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SUFFICIENT CONDITIONS FOR BOUNDED TURNING
OF ANALYTIC FUNCTIONS

JTOCTATHI YMOBH JJISI OBMEKEHOT'O IIOBOPOTY AHAJITUYHUX
®YHKIIN

Let function f be analytic in the open unit disk and be normalized such that f(0) = f/(0) — 1 = 0. In this paper
methods from the theory of first order differential subordinations are used for obtaining sufficient conditions for f to be
with bounded turning, i.e., the read part of its first derivative to map the unit disk onto the right half plane. In addition,
several open problems are posed.

Hexaii f — ¢yHKIIisl, aHANITHYHA y BiIKPHTOMY OJMHMYHOMY Kpy3i, HopMoBaHa Tak, mo f(0) = f'(0) — 1 = 0. Mertomu
Teopii AudepeHiabHIX MiINOPAIKYBaHb MEPLIOTO MOPSAKY 3aCTOCOBAaHO, MO0 OTpUMAard JOCTAaTHI YMOBH TOTO, IO
¢yHkuis f mMae oOMexeHHH MOBOPOT, TOOTO AilicHa YacTWHA 1 mepuIol MoXifHOI BinoOpakac OXUHUYHHUN KPYT Ha MpaBy
niBmronmHy. KpiM Toro, copMyIp0BaHO KiJbKa BiIKPUTHX HPOOIEM.

1. Introduction and preliminaries. Let (D) be the class of functions that are analytic in unit
disk D = {z € C: |z] < 1} and let A denote the class of functions f € H(D) of the form
f(z)=2+4+az® +azz®>+..., z€D.

The class of starlike functions, which is a subclass of the class of univalent functions, is defined
by
2f'(2)
f(z)
The functions f € S* map the unit disk onto a starlike region, i.c., if w € f(D), then tw € f(D)

for all ¢ € [0, 1]. More details can be found in [2].
Another subclasses of univalent functions are

S*:{fGA:Re >O,ZE]D)}.

Ra:{fG.A: Ref’(z)>oz7,z€D}, 0<ax<l,
and

R(a):{feA: ’argf’(z)‘<a77r, zE]D)}, 0<a<l,

which are subclasses of the class of functions with bounded turning, R = Ry = R(1). The name of
the class R follows from the fact that Re f’(z) > 0 is equivalent with | arg f'(z)| < g and arg f’(2)
is the angle of rotation of the image of a line segment starting from z under the mapping f. It is well
known that S* does not contain R and R does not contain S* [7], which brings big interest for the
class R [6-8].

In this paper we will study the expression
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for receiving some results that will lead to necessary conditions for a function f € A,, n € N,
n > 2, to be with bounded turning. Here, the class A,, n € N, n > 2, is defined by

An:{fEA:f(z):z+anz”+..., z €D, an;éO}.

The study will involve a method from the theory of differential subordinations, while valuable refe-
rences on this topic are [1] and [3]. Using a similar techniques as in this paper, in [8] the expression

f'(z) -1

f(2)/z
is studied and results concerning the univalence and the starlikeness of f from .4 are given.

First we introduce the notion of subordination. If f, g € A, then we say that f is subordinate
to g, and write f(z) < g(z), if there exists a function w, analytic in the unit disc D, such that
w(0) = 0, |w(z)| <1 and f(z) = g(w(z)) for all z € D. Specially, if g is univalent in ), then
f(2) < g(#) if and only if f(0) = g(0) and f(D) C g(D).

For obtaining the main result we will use the method of differential subordinations [3]. The
general theory of differential subordinations, as well as the theory of first-order differential subordi-
nations, was introduced by Miller and Mocanu in [4] and [5]. Namely, if ¢ : C?> — C is analytic in
a domain D, if h is univalent in D, and if p is analytic in D with (p(z), Zp’(z)) € D when z € D,
then p is said to satisfy a first-order differential subordination if

o(p(2),2p'(2)) < h(2). 2)

The univalent function ¢ is said to be a dominant of the differential subordination (2) if p(z) < ¢(z)
for all the functions p satisfying (2). If ¢ is a dominant of (2) and ¢(z) < ¢(z) for all dominants
of (2), then we say that ¢ is the best dominant of the differential subordination (2).

From the theory of first-order differential subordinations we will use the following lemma.

Lemma 1 [5]. Let q be univalent in the unit disk D, and let 0(w) and ¢(w) be analytic in a
domain D containing q(D), with ¢(w) # 0 when w € q(D). Set Q(z) = 2¢'(2)¢(q(2)), h(z) =
=0(q(2)) + Q(2), and suppose that:

(1) Q is starlike in the unit disk D,

zh (z) 6”(q(z

1 e = Re )) z
(i) R R o(a(2)) + >0, z €D.
(0)

Q(2)
If p is analytic in D, with p(0) = q

0(p(2)) + 20" (2)¢(p(2)) < 0(q(2)) + 2¢'(2)9(q(2)) = h(2), 3)

then p(z) < q(z), and q is the best dominant of (3).
Using Lemma 1 we will prove the following result that will be used in next section.
Lemma 2. Let f € A,, n € N, n > 2, such that f(z) # z for all z € D\ {0}. Also, let q be

2Q'(2)
Q(2)
(D) €

p(D) C D and

. . . . £™(0)
univalent in the unit disk D, with q(0) = a,, = R and
!l /
Re |14+ 202G o cp (4)

7(z)  q(z)
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i
FH-1 )
“F -2 )’ ©)
then
)]

and q is the best dominant of (5).

Proof. If we choose §(w) = 0 and ¢(w) = %, then 0, ¢ € H(D), where D = C* := C\ {0}.
The condition D D ¢(D) from Lemma 1 is equivalent to ¢(z) # 0 for all z € D, and we will prove
that this last relation holds under our assumptions. Also, let note that ¢(w) = 1/w # 0 for all
w € q(D), and let define

Denoting

., 2d"(2) 24 (2)
@ =10y T k)

first we will show that the assumption (4), which is equivalent to

Re®(z) >0, zeD,

implies @ € H(D), i.e., ¢(z) # 0 for all z € D. In the beginning, from ¢(0) = a, # 0 we receive
that @ is regular in zy = 0. Further, let suppose that there exists zg € D \ {0}, such that g(zy) = 0.
It means that ¢ has the form

q(z) = (z — 20)"g(2), zeD, meN,

where g € H(D), with g(z9) # 0. It follows that there exists » > 0, such that g(z) # 0 for
all z € U(zo;7) := {z eC:|z—2| < r} C D. Now, a simple computation shows that for all

z € U(zo;7) \ {20},
2q'(2) mz | 29'(2)

az)  z-= ! 4@

)

hence

maz  2g(2) | 2%"(2) (29’(2))2

z) = (=22 ¢(2) 9(2) o)
a(2) = TEEiE] _
z—z  g(2)
—mzz z—2)? 2g'(2) | 29" (2) _(29'(2) ?
1 0+ ( 0) 9(2) + g(2) ( 9(z) ) ]
T 2— 2 70

mz + (z — 2o)
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Finally, having in mind that g(zg) # 0, from the above relation we receive that zp € D is a
pole of the function ®, which contradicts the assumption (4). Thus, we obtain that ¢(z) # 0 for all
z € D, hence the function @ is analytic on D.

Further, ¢ is an univalent function, implying ¢’(z) # 0 for all z € D,

700) _ ¢(0)
q(0) an

Q'(0) = 70

and

/ 1 /
Q) _p, [, ) )
Q(2) ¢z qz)
meaning that @ is a starlike function. In addition, for the function h(z) = 6(q(2)) + Q(z) = Q(2)
we have

Re

>0, zeD,

W) Q)
" 0m T o0
/(2)

77:2, then p € H(D), p(0) = ay, and p(z) # 0 for all z € D), i.e.,
z
p(D) C D, and all the conditions of Lemma 1 are satisfied. Concerning that the subordinations (3)

>0, zeD.
After choosing p(z) =

and (5) are equivalent, we receive the conclusion of Lemma 2.

2. Main results and consequences. Using Lemma 2 we will study the modulus of (1) and will
receive conclusions that will later lead to criteria for a function f to be in the class R.

Theorem 1. Let f € A,, n € N, n > 2, such that f(z) # z for all z € D\ {0}, and let

(n)
o =1 @)y
n!
fl(z)—1 Az
—_ — =:h 6
Zf(Z)—Z n'<an+)\z l(z)v (6)
where 0 < |\| < |ay|, then
f(zz)n_z < an + Az 7
and the function a, + Az is the best dominant of (6). Even more,
‘f(z)n_z—an <)\ zeD, (8)
z

and this conclusion is sharp, i.e., in the inequality (8) the parameter |\| can not be replaced by a
smaller number so that the implication holds.
Proof. The function ¢(z) = a,, + Az satisfies all the conditions of Lemma 2, since
/! / 1
Re|14203) _20G)) _po 1 Lep
¢(z)  q(z) 1+ M anz
whenever of 0 < |\| < |a,|. Further, the subordinations (5) and (6) are equivalent, and therefore (7)
follows directly from Lemma 2.
f(z) ==
ZTL

For the sharpness of our result, let assume that subordination (6) and inequality

< |A1], z € D, holds, i.e., &n—z < an + A\1z. But, the function a,, + Az is the best dominant
z
of (6), meaning that a,, + \z < a, + A1z, i.e., |A| < |Aq].

—an| <
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Remark 1. 1t is easy to verify the following:
(i) If 0 < |A] < |ap|, then hy (D) (where h; was defined in (6)) is an open disk with the center

and radius
z

(if) If |A| = |an|, then hi(z) = nd

z+eiarg(an/A)’ a
1
hi(D) = {z €C: Rez< 2}.

Therefore, Theorem 1 can be written in the following equivalent form.
Theorem 1’. Let f € A,, n € N, n > 2, such that f(z) # z for all z € D\ {0}, and let

_ /(0)

n!
(i) If 0 < |A < |an| and

n

"(z) =1 A2 M lay,
O e TP 2P
then
‘f("’)n_z—an <A, zeD.
z
(i) If /
Re[zj;((j))__ﬂ<n+; z €D,
then
F& =z 411 e
anz™

These implications are sharp, i.e., in both cases the radius of the open disk from the conclusion
is the smallest possible so that the corresponding implication holds.
Remark 2. The sharpness of Theorems 1 and 1’ can be verified by using function f(z) =
=2+ a,2" + A", with a,, # 0, for which
f(z)—1 Xz

zf(z)—z P v

Thus, in the case 0 < |A\| < |a,| we have

fz) =1 - Al lan] :
SN, —_ f _ iarg(an/A)
re =z TN T a0 T ’
while in the case |a,| = |\| we get
"(z) —1 1 .
fe [ J;%())—] =ntg for 2=t
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Now we will give several corollaries and examples of Theorem 1’ in the case when n = 2. We
start with part (i) of Theorem 1’.

4 (0
Corollary 1. Let f € Ay, and X\ € C with 5|a2] < |\ < |ag|, where ay = f2( ) Also, let
denote
Al 4 V@
24+ — - <A <42
.: +|a2|_|)\‘7 lf 5|a2‘—’ |— 3|a’2‘7
S P RN RPN
laz| + [A” 3= 2
If
-1 <uffE -] sepyio) ©)
then
2)—z
’f(’zz—ag <m =\, ze€D, (10)
and
|f'(2) = 1| <m2, z€D, (11)
where
as| + |A]) (2]las| — 3|\ 4 2
esl 2 D) 0al 2300 3 210, <y <2
. N 5 3
2
2jas| + 33, [ 2leal < < o)

2
Moreover, the implication (9) = (10) is sharp for \/g|a2\ < |A| < |ag|, and the implication

2
(9) = (11) is sharp for \/;|a2\ < |A| < |azl, i.e., for these ranges of |\|, the values 11 and ny are
the smallest ones so that the corresponding implications hold.
Also, if na < 1, then f is univalent with bounded turning, i.e., f € Ry, and f € R(a2), where
a1 =1 — 19 and ag = arcsinne.
Proof. First we will prove inequality (10). The assumption (9) leads to

2

() 1] <u . zeD\ {0},

f(z)z—z # 0 for all z € D\ {0}, hence f(z) # z for all z € D\ {0}. Also, the

inequality (9) implies

meaning that

f'(z) -1

”’ OEE

and letting z — 0 in the above inequality we obtain that 14 > 2 is a necessary condition for the above
inequality to hold in the case z = 0.

It is easy to check that

<p, z€D\{0},

_ Wlaz| = [BA? — 2Ja?]
jaz|? = [A?

r—1|2+c|,
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. 4
where 7 and c are defined as in the Remark 1, and that ¢ > 2 whenever |\| > g]ag\.

Further, we can write

ZJ;((ZZ))__;—(HC)HHC) <u zeD\ {0},
and it follows that
zj;/(f))__i—@—i—c) <utl24d=r zeD\{0}.

The above inequality holds for z = 0, since |c¢| < 4+ |24 ¢| = r for 0 < |A| < |az|, and thus,
from the first part of the Theorem 1’(i) for the special case n = 2 we have (10).
From the assumption (9) we get

f(z) ==

22 "

|f’(z)—1\<u'f(;)—1’<u‘ ze D)\ {0}, (12)

and the inequality (11) follows from (10) and (12), having in mind that 7o = u ( lag| + )\).
2
The implication (9) = (10) is sharp for \/; lag| < |\| < |az], and the implication (9) = (11) is

2
sharp for \/; las| < |A| < |az|, since for the function f(z) = z + az2? + Az we obtain

|f'(2) = 1] = |2][2a2 + 3X\z| < 2ag| + 3|\, z €D,

z

‘f() _ 1‘ — |2||as + A2
z

and
‘f(“z);z —as| = \||2l < A, zeD.
z
The assertion (9) is equivalent to
3z + 2as
> | D\ {0

Serinl sepvo

and a simple computation shows that

A

{‘3/\2 + 2as
sup § | ————= —
|az| + |A|

Az 4+ as

: zeIDJ\{O}}:2+

whenever || < |az|, hence

T e[+ AP

2
which holds for \/g\agl <|A| < |azl.

Since
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N N f
o L iE N < /2 agl,
ol = 2 T T TR <ygle

4
the function f(z) = z + a22? + A2 shows that the implication (9) = (10) is not sharp for = lag| <

2+

2
<A < \@\@y.

Finally, from (10) and the definitions of the classes R, and R(«) we receive f € R,, and
fe R(Oég).
For no = 1 the Corollary 1 reduces to the next example.

1 5 f"(0)
Example 1. Let f € Ao, with £ < lag| < 15’ where ay = — Also, let
3 1 1
_— if 02=—-<|ag| < =0.22474 ...,
_ )1+ ]ag| 4 5 <l 2+6
a L o <lag < > —0.27
, <lag| < —=0.27...,
Al + |az] 246~ T8
where
Ml —(1+ |az|) + v/25]az|? + 14as| + 1
< = 5 .
If
£ -1 <ne [T 1], sepr o), (13
then
|f'(z) =1 <1, z€D. (14)
1 1
This implication is sharp for — < |as| < = 0.22474 . ... Also, the function f is univalent
p pfor ¢ < laz| < 27 7o fi f

with bounded turning, i.e., f € R.
Proof. We need to prove that conditions of Corollary 1, in the case 1y = 1, are equivalent to the
assumptions of this example.

For the case when %\a2| < A\ < \/§|a2|, then 12 = fp.(|as| + [A]) = 1 if and only if
1 .
SERDYERT I
A(laz| + |A])

—2(|A] + |az]) +
(I +leal) + Fo =1

=1,

or in other words

—(1+ |az|) + v/25[az]? + 14[as| + 1
c )

Here, we considered only the positive sign of the square root since the negative one leads to negative
values of |A|. Further, the inequalities

4 2
ool <10 = 1l < 42 o
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1 5
0.22474 ... = <lag| £ — =0.27....
2 e =l =1
2
In a similar way, for the case \/;\agl < |A| < |az| we have 2 = 1 if and only if 3|A|+2|az| = 1,
1-2
e, [\ = 3|a2. A simple calculus shows that

2
NP

=0.22474. . .,

is equivalent to
1 1
02=-<|ag £ ——=
5 <loel =5
which completes the proof.

4 2
Remark 3. Weather implications (9) = (11) for = lag] < Al < \/; |as| (Corollary 1 and

1 1
13) = (14) for = < |ag| < =0.22474 ... ). Example 1 are sharp are still open problems.
(13) = (14) for ¢ laz| < Y ) p rp pen p

Part (ii) from Theorem 1’ brings the following result.
5
Corollary 2. Let f € Ay and 2 < < 5 If

fz)

|f’(z)—1‘<,u‘ —1', ze D)\ {0},

then

1
—1‘<17 z €D, where a2:f2(0),

agz?

‘ f) —=

and
|f'(z) = 1] <2plag| =:m3, ze€D.

Even more, if 13 < 1, then the function [ is univalent with bounded turning, i.e., f € Rg, and
f € R(B2), where B1 =1 — n3 and By = arcsinns.
Proof. The assumption leads to

7)1 <u [fE | = 22 epy o),

meaning that O # 0 for all z € D\ {0}, hence f(z) # z, forall z € D\ {0}. It also implies
z
that P 1
Z p—
z———<pu, zeD\{0}
S Mo
and letting z — 0 in the above inequality we obtain that > 2, and thus
f'(z) -1
z <u, zeDb.
OEE e
From here
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FUOES

f(z) =z

5
S,U<§7 ZED,

Re

and the rest of the proof follows from Theorem 1/(ii) for n = 2.

then

Similarly as in Example 1, taking 3 = 1 in the previous corollary we receive:

1 1 1
Example 2. Let f € As, with £ < las| < " where ay = f 2(0) If
1 | f(z)
() -1 -1 D 15
) =t < gy |5~ 2P, (1)

‘f’(z)71’<1, z €D,

and further, the function f is univalent with bounded turning, i.e., f € R.

1 1
Remark 4. (i) It can be verified that —— < p, for — < |ag| <

2]as] 5 ITL meaning that the

condition (13) is weaker than condition (15), i.e., the result from Example 1 is better then the result
from Example 2.

(ii) It is an open problem weather the result from Corollary 2 is sharp, i.e., weather 73 is the

smallest constant so the implication holds.
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