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ON THE GENERALIZATION OF SOME HERMITE -HADAMARD
INEQUALITIES FOR FUNCTIONS WITH CONVEX ABSOLUTE VALUES
OF THE SECOND DERIVATIVES VIA FRACTIONAL INTEGRALS *

PO Y3ATAJIBHEHHS JESAKUX HEPIBHOCTEM EPMITA - AJTAMAPA
JIJISI ®YHKIIHN 3 ONMNYKJIUMHA ABCOJIOTHUMU 3HAYEHHAMU JIPYTHX
HOXIAHUX 3A JOIIOMOI'OIO IHTEI'PAJIIB TIPOBOBOT'O IMOPAJAKY

We provide a unified approach to getting Hermite - Hadamard inequalities for functions with convex absolute values of
the second derivatives via the Riemann - Liouville integrals. Some particular inequalities generalizing the classical results,
such as the trapezoid inequality, Simpson’s inequality, and midpoint inequality are also presented.

3amporoHoBaHo yHi(piKOBaHMI MiAXiA 1O OTpHMaHHS HepiBHOCTel Epmita— Anamapa s QyHKIiH 3 ommyKImMe abCcoIoT-
HUMH 3HAQYCHHSIMH JPYTHX MOXiJHUX 3a J0moMoroo interpaiiB Pimana—JliyBinis. HaBeneno nesiki yacTHHHI HEPiBHOCTI,
IO Y3araJIbHIOIOTH KJIACHYHI Pe3yIbTaTH, TakKi sSK HepiBHICTH Tparenii, HepiBHicTs CIMICOHA Ta HEPIBHICTb CepemHbOl
TOUKH.

1. Introduction. Let f: I C R — R be a convex function on the interval I, then for any a, b € I
with a # b we have the following double inequality:

f<a+b><b1aa/bf(t>dt<w' (1)

2 2

This remarkable result is well known in the literature as the Hermite — Hadamard inequality. Note
that some of the the classical inequalities for means can be derived from (1) for appropriate parti-
cular selections of the mapping f. Both inequalities hold in the reversed direction if f is concave.
Some refinements of the Hermite - Hadamard inequality on convex functions have been extensively
investigated by a number of authors (see [2-7, 12]).

In [8], M. Z. Sarikaya et al. established some inequalities for twice differentiable convex map-
pings which are connected with Hadamard’s inequality, and they used the following lemma to prove
their results.

Lemma 1.1. Let f: I C R — R be a twice differentiable mapping on I°, a, b € I° with a < b.
If f € Ly]a,b], then

b

1
a —a 2
bi /f(x)da:—f( +b> _ 0 5 ) /s(t)[f”(ta+ (1 —t)b) + f"(tb+ (1 — t)a)]dt,
0

a 2

a

where
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9

2
(1-1t)2 te <;1} )

In [1], Alomari et al. obtained some inequalities for functions with quasiconvex absolute values of the
second derivatives connecting with the Hermite — Hadamard inequality on the basis of the following

1
12, te [0, -

s(t) =

lemma.
Lemma 1.2. Let f: I C R — R be a twice differentiable mapping on I°, a, b € I° with a < b.
If f € Li[a, ], then

b 1
b 1 b—a)?
fla) £ /() /f(a;)dx _(-9 /t(l — ) f"(ta + (1 — t)b)dt.
2 b—a 2
a 0

The following general integral identity for functions with convex absolute values of the second
derivatives is proposed by M. Z. Sarikaya in [9].

Lemma 1.3. Let I C R be an open interval, a, b € I with a < b. If f: I — R is a twice
differentiable mapping such that f" is integrable and 0 < \ < 1, then the following equality holds:

(A—l)f(a;b> _)‘f(a);f(b)+bia/f(x)dx:

1
:(h;@a/Q@fﬁa+ﬂ—ﬂwﬁ,
0
where
Kt — N), te[&iy

Q(t) :=
1-t)(1-A—t), te (;1] .

It is remarkable that M. Z. Sarikaya et al. [10] proved the following interesting inequalities of
Hermite — Hadamard type involving Riemann - Liouville fractional integrals.

Theorem 1.1. Let f: [a,b] — R be a positive function with a < b and f € Li[a,b]. If f is a
convex function on |a, b, then the following inequalities for fractional integrals hold:

fla) + f(b)

. @

f (a ; b) < 2r ((bafa;i [T F(b) + T3 fa)] <

with o > 0.
We remark that the symbol J& and J;* f denote the left-hand and right-hand Riemann-—
Liouville fractional integrals of the order o > 0 with a > 0 which are defined by
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T

T f@) = s [@= 0w 2>
and ’
b
JE f(z) = P(la) / (t— 2 f@B)dt, @ <b,

xT

o
respectively. Here I'(«v) is the Gamma function defined by I'(«) = / ettt

J. R. Wang et al. [11] established the following fundamental integr(z)ll identity including the second
order derivatives of a given function via Riemann - Liouville integrals.

Lemma 1.4. Let f: [a,b] — R be a twice differentiable mapping on (a,b) with a < b. If
f € Li[a,b], then the following equality for fractional integrals holds:

MNa+1). ., a f(a)+f(b)_
TR AC R A e
1
_a 2 Y-S a+l _
_ 2 ) /(1 t) ;:1’5 ’ Lirtta + (1 — b, 3)

0
Another integral identity including the second order derivatives of a given function via Riemann —
Liouville integrals is obtained by Y. R. Zhang and J. R. Wang in [13] as follows.
Lemma 1.5. Let f:[a,b] — R be a twice differentiable mapping on (a,b) with a < b. If
f € Lila,b], then

1
T 1 b b—a)?
W{Jg+f(b) +Jy-fa)] = f (a; ) ¢ za) /m(t)f”(ta+ (1—t)b)dt, (4)
0
where
1— (1 o t)a-‘rl - tOH-l 1
. - at1 ’ te[o,Q},
m( ) = 1— (1 —t)a—H _ta-i-l (1 :|
1—t— , tel=,1].
a+1 2

In this paper, we generalize the results (3) and (4) for functions with convex absolute values of
the second derivatives via Riemann - Liouville integrals.

2. Main results. In order to prove our main theorems, we need the following lemma.

Lemma 2.1. Let f: [a,b] — R be a twice differentiable mapping on (a,b) with a < b such that
1" is integrable and 0 < \ < 1, then the following equality for fractional integrals holds:

S 04 5 (@] - (- g (450) AT
1
—a)?
= & 9 ) /k(t)f//<ta+ (1 —¢)b)dt, (5)
0

where
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1—(1— a+l _ ja+1 1
I P Gk i i te[ay

B(4) e a+1 2
a+1 ’ 277

Proof. Multiplying (3) by A, (4) by 1 — X on both sides, respectively, and adding the resulting
inequalities, we get (5). Then we get the desired result.

By using this lemma, we can obtain the following general integral inequalities.

Theorem 2.1. Let f: [a,b] — R be a twice differentiable mapping on (a,b) with a < b such
that f" is integrable and 0 < X\ < 1. If | f"| is convex on |a,b], then the following inequality holds:

T(a+1) f(a)+f(b)‘<
2(b—a)~ 2 -

<(b—a)2 a +1—)\
-2 2+ 1)(a+2)

550 + 1@ = (= 0F (257 = A

| ar@i+ 1.
Proof. From Lemma 2.1 and the definition of k(¢), we have

T(+1) a+b fa) + f(b)
2(b — a)® 2 >_A 2

<

2% FB) + T F@)] - (L— NS <

1
2
1_(1_t)a+1_ta+1
t(l—=M\) —
/’( ) a+1

If" (ta + (1 — t)b)|dt+

1

+/M1—ou—xy-

1 _ (1 _ t)oz+1 _ ta+1
a+1

|f"(ta+ (1= t)b)|dt p <

N

1
2 1

/t(l = N)|f"(ta+ (1 — t)b)|dt + /(1 — ) (1 = N)|f"(ta + (1 — t)b)|dt+
0

IA
=
|

N

|f"(ta + (1 —t)b)|dt p . (6)

L 1 1_t01+1 ta+1
o
a+1
0

Because (1 —#)*T! + ¢+t <1 for any t € [0, 1] and |f”| is convex on [a, b], we get
1 1— 1 o t a+1 ta+1
/ ‘ a+1
0

1
(1 — o+l _ o+l
< [TUEDT T )+ ol ) e =
0

" (ta+ (1 = £)b)|dt <
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_ /" (a)] + [ F7(0)]
(a+1)(a+2) 2 ’

On the other hand,

1

/t(l — M| f"(ta+ (1 —t)b)|dt + /(1 — )1 = N)|f"(ta+ (1 —t)b)|dt =

0

N|=

1
2
_ A =N @) +170)])
3 .
Now by (6)—(8), we can obtain the desired result which completes the proof.

(7

®)

Theorem 2.2. Let f: [a,b] — R be a twice differentiable mapping on (a,b) with a < b such
that |f"| is integrable and 0 < X\ < 1. If |f"|? is convex on [a,b] with q¢ > 1, then the following

inequality holds:
'w[cfﬁf@) T fla)] = (1= N)f (a;b> - /\f(a)—;f(b)‘ _

D=

oo (2P () (i)

UG |f”<b>rq>31

Y

1 1
where — + — = 1.
D q

Proof. From Lemma 2.1 and the definition of k(¢), by using the Holder inequality, we have

‘ I'(a+1)
2(b—a)™

2 F) + T F@)] = (L= NS (ﬁ) . Aﬂ);f(b)‘ g

1
—a 2
: 5 ) /\k(t)l\f”(twr(1—t)b)\dt<

0

1
1 P 1 q
Sk ( / k(t)pdt) ( / f”(ta+(1t)b)th) -
0

1

e 1 P
= (b . ) /|kl(t)|pdt+/|k2(t)|pdt (/f"(ta—k(lt)b)th) 7
0 1

0

=

S

where

©)
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1 _ (1 _t)a+1 _ta+1
a+1

k() = (1 — ) —

9

1— (1 —t)ott —gatt
a+1 ‘

ka(t) = (1 =1)(1 = A) =

1701

Because (1 — )@t 4 t@F1 <1 for any ¢ € [0, 1], using one skill of shrinking about inequality, we

get
j a(t) Pt < 0/ e e
e PR (G
j(“(wlilﬂ)pdi
:pil @*(aﬂ)l(l—ﬂ)m‘pil <<a+1>1<1—x>>p+1’
and
/11k2<t>rpdt§/l((1—t><1—x>+ 1‘(1‘Cff+11‘ta+l>pdts
< 11 ((1—t><1—x>+ail)pdt:<1—A>pj((1—t>+ )
Z(“t”(wl;(ln)pdt
e @*(aﬂ)l(l—»)pﬂ‘pil <<a+1>1<1—x>>p+l'
Thus,

0
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Moreover, because |f”|? is convex on [a, b], we obtain

1

0

Thus, submitting (9) and (10) to (11), we can derive the desired result.
Corollary 2.1. With the assumptions as in Theorem 2.2, if | f"(x)| < M on [a,b], we have the

following inequality:

‘I‘(oe—i—l)

Hoh a—i—b>_)\f(a)‘i‘f(b)‘é

72,100+ 1) (-0 (2 z

) 1
MO (2 ) [ R G =

Another Hermite —- Hadamard inequalities for powers in terms of the second derivatives are given

as follows.
Theorem 2.3. Let f: [a,b] — R be a twice differentiable mapping on (a,b) with a < b such
that |f"| is integrable and 0 < X\ < 1. If |f"|? is convex on [a,b] with q > 1, then the following

inequality holds:

<

a+b fla) + f(b)
2 )_A 2

S0+ 5 pa] = =

L ; 174
D () G i) (i) |

xcﬂmw+www>?

2

Proof. From Lemma 2.1 and using the Holder inequality, we have

NCHEIT at b\ @)+ 70)
s 0+ @)= =g (45 ) a0 <
1 1
w-a2 (. \" (] ¢
< 5 (/ 1dt) (/k:(t)f”(ta+(1t)b)th) <
0 0
1
(b a)? / / ‘
< U5 i@ [ eraya e [0 okopa: ) (12)
0 0

Calculating by parts, we get
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1
1 2 1
/t\k(t)|th— /t]kl(t)\th+/t\k2(t)|th
0 0 %

with
. :
1— (1—t)>Ft —gott\e
tlk(H)]9dt < tlt(l— M\ dt <
Jimear< o (u-x+ 22000 <
0 0
1 1
2 1 q 2 1 q
< tlt(l— M\ R dt = (1 —N\)14 t|{t+ ———— dt
</ <( )+a+1> - f (*(aﬂ)(l—»)
0 0
and

1 1
1_(1_t)oc+1_ta+1 q
tlko(O)|4dt < [t (1 —t)(1—A dt <
[tweirar < [e(a-na-x+ =000 <
1 1
2 2

<1/1t<(1t)(1)\)+ai1>th(1)\)q/t<(1t)+(a+l)1(l)\)>th,

where
2 1 a 1 1 1 A
O/t<t+<a+1><1—x>> "= g o wrma ) -
1 1 1 a+2 1 1 q+2
RCEDIED) (2+<a+1><1—A>> +<q+1><q+2><<a+1><1—x>>
and
1
1 a 1 1 a1
/t<(1‘”+<a+1><1—x>> =~ (e )
1 1 1 at+l 1 1 q+2
AETPESY) (2+<a+1><1—A>) <q+1><q+2><<a+1><1—x>) -
+1<1+1>q“
G+0g+2) \2 " rni-n)
Thus,
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<3+«»ui1—»>ﬁﬁ‘Qa+Ja—»>ﬁ1' -

1
1
tk(t)|9dt < (1 — N)?
[tk < 1= 2
0

Similarly,

<§+«ww&1—»>ﬁ{‘Qa+ﬁu—»>ﬁ1'““

Thus, using (12)—(14), we get the desired result.
Corollary 2.2. With the assumptions as in Theorem 2.3, if |f"(z)| < M on |a,b], we have the
following inequality:

1
q q 1
0/(1—t>\k<t>r &< (1= A

'I‘(a—l—l) <

2(b—a)®

7 q il
SM“‘ﬁm_M(qi);K§+m+ﬁh—»>ﬂ‘<m+ﬁc—n)ﬂr'

Corollary 2.3. With the assumptions as in Theorems 2.2 and 2.3, we have

FURNCELL

250 + - f(@)] - (=07 ( !

Fa+1)
2(b—a)~

280 + 5 f@)] = (1= 1 (52 ) = 2O < g, vy

where

le(b—a)Z(l—A) <p—?—1)110 1

(§+«wa&1—»>MJ‘<@H4i1—»)ﬁ1px

(Lt |f"<b>|q>3

1

<§+«H4i1—»)ﬁﬁ‘Qa+ﬁu—»>ﬁ1qx

(Lt |f"<b>rq>3 |

2

Theorem 2.4. Let f: [a,b] — R be a twice differentiable mapping on (a,b) with a < b such
that | f"| is integrable and 0 < X\ < 1. If | f"|7 is concave on [a,b] with q > 1, then the following
inequality holds:

Fa+1)
2(b—a)~

<

SUR Af(a)—;f(b)\

2 F) + T2 F(@)] — (1= )] (
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1 1
_b—aPA=N (2 \b 1 1 Pl 1 ptl .
- 2 p+1 2 (a+1)(1-=2N) (a+1)(1-2X)
pfa+b
()
1
where — + — = 1.
p g
Proof. Similarly as in Theorem 2.2, but now |f”|? is concave on [a, b], we have
s {a+b
(4%)

3. Applications to quadrature formulas. In this section, we point out some particular inequa-
lities generalizing the classical results, such as the trapezoid inequality, Simpson’s inequality, and
midpoint inequality.

)

1

q

Y

1
/ " (ba+ (1 — t)b)|9dt <
0

so the desired result immediately follows.

Proposition 3.1 (trapezoid inequality). Under the assumptions in Theorem 2.1 with A = 1, we
get

Fa+1)
2(b—a)~

M0 10) o a)?
2 “Ala+1)(a+2)

[Jar £ () + = f(a)] = (1" (@) + £ (@)]).

Proposition 3.2 (midpoint inequality). Under the assumptions in Theorem 2.1 with A = 0, we
have

M+
2

20 —ayalar O+ I f (@) = (“ b)‘ <

(b—a)? o'
=7 [2(a (e +2)

5| (@i 1o,

1
Proposition 3.3 (Simpson’s inequality). Under the assumptions in Theorem 2.1 with A = 3’ we

obtain

@ ar (50 10 - v+ g s | <

(b—a)? a
=T [2(a+ Dia+2)

+ 15| (@1 + 1770

Proposition 3.4 (midpoint inequality). Under the assumptions in Theorem 2.2 with A = 0, we
get

‘r(aﬂ)

20— oy arfO) + T fl@)] - £ <a+ b)‘ <

2
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S

Y ) ()]

(Lr |f”<b>|q>3 |

2

1
Proposition 3.5 (Simpson’s inequality). Under the assumptions in Theorem 2.3 with \ = 3 We

have
1 a+b Ta+1). .
@ (50) s - 3 D+ g s <
1 1
(b—a)2< 2 >q (1 3 >q+1 < 3 )q“ a
< cte——] -|s7—= x
3 q+1 2 2a+1) 2(a+1)
1
o (@I £ 17 0)]Y @
5 .
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