N. Tuneski (Ss. Cyril and Methodius Univ. Skopje, Macedonia),

T. Bulboacă (Babeș-Bolyai Univ., Cluj-Napoca, Romania)

SUFFICIENT CONDITIONS FOR BOUNDED TURNING OF ANALYTIC FUNCTIONS

ДОСТАТНІ УМОВИ ДЛЯ ОБМЕЖЕНОГО ПОВОРОТУ АНАЛІТИЧНИХ ФУНКЦІЙ

Let function f be analytic in the open unit disk and be normalized such that f(0) = f'(0) - 1 = 0. In this paper methods from the theory of first order differential subordinations are used for obtaining sufficient conditions for f to be with bounded turning, i.e., the read part of its first derivative to map the unit disk onto the right half plane. In addition, several open problems are posed.

Нехай f — функція, аналітична у відкритому одиничному крузі, нормована так, що f(0) = f'(0) - 1 = 0. Методи теорії диференціальних підпорядкувань першого порядку застосовано, щоб отримати достатні умови того, що функція f має обмежений поворот, тобто дійсна частина її першої похідної відображає одиничний круг на праву півплощину. Крім того, сформульовано кілька відкритих проблем.

1. Introduction and preliminaries. Let $\mathcal{H}(\mathbb{D})$ be the class of functions that are analytic in unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and let \mathcal{A} denote the class of functions $f \in \mathcal{H}(\mathbb{D})$ of the form $f(z) = z + a_2 z^2 + a_3 z^3 + \dots, z \in \mathbb{D}$.

The class of *starlike functions*, which is a subclass of the class of univalent functions, is defined by

$$S^* = \left\{ f \in \mathcal{A} : \operatorname{Re} \frac{zf'(z)}{f(z)} > 0, z \in \mathbb{D} \right\}.$$

The functions $f \in S^*$ map the unit disk onto a starlike region, i.e., if $w \in f(\mathbb{D})$, then $tw \in f(\mathbb{D})$ for all $t \in [0,1]$. More details can be found in [2].

Another subclasses of univalent functions are

$$R_{\alpha} = \{ f \in \mathcal{A} : \operatorname{Re} f'(z) > \alpha, z \in \mathbb{D} \}, \quad 0 \le \alpha < 1,$$

and

$$\mathcal{R}(\alpha) = \left\{ f \in \mathcal{A} : \left| \arg f'(z) \right| < \frac{\alpha \pi}{2}, \ z \in \mathbb{D} \right\}, \quad 0 < \alpha \le 1,$$

which are subclasses of the class of functions with bounded turning, $R = R_0 = \mathcal{R}(1)$. The name of the class R follows from the fact that $\operatorname{Re} f'(z) > 0$ is equivalent with $\left| \operatorname{arg} f'(z) \right| < \frac{\pi}{2}$ and $\operatorname{arg} f'(z)$ is the angle of rotation of the image of a line segment starting from z under the mapping f. It is well known that S^* does not contain R and R does not contain S^* [7], which brings big interest for the class R [6–8].

In this paper we will study the expression

$$z\frac{f'(z)-1}{f(z)-z} = \frac{f'(z)-1}{f(z)/z-1},$$
(1)

for receiving some results that will lead to necessary conditions for a function $f \in \mathcal{A}_n$, $n \in \mathbb{N}$, $n \geq 2$, to be with bounded turning. Here, the class \mathcal{A}_n , $n \in \mathbb{N}$, $n \geq 2$, is defined by

$$\mathcal{A}_n = \{ f \in \mathcal{A} : f(z) = z + a_n z^n + \dots, \ z \in \mathbb{D}, \ a_n \neq 0 \}.$$

The study will involve a method from the theory of differential subordinations, while valuable references on this topic are [1] and [3]. Using a similar techniques as in this paper, in [8] the expression

$$\frac{f'(z) - 1}{f(z)/z}$$

is studied and results concerning the univalence and the starlikeness of f from \mathcal{A} are given.

First we introduce the notion of subordination. If $f, g \in \mathcal{A}$, then we say that f is *subordinate* to g, and write $f(z) \prec g(z)$, if there exists a function w, analytic in the unit disc \mathbb{D} , such that w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)) for all $z \in \mathbb{D}$. Specially, if g is univalent in \mathbb{D} , then $f(z) \prec g(z)$ if and only if f(0) = g(0) and $f(\mathbb{D}) \subset g(\mathbb{D})$.

For obtaining the main result we will use the method of differential subordinations [3]. The general theory of differential subordinations, as well as the theory of first-order differential subordinations, was introduced by Miller and Mocanu in [4] and [5]. Namely, if $\varphi \colon \mathbb{C}^2 \to \mathbb{C}$ is analytic in a domain D, if h is univalent in \mathbb{D} , and if p is analytic in \mathbb{D} with $(p(z), zp'(z)) \in D$ when $z \in \mathbb{D}$, then p is said to satisfy a first-order differential subordination if

$$\varphi(p(z), zp'(z)) \prec h(z).$$
 (2)

The univalent function q is said to be a *dominant* of the differential subordination (2) if $p(z) \prec q(z)$ for all the functions p satisfying (2). If \widetilde{q} is a dominant of (2) and $\widetilde{q}(z) \prec q(z)$ for all dominants of (2), then we say that \widetilde{q} is the *best dominant* of the differential subordination (2).

From the theory of first-order differential subordinations we will use the following lemma.

Lemma 1 [5]. Let q be univalent in the unit disk \mathbb{D} , and let $\theta(w)$ and $\phi(w)$ be analytic in a domain D containing $q(\mathbb{D})$, with $\phi(w) \neq 0$ when $w \in q(\mathbb{D})$. Set $Q(z) = zq'(z)\phi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$, and suppose that:

(i) Q is starlike in the unit disk \mathbb{D} ,

(ii)
$$\operatorname{Re} \frac{zh'(z)}{Q(z)} = \operatorname{Re} \left[\frac{\theta'(q(z))}{\phi(q(z))} + \frac{zQ'(z)}{Q(z)} \right] > 0, \ z \in \mathbb{D}.$$

If p is analytic in \mathbb{D} , with p(0) = q(0), $p(\mathbb{D}) \subseteq D$ and

$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)) = h(z), \tag{3}$$

then $p(z) \prec q(z)$, and q is the best dominant of (3).

Using Lemma 1 we will prove the following result that will be used in next section.

Lemma 2. Let $f \in \mathcal{A}_n$, $n \in \mathbb{N}$, $n \geq 2$, such that $f(z) \neq z$ for all $z \in \mathbb{D} \setminus \{0\}$. Also, let q be univalent in the unit disk \mathbb{D} , with $q(0) = a_n = \frac{f^{(n)}(0)}{n!}$, and

$$\operatorname{Re}\left[1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right] > 0, \quad z \in \mathbb{D}.$$
(4)

1120

If

$$z\frac{f'(z)-1}{f(z)-z}-n\prec\frac{zq'(z)}{q(z)},\tag{5}$$

then

$$\frac{f(z) - z}{z^n} \prec q(z),$$

and q is the best dominant of (5).

Proof. If we choose $\theta(w)=0$ and $\phi(w)=\frac{1}{w}$, then $\theta,\ \phi\in\mathcal{H}(D)$, where $D=\mathbb{C}^*:=\mathbb{C}\setminus\{0\}$. The condition $D\supset q(\mathbb{D})$ from Lemma 1 is equivalent to $q(z)\neq 0$ for all $z\in\mathbb{D}$, and we will prove that this last relation holds under our assumptions. Also, let note that $\phi(w)=1/w\neq 0$ for all $w\in q(\mathbb{D})$, and let define

$$Q(z) := zq'(z)\phi(q(z)) = \frac{zq'(z)}{q(z)}.$$

Denoting

$$\Phi(z) := 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)},$$

first we will show that the assumption (4), which is equivalent to

$$\operatorname{Re}\Phi(z) > 0, \quad z \in \mathbb{D},$$

implies $Q \in \mathcal{H}(\mathbb{D})$, i.e., $q(z) \neq 0$ for all $z \in \mathbb{D}$. In the beginning, from $q(0) = a_n \neq 0$ we receive that Q is regular in $z_0 = 0$. Further, let suppose that there exists $z_0 \in \mathbb{D} \setminus \{0\}$, such that $q(z_0) = 0$. It means that q has the form

$$q(z) = (z - z_0)^m g(z), \qquad z \in \mathbb{D}, \quad m \in \mathbb{N}^*,$$

where $g \in \mathcal{H}(\mathbb{D})$, with $g(z_0) \neq 0$. It follows that there exists r > 0, such that $g(z) \neq 0$ for all $z \in U(z_0; r) := \{z \in \mathbb{C} : |z - z_0| < r\} \subset \mathbb{D}$. Now, a simple computation shows that for all $z \in U(z_0; r) \setminus \{z_0\}$,

$$\frac{zq'(z)}{q(z)} = \frac{mz}{z - z_0} + \frac{zg'(z)}{q(z)},$$

hence

$$\Phi(z) = \frac{-\frac{mzz_0}{(z-z_0)^2} + \frac{zg'(z)}{g(z)} + \frac{z^2g''(z)}{g(z)} - \left(\frac{zg'(z)}{g(z)}\right)^2}{\frac{mz}{z-z_0} + \frac{zg'(z)}{g(z)}} = \frac{1}{z-z_0} \frac{-mzz_0 + (z-z_0)^2 \left[\frac{zg'(z)}{g(z)} + \frac{z^2g''(z)}{g(z)} - \left(\frac{zg'(z)}{g(z)}\right)^2\right]}{mz + (z-z_0)\frac{zg'(z)}{g(z)}}.$$

Finally, having in mind that $g(z_0) \neq 0$, from the above relation we receive that $z_0 \in \mathbb{D}$ is a pole of the function Φ , which contradicts the assumption (4). Thus, we obtain that $q(z) \neq 0$ for all $z \in \mathbb{D}$, hence the function Q is analytic on \mathbb{D} .

Further, q is an univalent function, implying $q'(z) \neq 0$ for all $z \in \mathbb{D}$,

$$Q'(0) = \frac{q'(0)}{q(0)} = \frac{q'(0)}{a_n} \neq 0$$

and

$$\operatorname{Re} \frac{zQ'(z)}{Q(z)} = \operatorname{Re} \left[1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} \right] > 0, \quad z \in \mathbb{D},$$

meaning that Q is a starlike function. In addition, for the function $h(z) = \theta(q(z)) + Q(z) = Q(z)$ we have

$$\operatorname{Re} \frac{zh'(z)}{Q(z)} = \operatorname{Re} \frac{zQ'(z)}{Q(z)} > 0, \quad z \in \mathbb{D}.$$

After choosing $p(z) = \frac{f(z) - z}{z^n}$, then $p \in \mathcal{H}(\mathbb{D})$, $p(0) = a_n$ and $p(z) \neq 0$ for all $z \in \mathbb{D}$, i.e., $p(\mathbb{D}) \subset D$, and all the conditions of Lemma 1 are satisfied. Concerning that the subordinations (3) and (5) are equivalent, we receive the conclusion of Lemma 2.

2. Main results and consequences. Using Lemma 2 we will study the modulus of (1) and will receive conclusions that will later lead to criteria for a function f to be in the class R.

Theorem 1. Let $f \in \mathcal{A}_n$, $n \in \mathbb{N}$, $n \geq 2$, such that $f(z) \neq z$ for all $z \in \mathbb{D} \setminus \{0\}$, and let $a_n = \frac{f^{(n)}(0)}{n!}$. If

$$z\frac{f'(z)-1}{f(z)-z}-n \prec \frac{\lambda z}{a_n+\lambda z} =: h_1(z), \tag{6}$$

where $0 < |\lambda| \le |a_n|$, then

$$\frac{f(z) - z}{z^n} \prec a_n + \lambda z \tag{7}$$

and the function $a_n + \lambda z$ is the best dominant of (6). Even more,

$$\left| \frac{f(z) - z}{z^n} - a_n \right| < \lambda, \quad z \in \mathbb{D}, \tag{8}$$

and this conclusion is sharp, i.e., in the inequality (8) the parameter $|\lambda|$ can not be replaced by a smaller number so that the implication holds.

Proof. The function $q(z) = a_n + \lambda z$ satisfies all the conditions of Lemma 2, since

$$\operatorname{Re}\left[1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right] = \operatorname{Re}\frac{1}{1 + \lambda/a_n z} > 0, \quad z \in \mathbb{D},$$

whenever of $0 < |\lambda| \le |a_n|$. Further, the subordinations (5) and (6) are equivalent, and therefore (7) follows directly from Lemma 2.

For the sharpness of our result, let assume that subordination (6) and inequality $\left|\frac{f(z)-z}{z^n}-a_n\right| < |\lambda_1|, \ z \in \mathbb{D}$, holds, i.e., $\frac{f(z)-z}{z^n} \prec a_n + \lambda_1 z$. But, the function $a_n + \lambda z$ is the best dominant of (6), meaning that $a_n + \lambda z \prec a_n + \lambda_1 z$, i.e., $|\lambda| \leq |\lambda_1|$.

Remark 1. It is easy to verify the following:

(i) If $0 < |\lambda| < |a_n|$, then $h_1(\mathbb{D})$ (where h_1 was defined in (6)) is an open disk with the center

$$c = \frac{1}{2} \left[h_1 \left(e^{i \arg(a_n/\lambda)} \right) + h \left(-e^{i \arg(a_n/\lambda)} \right) \right] = \frac{|\lambda|^2}{|\lambda|^2 - |a_n|^2},$$

and radius

$$r = \left| h_1 \left(e^{i \arg(a_n/\lambda)} \right) - c \right| = \frac{|\lambda| |a_n|}{|a_n|^2 - |\lambda|^2}.$$

(ii) If
$$|\lambda| = |a_n|$$
, then $h_1(z) = \frac{z}{z + e^{i \arg(a_n/\lambda)}}$, and

$$h_1(\mathbb{D}) = \left\{ z \in \mathbb{C} : \operatorname{Re} z < \frac{1}{2} \right\}.$$

Therefore, Theorem 1 can be written in the following equivalent form.

Theorem 1'. Let $f \in \mathcal{A}_n$, $n \in \mathbb{N}$, $n \geq 2$, such that $f(z) \neq z$ for all $z \in \mathbb{D} \setminus \{0\}$, and let $a_n = \frac{f^{(n)}(0)}{n!}.$ (i) If $0 < |\lambda| < |a_n|$ and

$$\left| z \frac{f'(z) - 1}{f(z) - z} - n - \frac{|\lambda|^2}{|\lambda|^2 - |a_n|^2} \right| < \frac{|\lambda| |a_n|}{|a_n|^2 - |\lambda|^2}, \quad z \in \mathbb{D},$$

then

$$\left| \frac{f(z) - z}{z^n} - a_n \right| < |\lambda|, \quad z \in \mathbb{D}.$$

(ii) If

$$\operatorname{Re}\left[z\frac{f'(z)-1}{f(z)-z}\right] < n+\frac{1}{2}, \quad z \in \mathbb{D},$$

then

$$\left|\frac{f(z)-z}{a_nz^n}-1\right|<1,\quad z\in\mathbb{D}.$$

These implications are sharp, i.e., in both cases the radius of the open disk from the conclusion is the smallest possible so that the corresponding implication holds.

Remark 2. The sharpness of Theorems 1 and 1' can be verified by using function f(z) = $=z+a_nz^n+\lambda z^{n+1}$, with $a_n\neq 0$, for which

$$z\frac{f'(z)-1}{f(z)-z}-n=\frac{\lambda z}{a_n+\lambda z}.$$

Thus, in the case $0 < |\lambda| < |a_n|$ we have

$$\left| z \frac{f'(z) - 1}{f(z) - z} - n - \frac{\lambda^2}{\lambda^2 - |a_n|^2} \right| = \frac{|\lambda| |a_n|}{|a_n|^2 - |\lambda|^2} \quad \text{for} \quad z = e^{i \arg(a_n/\lambda)},$$

while in the case $|a_n| = |\lambda|$ we get

$$\operatorname{Re}\left[z\frac{f'(z)-1}{f(z)-z}\right] = n + \frac{1}{2} \quad \text{for} \quad z = e^{i \arg(a_n/\lambda)}.$$

Now we will give several corollaries and examples of Theorem 1', in the case when n = 2. We start with part (i) of Theorem 1'.

Corollary 1. Let $f \in A_2$, and $\lambda \in \mathbb{C}$ with $\frac{4}{5}|a_2| \leq |\lambda| < |a_2|$, where $a_2 = \frac{f''(0)}{2}$. Also, let denote

$$\mu := \begin{cases} -2 + \frac{|\lambda|}{|a_2| - |\lambda|}, & \text{if} \quad \frac{4}{5} |a_2| \le |\lambda| \le \sqrt{\frac{2}{3}} |a_2|, \\ 2 + \frac{|\lambda|}{|a_2| + |\lambda|}, & \text{if} \quad \sqrt{\frac{2}{3}} |a_2| \le |\lambda| < |a_2|. \end{cases}$$

If

$$\left| f'(z) - 1 \right| < \mu \left| \frac{f(z)}{z} - 1 \right|, \quad z \in \mathbb{D} \setminus \{0\}, \tag{9}$$

then

$$\left| \frac{f(z) - z}{z^2} - a_2 \right| < \eta_1 := |\lambda|, \quad z \in \mathbb{D}, \tag{10}$$

and

$$|f'(z) - 1| < \eta_2, \quad z \in \mathbb{D}, \tag{11}$$

where

$$\eta_2 := \begin{cases} \frac{\left(|a_2| + |\lambda|\right)\left(2|a_2| - 3|\lambda|\right)}{|\lambda| - |a_2|}, & \text{if} \quad \frac{4}{5}|a_2| \le |\lambda| \le \sqrt{\frac{2}{3}}|a_2|, \\ 2|a_2| + 3|\lambda|, & \text{if} \quad \sqrt{\frac{2}{3}}|a_2| \le |\lambda| < |a_2|. \end{cases}$$

Moreover, the implication (9) \Rightarrow (10) is sharp for $\sqrt{\frac{2}{3}}|a_2| \leq |\lambda| < |a_2|$, and the implication

(9) \Rightarrow (11) is sharp for $\sqrt{\frac{2}{3}} |a_2| \le |\lambda| < |a_2|$, i.e., for these ranges of $|\lambda|$, the values η_1 and η_2 are the smallest ones so that the corresponding implications hold.

Also, if $\eta_2 < 1$, then f is univalent with bounded turning, i.e., $f \in R_{\alpha_1}$ and $f \in \mathcal{R}(\alpha_2)$, where $\alpha_1 = 1 - \eta_2$ and $\alpha_2 = \arcsin \eta_2$.

Proof. First we will prove inequality (10). The assumption (9) leads to

$$\left|f'(z)-1\right|<\mu\left|\frac{f(z)}{z}-1\right|=\mu\left|\frac{f(z)-z}{z}\right|,\quad z\in\mathbb{D}\setminus\{0\},$$

meaning that $\frac{f(z)-z}{z}\neq 0$ for all $z\in\mathbb{D}\setminus\{0\}$, hence $f(z)\neq z$ for all $z\in\mathbb{D}\setminus\{0\}$. Also, the inequality (9) implies

$$\left|z\frac{f'(z)-1}{f(z)-z}\right| < \mu, \quad z \in \mathbb{D} \setminus \{0\},$$

and letting $z \to 0$ in the above inequality we obtain that $\mu \ge 2$ is a necessary condition for the above inequality to hold in the case z = 0.

It is easy to check that

$$\mu = \frac{|\lambda| |a_2| - |3|\lambda|^2 - 2|a_2|^2|}{|a_2|^2 - |\lambda|^2} = r - |2 + c|,$$

where r and c are defined as in the Remark 1, and that $\mu \geq 2$ whenever $|\lambda| \geq \frac{4}{5}|a_2|$.

Further, we can write

$$\left| z \frac{f'(z) - 1}{f(z) - z} - (2 + c) + (2 + c) \right| < \mu, \quad z \in \mathbb{D} \setminus \{0\},$$

and it follows that

$$\left| z \frac{f'(z) - 1}{f(z) - z} - (2 + c) \right| < \mu + |2 + c| = r, \quad z \in \mathbb{D} \setminus \{0\}.$$

The above inequality holds for z = 0, since $|c| < \mu + |2 + c| = r$ for $0 < |\lambda| < |a_2|$, and thus, from the first part of the Theorem 1'(i) for the special case n=2 we have (10).

From the assumption (9) we get

$$\left| f'(z) - 1 \right| < \mu \left| \frac{f(z)}{z} - 1 \right| < \mu \left| \frac{f(z) - z}{z^2} \right|, \quad z \in \mathbb{D} \setminus \{0\}, \tag{12}$$

and the inequality (11) follows from (10) and (12), having in mind that $\eta_2 = \mu \left(|a_2| + \lambda \right)$

The implication (9) \Rightarrow (10) is sharp for $\sqrt{\frac{2}{3}}|a_2| \le |\lambda| < |a_2|$, and the implication (9) \Rightarrow (11) is sharp for $\sqrt{\frac{2}{3}}|a_2| \le |\lambda| < |a_2|$, since for the function $f(z) = z + a_2 z^2 + \lambda z^3$ we obtain

$$\left| f'(z) - 1 \right| = |z| |2a_2 + 3\lambda z| < 2|a_2| + 3|\lambda|, \quad z \in \mathbb{D},$$
$$\left| \frac{f(z)}{z} - 1 \right| = |z| |a_2 + \lambda z|$$

and

$$\left| \frac{f(z) - z}{z^2} - a_2 \right| = |\lambda| |z| < |\lambda|, \quad z \in \mathbb{D}.$$

The assertion (9) is equivalent to

$$\mu > \left| \frac{3\lambda z + 2a_2}{\lambda z + a_2} \right|, \quad z \in \mathbb{D} \setminus \{0\},$$

and a simple computation shows that

$$\sup\left\{\left|\frac{3\lambda z + 2a_2}{\lambda z + a_2}\right| : z \in \mathbb{D} \setminus \{0\}\right\} = 2 + \frac{|\lambda|}{|a_2| + |\lambda|},$$

whenever $|\lambda| < |a_2|$, hence

$$\mu \ge 2 + \frac{|\lambda|}{|a_2| + |\lambda|},$$

which holds for $\sqrt{\frac{2}{3}} |a_2| \le |\lambda| < |a_2|$.

$$-2 + \frac{|\lambda|}{|a_2| - |\lambda|} < 2 + \frac{|\lambda|}{|a_2| + |\lambda|}, \quad \text{if} \quad |\lambda| < \sqrt{\frac{2}{3}} |a_2|,$$

the function $f(z) = z + a_2 z^2 + \lambda z^3$ shows that the implication (9) \Rightarrow (10) is not sharp for $\frac{4}{5} |a_2| < |\lambda| < \sqrt{\frac{2}{3}} |a_2|$.

Finally, from (10) and the definitions of the classes R_{α} and $R(\alpha)$ we receive $f \in R_{\alpha_1}$ and $f \in R(\alpha_2)$.

For $\eta_2 = 1$ the Corollary 1 reduces to the next example.

Example 1. Let $f \in A_2$, with $\frac{1}{5} < |a_2| \le \frac{5}{18}$, where $a_2 = \frac{f''(0)}{2}$. Also, let

$$\mu_* := \begin{cases} \frac{3}{1 + |a_2|}, & \text{if} \quad 0.2 = \frac{1}{5} < |a_2| \le \frac{1}{2 + \sqrt{6}} = 0.22474\dots, \\ \frac{1}{|\lambda|_* + |a_2|}, & \text{if} \quad \frac{1}{2 + \sqrt{6}} \le |a_2| \le \frac{5}{18} = 0.27\dots, \end{cases}$$

where

$$|\lambda_*| := \frac{-(1+|a_2|) + \sqrt{25|a_2|^2 + 14|a_2| + 1}}{6}.$$

If

$$\left| f'(z) - 1 \right| < \mu_* \left| \frac{f(z)}{z} - 1 \right|, \quad z \in \mathbb{D} \setminus \{0\}, \tag{13}$$

then

$$\left| f'(z) - 1 \right| < 1, \quad z \in \mathbb{D}. \tag{14}$$

This implication is sharp for $\frac{1}{5} < |a_2| \le \frac{1}{2 + \sqrt{6}} = 0.22474...$ Also, the function f is univalent with bounded turning, i.e., $f \in R$.

Proof. We need to prove that conditions of Corollary 1, in the case $\eta_2 = 1$, are equivalent to the assumptions of this example.

For the case when $\frac{4}{5}|a_2| \le |\lambda| \le \sqrt{\frac{2}{3}}|a_2|$, then $\eta_2 = \mu_*(|a_2| + |\lambda|) = 1$ if and only if $\mu_* = \frac{1}{|\lambda| + |a_2|}$, i.e.,

$$-2(|\lambda| + |a_2|) + \frac{\lambda(|a_2| + |\lambda|)}{|a_2| - |\lambda|} = 1,$$

or in other words

$$|\lambda| = |\lambda_*| := \frac{-(1+|a_2|) + \sqrt{25|a_2|^2 + 14|a_2| + 1}}{6}.$$

Here, we considered only the positive sign of the square root since the negative one leads to negative values of $|\lambda|$. Further, the inequalities

$$\frac{4}{5}|a_2| \le |\lambda| = |\lambda_*| \le \sqrt{\frac{2}{3}}|a_2|$$

are equivalent to

$$0.22474... = \frac{1}{2+\sqrt{6}} \le |a_2| \le \frac{5}{18} = 0.27...$$

In a similar way, for the case $\sqrt{\frac{2}{3}}|a_2| \leq |\lambda| < |a_2|$ we have $\eta_2 = 1$ if and only if $3|\lambda| + 2|a_2| = 1$, i.e., $|\lambda| = \frac{1-2|a_2|}{3}$. A simple calculus shows that

$$\sqrt{\frac{2}{3}} |a_2| \le |\lambda| < |a_2|$$

is equivalent to

$$0.2 = \frac{1}{5} < |a_2| \le \frac{1}{2 + \sqrt{6}} = 0.22474...,$$

which completes the proof.

Remark 3. Weather implications (9) \Rightarrow (11) for $\frac{4}{5}|a_2| \leq |\lambda| < \sqrt{\frac{2}{3}}|a_2|$ (Corollary 1 and (13) \Rightarrow (14) for $\frac{1}{5} < |a_2| \leq \frac{1}{2 + \sqrt{6}} = 0.22474...$). Example 1 are sharp are still **open problems**. Part (ii) from Theorem 1' brings the following result.

Corollary 2. Let $f \in A_2$ and $2 \le \mu < \frac{5}{2}$. If

$$|f'(z) - 1| < \mu \left| \frac{f(z)}{z} - 1 \right|, \quad z \in \mathbb{D} \setminus \{0\},$$

then

$$\left|\frac{f(z)-z}{a_2z^2}-1\right|<1,\quad z\in\mathbb{D},\quad \textit{where}\quad a_2=\frac{f''(0)}{2},$$

and

$$|f'(z) - 1| < 2 \mu |a_2| =: \eta_3, \quad z \in \mathbb{D}.$$

Even more, if $\eta_3 < 1$, then the function f is univalent with bounded turning, i.e., $f \in R_{\beta_1}$ and $f \in \mathcal{R}(\beta_2)$, where $\beta_1 = 1 - \eta_3$ and $\beta_2 = \arcsin \eta_3$.

Proof. The assumption leads to

$$|f'(z)-1|<\mu\left|\frac{f(z)}{z}-1\right|=\mu\left|\frac{f(z)-z}{z}\right|,\quad z\in\mathbb{D}\setminus\{0\},$$

meaning that $\frac{f(z)-z}{z} \neq 0$ for all $z \in \mathbb{D} \setminus \{0\}$, hence $f(z) \neq z$, for all $z \in \mathbb{D} \setminus \{0\}$. It also implies that

$$\left|z \frac{f'(z) - 1}{f(z) - z}\right| < \mu, \quad z \in \mathbb{D} \setminus \{0\},$$

and letting $z \to 0$ in the above inequality we obtain that $\mu \ge 2$, and thus

$$\left|z \frac{f'(z) - 1}{f(z) - z}\right| \le \mu, \quad z \in \mathbb{D}.$$

From here

$$\operatorname{Re}\left[z\,\frac{f'(z)-1}{f(z)-z}\right] \le \mu < \frac{5}{2}, \quad z \in \mathbb{D},$$

and the rest of the proof follows from Theorem 1'(ii) for n = 2.

Similarly as in Example 1, taking $\eta_3 = 1$ in the previous corollary we receive:

Example 2. Let
$$f \in A_2$$
, with $\frac{1}{5} < |a_2| \le \frac{1}{4}$, where $a_2 = \frac{f''(0)}{2}$. If

$$|f'(z) - 1| < \frac{1}{2|a_2|} \left| \frac{f(z)}{z} - 1 \right|, \quad z \in \mathbb{D} \setminus \{0\},$$
 (15)

then

$$|f'(z)-1|<1, z\in \mathbb{D},$$

and further, the function f is univalent with bounded turning, i.e., $f \in R$.

Remark 4. (i) It can be verified that $\frac{1}{2|a_2|} < \mu_*$ for $\frac{1}{5} < |a_2| \le \frac{5}{18}$, meaning that the condition (13) is weaker than condition (15), i.e., the result from Example 1 is better then the result from Example 2.

(ii) It is an **open problem** weather the result from Corollary 2 is sharp, i.e., weather η_3 is the smallest constant so the implication holds.

References

- Bulboacă T. Differential subordinations and superordinations. New results. Cluj-Napoca: House Sci. Book Publ., 2005.
- 2. Duren P. L. Univalent functions. Springer-Verlag, 1983.
- 3. *Miller S. S., Mocanu P. T.* Differential subordinations. Theory and applications. New York; Basel: Marcel Dekker, 2000
- 4. *Miller S. S., Mocanu P. T.* Differential subordinations and univalent functions // Michigan Math. J. 1981. 28. P. 157–171.
- 5. *Miller S. S., Mocanu P. T.* On some classes of first-order differential subordinations // Michigan Math. J. 1985. 32. P. 185 195.
- 6. *Ibrahim R. W., Darus M.* Extremal bounds for functions of bounded turning // Int. Math. Forum. 2011. **6**, № 33. P. 1623 1630.
- 7. Krzyz J. A counter example concerning univalent functions // Folia Soc. Sci. Lublinensis. 1962. 2. P. 57 58.
- 8. *Tuneski N., Obradović M.* Some properties of certain expression of analyti functions // Comput. Math. Appl. 2011. **62**. P. 3438 3445.

Received 17.06.14