1) = S(r). (3.10)

w
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From o = o/, = 3 and (3.4) we deduce that

(i) <02 ) o0

<T(r,w)+m (r, /> +m <7“, FF/> +S(r) = S(r),

o(opt5) m(t)m(od) et s

so that

Combining this, (3.9) and (3.10) we obtain

T&JﬁzNﬂ<n >+S@y (3.11)

1
f—
Set

=B f -8
=2 g (3.12)

Since f = ', m(r,T") = S(r). It follows from (3.12) that if z3 is a zero of f —  with multiplicity
2, then I'(z3) = O(1). Thus, from (3.11) we get

N(r,T) SN(r,f/l_ﬁ> — N_, (r’fiﬁ

Also, if z, is a zero of f — o with multiplicity 2, then

20" = B) = (T + 1)(a = B)] (2a) = 0. (3.14)

r

>+Svy (3.13)

On the other hand, differentiating (3.1) twice and then using f(z,) = «, we arrive at [2(f" — ) —
— w](2zq) = 0. If we now eliminate f”(z,) between this and (3.14) we obtain

w— (T = 1)(a = B)] (za) = 0. (3.15)
Set f" 7
— —
Q:2f’—a — o

Similarly as the above, we have m(r, ) = S(r),

N(Q) < N (r, fl_o) N (r, ; ! a) +5(r)
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and
w—= (2 =1)(a—-pB)l(z) =0.
We discuss the following four subcases:
Subcase 3.1: w— (' —1)(a—f)=0and w— (2 —1)(a— B) = 0. Then I = Q. Hence
(;: : ﬁ) <§ — B> , Where ¢ is a nonzero constant. Therefore 27°(r, f') + S(r) = T'(r, f).
This is impossible because f is an entire function.

Subcase 3.2: w— (I' —1)(a— ) #0and w — (2 — 1)(a — ) # 0. Then from (3.15), (3.1)
and (3.13) we deduce that

U=

) ( w— ( F—ll)(a_ﬁ))+5(r)§
<T(r,w)+T(r,T)+S(r) =

=NrT)+S5(r) <

<N (r, f’1—,8> — N_» (7‘, fiﬁ> + S(r).

Together with (3.11) we have

T(r,f) <N ( f,l_ﬁ) +S(r) < T(r, fY+ S(r) <T(r, f) + S(r). (3.16)

Consequently,

1 1
Ne (r’ = 6) I < f—ﬂ) =50 e

Similarly, from w — (2 — 1)(a — ) # 0 we get

1 1
Nz <r, f’—a> +m <7’, f’—oz) = S(r).

From this, (3.11), (3.16) and (3.17) we arrive at the conclusion (iv).
Subcase 3.3: w—(I'—1)(a—p) #0and w—(Q2—1)(a—p) = 0. Since w—(I'—1)(a— ) # 0,
by the discussion in Subcase 3.2 we have (3.16) and (3.17). From w — (2 — 1)(a — ) = 0, we find

thatN < f/l )zS(r)and

ff=a=f=qa. (3.18)

Otherwise f'(z0) = @ = f(z0) # « holds for a sequence zy, whose counting function is an S(r).
We set

A1)
(f =) (f' = B)
From (2.1) we conclude that v # 0. Again by (2.4), (3.11), (3.17) and (3.16) we see that

(3.19)
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7Mﬂwm(hA( ) ﬂ_2>+m<n£:%)+ﬂﬂ§
<m(ng=5) 450 =N (n g5 ) N (r i) s =
=T(r,f)=T(r, f') 4+ S(r) = S(r). (3.20)

From (3.19), (2.5), (3.18), (3.11), (3.17) we deduce that

_ 1 _ 1 — 1 - 1
Mr) S8 (g ) =8 (g ) + 8 () -8 (r ) -

1 - 1 1 - 1
- (r,f/_a>—N2 (r,f_a>+N1 ( T ﬁ>—N2 (r,f_6)+

+S(r) = N1< ﬂ16>—Ng<nfi6>+S&) 321)

Let z; be a common zero of f — «a (or f — 3 ) and f' — « (or f' — 3 ) with multiplicities 2 and 1
respectively. From (3.1) and (3.19) it follows that (w —2v)(z1) = 0. If w — 2v # 0, then from (3.2),
(3.20), (3.21), (3.17), (3.11) and (3.16) we conclude that

N—; <r,fia> + Ny (r,fi5> <N<r,w_12y> <T(r,w)+T(r,v)+0(1) =
=m(r,v) + N(r,v) + S(r) =

=% (n75) = () + 5005

Sﬂnﬁ—%ﬂnﬂ+ﬂﬂ:

1

= §T(r, f)+S(r).

That is 27°(r, f) < T'(r, f) + S(r), a contradiction. Therefore we have w — 2v = 0 . From this it is
easy to arrive at the contradiction.

Subcase 3.4: w— (I' —1)(a—f) =0and w — (2 — 1)(a — ) # 0. Similarly as the Subcase
3.3, we will arrive at the same contradiction.

Theorem 1 is proved.

4. Proof of corollaries. We proof only Corollary 3; proofs of the remaining corollaries are easy.

' ' _ J§ (B2 1yt , - : :
If o # o and B # ', then f(2) = a+ ¢(f — a)el0 b« . By differentiating both sides of this
last function with respect to z, we obtain

f'(z) —a=c(B-ad) (efOZ(%_i/)(t)dt n C(O;:jl))‘

But this is a contradiction to our assumption that f = a < f' = a. If a = o/ and 8 # (', then
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1 rz g 2
fe)=a+(8—-a) (1 4+ ced Jo (%i)(t)dt) .

Differentiating once gives

Fl(z)—a= (1 + cet foz‘%‘i)“)dt) (B/ —a+clf —a+1/2(8— etk

%‘i’)(t)dt) ‘

Since f = a < f' = «, we have either ' —a+1/2(B—-p)=0o0r f/ —a=0.If f/ —a+
+1/2(8 — ') =0, then we can write

fz)—a=(8-a) (1+\/ﬂcfa)2.

2
This is impossible. Therefore 5/ — o = 0, in this case f(z) = a+ (8 — 3) (1 + ceiz) . Finally,

_ 1 - 1
if f=a< f = a, then it is clear that N (7, —— | = N | r, —— | . Thus the case (iv) in
f—a f'—a

Theorem 1 does not appear. Now complete the proof of Corollary 3.
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