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A-CLUSTER POINTS VIA IDEALS
A-KJACTEPHI TOYKH B TEPMIHAX I/IEAJIIB

Following the line of the recent work by Savas et al., we apply the notion of ideals to A-statistical cluster points. We get
necessary conditions for the two matrices to be equivalent in a sense of AZ -statistical convergence. In addition, we use
Kolk’s idea to define and study BZ -statistical convergence.

Mu npomoBKYEMO AOCHIIKEHHS, po3nodare B HemlonaBHid poOoTi Capamra Ta iH., i 3aCTOCOBYEMO IMOHATTS igealiB 10
A-CTaTHCTUYHMX KJIAaCTepHUX TOo4OoK. OTpUMaHO HEOOXiJHI YMOBH AJIs TOrO, 10O 1Bi Marpuii Oyl €KBIiBaJICHTHUMHU B
cenci A -cTaTucTHYHOT 361KHOCTI. Kpim Toro, Mu 3actocoByemo igero Konka 1iist Toro, mo6 BU3HAYHUTH 1 BABYUTH TOHSTTS
BZ -cratucTiuHOI 361KHOCT.

1. Introduction and background. In [10], Fridy and Orhan introduced the concepts of statistical
limit superior and inferior. In [2], Connor and Kline extended the concept of a statistical limit (cluster)
point of a number sequence to a A-statistical limit (cluster) point where A is a nonnegative regular
summability matrix. In [4], Demirci extended the concepts of statistical limit superior and inferior
to A-statistical limit superior and inferior and given some A-statistical analogue of properties of
statistical limit superior and inferior for a sequence of real numbers. In [4], Kolk generalized the
idea of A-statistical convergence to S-statistical convergence by using the idea of B-summability
(or F'-convergence) due to Steiglitz [30]. More works on matrix summability can be seen from [6],
where many references can be found.

On the other hand, the notion of ideal convergence was introduced first by P. Kostyrko et al. [18]
as an interesting generalization of statistical convergence [7, 31]. More recent applications of ideals
can be seen from [3, 1315, 22 -24, 26, 27] where more references can be found.

Naturally the purpose of this paper is to unify the above approaches and present the idea of
A-summability with respect to ideal concept and make certain observations. Further, we produce
B-analogues via ideals of the results of Mursaleen and Edely [21].

First, we introduce some notation. Let A = (a,,)) denote a summability matrix which transforms a
number sequence x = () into the sequence Az whose nth term is given by (Ax), = Z:il ApkXf-

The notion of a statistically convergent sequence can be defined using the asymptotic density of
subsets of the set of positive integers N ={1,2,...}. For any K C N and n € N we denote

K (n):=|Kn{L,2,...,n}|

and we define lower and upper asymptotic density of the set K by the formulas

d(K) = liminfm, 0(K) = limsupm.

n—00 n n—oo n

If §(K) = 6(K) =: §(K), then the common value §(K) is called the asymptotic density of the set
K and
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Obviously, the density 0(K) (if it exist) lie in the unit interval [0, 1]

n
5 (K) = lim %K (n) = lim (Cixx),, = lim ;;XK (k)
=1
if it exists, where C'; is the Cesaro mean of order one and x g is the characteristic function of the set
K [8].
The notion of statistical convergence was originally defined for sequences of numbers in the paper
[7] and also in [29]. We say that a number sequence = = (x),y Statistically converges to a point
L if for each ¢ > 0 we have ¢ (K (¢)) = 0, where K (¢) = {k € N: |zt — L| > ¢} and in such
situation we will write L = st-lim .
Statistical convergence can be generalized by using a regular nonnegative summability matrix A
in place of C;. Following Freedman and Sember [8], we say that a set K C N has A-density if

04 (K) = lim Z Ok = limZankXK (k) =lim (Axk),,
k=1

exists where A is a nonnegative regular summability matrix.

The number sequence = = (), is said to be A-statistically convergent to L if for every
£>0,04({keN: |z — L| >¢e}) =0. In this case it is denoted as st 4-lim z, = L [2, 20].

For i =1,2,..., let B; = (b, (i)) be an infinite matrix of complex (or real) numbers. Let B
denote the sequence of matrices (B;). Then a sequence = € /o, the space of bounded sequences,
is said to be Fp-convergent or B-summable to some number L if Z:il b (i) x converges to L
as n tends to oo uniformly for ¢ = 1,2,.... L is said to be the B-limit of x, written B-limx = L
(denotes the generalized limit) or (B;x) — L, and we say (B;z) is convergent to L.

A sequence of matrices B = (B;) is regular (cf. [1, 30]) if and only if

(i) foreach k = 1,2, ..., lim, 00 bk (i) = 0 uniformly for i = 1,2,...;

(i) limy—soo Zk bk, (i) = 1 uniformly for i = 1,2, ...;

(iii) for each n, ¢ = 1,2,..., Zk:l |bni (7)] < oo, and there exists integers N, M such that
Zk:l bk (1) < M forn > N andall i =1,2,....

In [17], Kolk introduced the following:

An index set K is said to have B-density o5 (K) equal to d, if the characteristic sequence of K
is B-summable to d, i.e.,

lim bni (¢) = d, uniformly in <,
I k;{ () y
where by an index set we mean a set K = {k;} C N, k; < k;;1 for all 4. For B = B, it is reduced
to uniform statistical convergence [25].

Let R" denote the set of all regular methods B with b, (i) > 0 for all n, k and i.

Let B € Rt. A sequence x = () is called B-statistically convergent to the number L, if for
every € >0

S5 ({keN: |z, —L| >¢}) =0

and we write stg-limx = L.
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The notion of statistical convergence was further generalized in the paper [18, 19] using the notion
of an ideal of subsets of the set N. We say that a nonempty family of sets Z C P (N) is an ideal on
N if Z is hereditary (i.e., B C A€ Z = B € 7) and additive (i.e., A, BeZ = AUB 7). An
ideal Z on N for which Z # P (N) is called a proper ideal. A proper ideal Z is called admissible if
7 contains all finite subsets of N. If not otherwise stated in the sequel Z will denote an admissible
ideal.

Recall the generalization of statistical convergence from [18, 19].

Let Z be an admissible ideal on N and = = (zj)ren be a sequence of points in a metric space
(X, p). We say that the sequence z is Z-convergent (or Z-converges) to a point £ € X, and we
denote it by Z-lim x = &, if for each £ > 0 we have

A(e)={keN:p(zx,§) >c} €T

This generalizes the notion of usual convergence, which can be obtained when we take for Z the ideal
Iy of all finite subsets of N. A sequence is statistically convergent if and only if it is Zs-convergent,
where Zs := {K C N: § (K) = 0} is the admissible ideal of the sets of zero asymptotic density.
The concept of AZ-statistically convergent was studied in [28] and the following definition was
given:
Definition 1. Let A = (ay,i) be a nonnegative regular matrix. A sequence (Ty)ken Is said to
be A-statistically convergent to L if for any € > 0 and § > 0

n € N: Z ank >0 p €T,
kEK (e)

where K () = {k € N: |z, — L| > €} . In this case we write L = T-st4-lim xy,.
By Z-st4 we denote the set of all AZ-statistically convergent sequences.
We say that a set & C N has AZ-density if

o0
04z (K) :=Z-lim apr = L-1lim ank XK (k) =Z-lim (Axg), ,
az (K) n};(nk n;nkX() n(X)"
exists where A is a nonnegative regular summability matrix. Then a sequence x = (), is said
to be A”-statistically convergent to L if for each ¢ > 0 the set K (&) has AZ-density zero, where
K(e)={keN: |z, — L| >¢}.

Let Z; be the family of all finite subsets of N. Then Z; is an admissible ideal in N and
A7 _statistically convergent is the A-statistical convergence introduced by [2, 20]. Also A”-density
coincides with usual A-density in [8].

2. Consistency of AZ-statistical convergence. In this section we study the concepts of
A7 _statistical cluster points. The result are analogues to those given by Demirci [5]. These notions
generalize the notions of A-statistical cluster points. Also we get necessary conditions on the matrices
A and B so that A and B are equivalent in the AZ-statistical convergence sense.

Following the line of Savas et al. [28] we now introduce the following definition using ideals.

Definition 2. Let T be an ideal of P (N). A number L is said to be an AT -statistical clus-
ter point of the number sequence v = (xy) if for each € > 0, 04z (K:) # 0, where K. =
={keN: |z, — L| < e}. We denote the set of all A*-statistically cluster points of x by T sz ().

ISSN 1027-3190.  Ykp. mam. ocypn., 2017, m. 69, Ne 3



A-CLUSTER POINTS VIA IDEALS 327

Note that the statement 7 (K.) # 0 means that either 64z (K.) > 0 or K. fails to have
AT -density.

Remark 1. 1f 7 =77 and A = (Cy), then the above Definition 2 yields the usual definition of
A-statistical cluster point of the number sequence introduced by [9].

Definition 3. [fZ-sty D Z-stp, A is said to be stronger than B in the T-statistical convergence
sense.

Definition 4. Matrices A and B are called consistent in the L-statistical convergence sense if
T-sta-limx = Z-stp-lim x whenever x € T-st sNZL-stp. If A is stronger than B in the I-statistical

I-st
convergence sense and consistent with B in the T-statistical convergence sense, then write A O B.

Z-st Z-st
If A D Band B D A, are called equivalent in the T-statistical convergence sense. In this case it

is denoted as A="' B (see [12]).

Throughout this section A = (a,x) and B = (b,)) will denote nonnegative regular summability
matrices.

Theorem 1. If the condition

I—limsupz |ank — bpk| =0 (1)
" k=1
holds, then 6 4z (K) = 0 if and only if dgz (K) = 0 for every K C N.
Proof. 1f § 4z (K) = 0, then

{nEN: Zankzé}EI

keK

for any 6 > 0. Since

Ay )n = Byl <D lank = bkl < lank — bukl
keK k=1

we have Z-limsup,, |(Ay )n — (Byx )n| = 0 by (1), which implies

Spz(K) = I-}leank = 0.
keK
Sufficiency follows from the symmetry.

Hence we can get the following results from Theorem 1.

Theorem 2. [If A and B satisfy the condition (1), then

(1) Z-sty = ZI-stp,

(ii) T' 4z (x) = Tz (x) for a real number sequence x.

The Z-statistical limits in (i) of Theorem 2 agree (i.e., Z-stp-limx = L implies Z-st4-limz =
= L). Therefore, if A and B satisfy condition (1) of Theorem 1, then A and B are consistent in the
T -statistical convergence sense.

Note that the support sets generated by nonnegative summability methods A and B can be used to
determine when, if a sequence z is both AZ-statistically convergent and B” -statistically convergent,
the AZ-statistical and BZ-statistical limits of z agree. In [2], Connor and Kline, using the ,,3N
program” have shown that A and B assign the same statistical limit to x if K4 N Kp # &, where
the sets K4 and K p are the support sets of the nonnegative regular summability matrices A and B.

The next corollary shows that we have the same result under different conditions.

ISSN 1027-3190.  Ykp. mam. ocypn., 2017, m. 69, Ne 3



328 M. GURDAL, E. SAVAS

Corollary 1. If A and B satisfy the conditions (1) of Theorem 1, then A =B,

Definition 5. The real number sequence x = (xy,) is said to be AI -statistically bounded if there
is a number K such that 6,z ({k € N: |zix| > K}) = 0.

Recall that AZ-statistically boundedness of real number sequences implies that Z-st 4-lim sup
and Z-st4-liminf x are finite and Z-st4-limsupx and Z-st4-liminf x are the greatest and least
A7 _statistically cluster point of such an z [16].

For any complex number sequence x = (xj) the A-statistical core of x is given by

sta-core {x} = ﬂ

HeH(x

where H(z) is the collection of all closed half-planes H that satisfy d4 ({k € N: 2, € H}) =
(see [4]).

From Theorem 6 in [4], it is shown that for every A-statistically bounded complex number
sequence x = ()

stq-core {z} = ﬂzec B, (2)

where B, (z) = {we C: |w—z| <ZI-sta-limsupy |z — 2|}. When A = C; we shall simply
write st-core instead of st¢, -core (see [11]).

Recall that the core of any A-statistically bounded real number sequence z, that is, st 4-core {z} ,
is the interval [st4-liminfz, st4-limsupx] [4]. In analogy to the st4-core {z} we first give a
definition of AZ-core of bounded real number sequence x as follows.

Definition 6. If x is any Al-statistically bounded real number sequence, then we define its
AT _core by

[I—stA- liminf x, Z-st 4-limsup z|.

We use T-sts-core (x) to denote A -core of real number sequence .

Hence we can get the following from (ii) of Theorem 2.

Corollary 2. If A and B satisfy the conditions (1) of Theorem 1, then Z-st g-core {x} = Z-stp-
core {x} for every bounded real sequence x.

Let 7 = Zy. Then all these results imply the similar theorems for A-statistical cluster points
which are investigated in [5].

3. B-statistical convergence via ideals. In this section, we produce B-analogues via ideals of
the results of Fridy and Orhan [10].

We give some analogue definitions for the method B.

Definition 7. 4 sequence x = (x})ren is called B* -statistically convergent to the number L, if
forany e >0 and 6 >0

n € N: Z bnk (1) >0 forall i=1,2,. S
keK (e

where K (¢) = {k € N: |z, — L| > €} . In this case we write L = Z-stg-lim zy.
We say that a set ' C N has B”-density if

Oz (K) = Z-lim Y~ bog (i) = Z-lim Y b (8) xxc (k) =
keK =
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=Z-lim (Bxk), , uniformly for i=1,2,...
n

exists. Then a sequence = = (), is said to be BZ -statistically convergent to L if for each ¢ > 0
the set K () has BZ-density zero, where K (¢) = {k € N: |z — L| > ¢} .

Throughout the paper by dzz(K) # 0 we mean that either dgz(K) > 0 or K fails to have
B-density.

Let Z; be the family of all finite subsets of N. Let Z = 7, then BT -statistically convergent
is the B-statistical convergence introduced by [21]. In particular, if Z =7, and B = (C1), then
BZ -statistical convergence is reduced the usual statistical convergence. For B = (A), it is reduced
to AZ-statistical cluster point [16].

Definition 8. Let T be an ideal of P (N) . The number  is said to be BE -statistical cluster point
of a sequence x = (xy,) if for each € > 0, gz (K.) # 0, where K. = {k € N: |z, — (| <¢e}. We
denote the set of all BE-statistically cluster points of x by gz ().

Note that for B = (A) in Definition 8, we get AZ-statistical cluster point [16]. For B = (C1) and
T = Ty, these are reduced to the usual statistical cluster point [9]. For a number sequence z = (z,),
we write

My ={g€R: gr{k:xp>g}#0} and MP ={f €R: dgzr {k: x < f} #0}.
Then we define the B-statistical limit superior and -statistical limit inferior of x as follows:

sup My, M, # @,

I-stp-limsupx =
{—oo, M, = o,

and
inf Mf, M7F + @,

Z-stp-liminfx =
5 {—I—oo, Mf=g.

Definition 9. The real number sequence x = (x3,) is said to be BE -statistically bounded if there
is a number K such that
oz ({k € N: |z > K}) =0.

The next statement is an analogue of Theorem 2.7 of [21].
Theorem 3. (a) If 8 = Z-stp-limsup x is finite, then for each € > 0

dpr ({keN:zp>p—¢c})#0 and dpr ({k€N:zp>pB+¢e})=0. ()

Conversely, if (2) holds for each £ > 0 then § = I-stg-limsup z.
(b) If a = I-stg-liminf x is finite, then for each € > 0,

gt ({keN:izp <a+e})#0 and gz ({keN:zp<a—e})=0. 3)

Conversely, if (3) holds for each € > 0, then o = Z-stg-liminf x.

By Definition 8 we see that Theorem 3 can be interpreted by saying that Z-stg-limsup « and 7
-stg-lim inf 2 are the greatest and the least BZ -statistically cluster points of .

The next theorem reinforces this observation.

Theorem 4. For every real sequence x,

I-stp-liminf x < Z-sti-lim sup x.
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Proof. First consider the case in which Z-stz-lim sup x = —oo. Hence we have M, = @, so for
every g € R, gz {k: xr > g} = 0 which implies that dgz {k: x < g} = 1, so for every f € R,
dgz {k: xr < f} # 0. Hence, Z-stg-liminf z = —oc.

The case in which Z-stp-lim sup = +00 needs no proof, so we next assume that 8 = Z-stg-
lim sup z is finite, and let o = Z-stg-liminf z. Given € > 0 we show that 3 + ¢ € M7, so that

a < ff+e¢. By Theorem 3(a), 3z {k:: x> B+ g} =0, since  =sup{g € R: dgz{k: xp > g} #
# 0}. This implies dzz {k: xp < B+ g} = 1, which, in turn, gives dgr {k: z < f+¢e} = 1.

Hence 3 4 ¢ € M/, and since ¢ is arbitrary this proves that o < f3.

Remark 2. 1f Z-st4-lim x exists, then a sequence x is AT -statistically bounded.

Note that BZ-statistical boundedness of real number sequences implies that Z-stz-limsup and
Z-stp-liminf are finite, so that properties (a) and (b) of Theorem 3 hold good.

Theorem 5. The BL-statistically bounded sequence x is B* -statistically convergent if and only
if T-stg-liminf x = Z-stg-limsup z.

Proof. We prove the necessity first. Let L = Z-stg-limx and € > 0. Then

dpr({keN:xp,>L+e})=0and dgr ({keN:zp < L—¢e})=0.

So forany g > L+ ¢ and f < L — ¢, the sets dgz (My) = 0 and dgz (Mf) = 0. We conclude
sup{g: 0pz (My) # 0} < L +¢ and inf {f: gz (M) # 0} > L — e. Combining with Theorem
4, we conclude that L = Z-stg-liminf x = Z-stg-lim sup z.

To prove sufficiency, suppose that L = T-stg-lim inf z = Z-stz-limsup 2 and x be B” -statistical
bounded. Then for € > 0, by (2) and (3), we have

o ({k:an>L+ 1) =0 and o ({k:mp<L-Z}) =0

We conclude that L = 7-stg-lim x.

We state the following result without proof, since the result can be established using same the
technique applied for the Theorems 3.3 and 3.4 of [21].

Theorem 6. (i) If number sequence x is bounded from above and B-summable to the number
L = I-stg-limsup x, then x is B -statistical convergent to L.

(i1) If number sequence x is bounded from below and B-summable to the number L = T-stg-
liminf z, then x is B”-statistical convergent to L.

Let Z = Z;. Then all these results in Section 3 imply the similar theorems for B-statistical
convergence which are investigated in [21].
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