M. Gürdal (Suleyman Demirel Univ., Isparta, Turkey),

E. Savaş (Istanbul Ticaret Univ., Turkey)

A-CLUSTER POINTS VIA IDEALS

А-КЛАСТЕРНІ ТОЧКИ В ТЕРМІНАХ ІДЕАЛІВ

Following the line of the recent work by Savaş et al., we apply the notion of ideals to A-statistical cluster points. We get necessary conditions for the two matrices to be equivalent in a sense of $A^{\mathcal{I}}$ -statistical convergence. In addition, we use Kolk's idea to define and study $\mathcal{B}^{\mathcal{I}}$ -statistical convergence.

Ми продовжуємо дослідження, розпочате в нещодавній роботі Саваша та ін., і застосовуємо поняття ідеалів до A-статистичних кластерних точок. Отримано необхідні умови для того, щоб дві матриці були еквівалентними в сенсі $A^{\mathcal{I}}$ -статистичної збіжності. Крім того, ми застосовуємо ідею Колка для того, щоб визначити і вивчити поняття $\mathcal{B}^{\mathcal{I}}$ -статистичної збіжності.

1. Introduction and background. In [10], Fridy and Orhan introduced the concepts of statistical limit superior and inferior. In [2], Connor and Kline extended the concept of a statistical limit (cluster) point of a number sequence to a A-statistical limit (cluster) point where A is a nonnegative regular summability matrix. In [4], Demirci extended the concepts of statistical limit superior and inferior to A-statistical limit superior and inferior and given some A-statistical analogue of properties of statistical limit superior and inferior for a sequence of real numbers. In [4], Kolk generalized the idea of A-statistical convergence to B-statistical convergence by using the idea of B-summability (or E-convergence) due to Steiglitz [30]. More works on matrix summability can be seen from [6], where many references can be found.

On the other hand, the notion of ideal convergence was introduced first by P. Kostyrko et al. [18] as an interesting generalization of statistical convergence [7, 31]. More recent applications of ideals can be seen from [3, 13–15, 22–24, 26, 27] where more references can be found.

Naturally the purpose of this paper is to unify the above approaches and present the idea of A-summability with respect to ideal concept and make certain observations. Further, we produce \mathcal{B} -analogues via ideals of the results of Mursaleen and Edely [21].

First, we introduce some notation. Let $A=(a_{nk})$ denote a summability matrix which transforms a number sequence $x=(x_k)$ into the sequence Ax whose nth term is given by $(Ax)_n=\sum_{k=1}^\infty a_{nk}x_k$.

The notion of a statistically convergent sequence can be defined using the asymptotic density of subsets of the set of positive integers $\mathbb{N} = \{1, 2, \ldots\}$. For any $K \subseteq \mathbb{N}$ and $n \in \mathbb{N}$ we denote

$$K\left(n\right):=\left|K\cap\left\{ 1,2,\ldots,n\right\} \right|$$

and we define lower and upper asymptotic density of the set K by the formulas

$$\underline{\delta}\left(K\right):=\underset{n\rightarrow\infty}{\lim\inf}\frac{K\left(n\right)}{n},\qquad\overline{\delta}\left(K\right):=\underset{n\rightarrow\infty}{\lim\sup}\frac{K\left(n\right)}{n}.$$

If $\underline{\delta}(K) = \overline{\delta}(K) =: \delta(K)$, then the common value $\delta(K)$ is called the asymptotic density of the set K and

$$\delta\left(K\right) = \lim_{n \to \infty} \frac{K\left(n\right)}{n}.$$

Obviously, the density $\delta(K)$ (if it exist) lie in the unit interval [0,1]

$$\delta(K) = \lim_{n} \frac{1}{n} K(n) = \lim_{n} (C_1 \chi_K)_n = \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \chi_K(k),$$

if it exists, where C_1 is the Cesaro mean of order one and χ_K is the characteristic function of the set K [8].

The notion of statistical convergence was originally defined for sequences of numbers in the paper [7] and also in [29]. We say that a number sequence $x=(x_k)_{k\in\mathbb{N}}$ statistically converges to a point L if for each $\varepsilon>0$ we have $\delta\left(K\left(\varepsilon\right)\right)=0$, where $K\left(\varepsilon\right)=\{k\in\mathbb{N}\colon |x_k-L|\geq\varepsilon\}$ and in such situation we will write $L=\operatorname{st-lim}x_k$.

Statistical convergence can be generalized by using a regular nonnegative summability matrix A in place of C_1 . Following Freedman and Sember [8], we say that a set $K \subseteq \mathbb{N}$ has A-density if

$$\delta_A(K) = \lim_n \sum_{k \in K} a_{nk} = \lim_n \sum_{k=1}^{\infty} a_{nk} \chi_K(k) = \lim_n (A\chi_K)_n$$

exists where A is a nonnegative regular summability matrix.

The number sequence $x=(x_k)_{k\in\mathbb{N}}$ is said to be A-statistically convergent to L if for every $\varepsilon>0,\ \delta_A\left(\{k\in\mathbb{N}:\ |x_k-L|\geq\varepsilon\}\right)=0.$ In this case it is denoted as st_A - $\mathrm{lim}\,x_k=L$ [2, 20].

For $i=1,2,\ldots$, let $\mathcal{B}_i=(b_{nk}\,(i))$ be an infinite matrix of complex (or real) numbers. Let \mathcal{B} denote the sequence of matrices (\mathcal{B}_i) . Then a sequence $x\in\ell_\infty$, the space of bounded sequences, is said to be $F_{\mathcal{B}}$ -convergent or \mathcal{B} -summable to some number L if $\sum_{k=1}^\infty b_{nk}\,(i)\,x_k$ converges to L as n tends to ∞ uniformly for $i=1,2,\ldots,L$ is said to be the \mathcal{B} -limit of x, written \mathcal{B} -lim x=L (denotes the generalized limit) or $(\mathcal{B}_i x) \to L$, and we say $(\mathcal{B}_i x)$ is convergent to L.

A sequence of matrices $\mathcal{B} = (\mathcal{B}_i)$ is regular (cf. [1, 30]) if and only if

- (i) for each $k = 1, 2, ..., \lim_{n \to \infty} b_{nk}(i) = 0$ uniformly for i = 1, 2, ...;
- (ii) $\lim_{n\to\infty}\sum_{k}b_{nk}\left(i\right)=1$ uniformly for $i=1,2,\ldots;$
- (iii) for each $n, i = 1, 2, \ldots, \sum_{k=1} |b_{nk}(i)| < \infty$, and there exists integers N, M such that $\sum_{k=1} |b_{nk}(i)| < M$ for $n \ge N$ and all $i = 1, 2, \ldots$

In [17], Kolk introduced the following:

An index set K is said to have \mathcal{B} -density $\delta_{\mathcal{B}}(K)$ equal to d, if the characteristic sequence of K is \mathcal{B} -summable to d, i.e.,

$$\lim_{n} \sum_{k \in K} b_{nk}(i) = d, \quad \text{uniformly in} \quad i,$$

where by an index set we mean a set $K = \{k_i\} \subset \mathbb{N}$, $k_i < k_{i+1}$ for all i. For $\mathcal{B} = \mathcal{B}_1$, it is reduced to uniform statistical convergence [25].

Let \mathcal{R}^{+} denote the set of all regular methods \mathcal{B} with $b_{nk}(i) \geq 0$ for all n, k and i.

Let $\mathcal{B} \in \mathcal{R}^+$. A sequence $x = (x_k)$ is called \mathcal{B} -statistically convergent to the number L, if for every $\varepsilon > 0$

$$\delta_{\mathcal{B}}\left(\left\{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\right\}\right) = 0$$

and we write $\operatorname{st}_{\mathcal{B}}$ - $\lim x = L$.

ISSN 1027-3190. Укр. мат. журн., 2017, т. 69, № 3

326 M. GÜRDAL, E. SAVAŞ

The notion of statistical convergence was further generalized in the paper [18, 19] using the notion of an ideal of subsets of the set \mathbb{N} . We say that a nonempty family of sets $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is an ideal on \mathbb{N} if \mathcal{I} is hereditary (i.e., $B \subseteq A \in \mathcal{I} \Rightarrow B \in \mathcal{I}$) and additive (i.e., $A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$). An ideal \mathcal{I} on \mathbb{N} for which $\mathcal{I} \neq \mathcal{P}(\mathbb{N})$ is called a proper ideal. A proper ideal \mathcal{I} is called admissible if \mathcal{I} contains all finite subsets of \mathbb{N} . If not otherwise stated in the sequel \mathcal{I} will denote an admissible ideal.

Recall the generalization of statistical convergence from [18, 19].

Let \mathcal{I} be an admissible ideal on \mathbb{N} and $x=(x_k)_{k\in\mathbb{N}}$ be a sequence of points in a metric space (X,ρ) . We say that the sequence x is \mathcal{I} -convergent (or \mathcal{I} -converges) to a point $\xi\in X$, and we denote it by \mathcal{I} - $\lim x=\xi$, if for each $\varepsilon>0$ we have

$$A(\varepsilon) = \{k \in \mathbb{N} : \rho(x_k, \xi) \ge \varepsilon\} \in \mathcal{I}.$$

This generalizes the notion of usual convergence, which can be obtained when we take for \mathcal{I} the ideal \mathcal{I}_f of all finite subsets of \mathbb{N} . A sequence is statistically convergent if and only if it is \mathcal{I}_{δ} -convergent, where $\mathcal{I}_{\delta} := \{K \subset \mathbb{N} : \delta(K) = 0\}$ is the admissible ideal of the sets of zero asymptotic density.

The concept of $A^{\mathcal{I}}$ -statistically convergent was studied in [28] and the following definition was given:

Definition 1. Let $A = (a_{nk})$ be a nonnegative regular matrix. A sequence $(x_k)_{k \in \mathbb{N}}$ is said to be $A^{\mathcal{I}}$ -statistically convergent to L if for any $\varepsilon > 0$ and $\delta > 0$

$$\left\{ n \in \mathbb{N} : \sum_{k \in K(\varepsilon)} a_{nk} \ge \delta \right\} \in \mathcal{I},$$

where $K(\varepsilon) = \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}$. In this case we write $L = \mathcal{I}\operatorname{-st}_A\operatorname{-lim} x_k$.

By \mathcal{I} -st_A we denote the set of all $A^{\mathcal{I}}$ -statistically convergent sequences.

We say that a set $K \subseteq \mathbb{N}$ has $A^{\mathcal{I}}$ -density if

$$\delta_{A^{\mathcal{I}}}\left(K\right):=\mathcal{I}\text{-}\lim_{n}\sum_{k\in K}a_{nk}=\mathcal{I}\text{-}\lim_{n}\sum_{k=1}^{\infty}a_{nk}\chi_{K}\left(k\right)=\mathcal{I}\text{-}\lim_{n}\left(A\chi_{K}\right)_{n},$$

exists where A is a nonnegative regular summability matrix. Then a sequence $x=(x_k)_{k\in\mathbb{N}}$ is said to be $A^{\mathcal{I}}$ -statistically convergent to L if for each $\varepsilon>0$ the set $K(\varepsilon)$ has $A^{\mathcal{I}}$ -density zero, where $K(\varepsilon)=\{k\in\mathbb{N}: |x_k-L|\geq \varepsilon\}$.

Let \mathcal{I}_f be the family of all finite subsets of \mathbb{N} . Then \mathcal{I}_f is an admissible ideal in \mathbb{N} and $A^{\mathcal{I}}$ -statistically convergent is the A-statistical convergence introduced by [2, 20]. Also $A^{\mathcal{I}}$ -density coincides with usual A-density in [8].

2. Consistency of $A^{\mathcal{I}}$ -statistical convergence. In this section we study the concepts of $A^{\mathcal{I}}$ -statistical cluster points. The result are analogues to those given by Demirci [5]. These notions generalize the notions of A-statistical cluster points. Also we get necessary conditions on the matrices A and B so that A and B are equivalent in the $A^{\mathcal{I}}$ -statistical convergence sense.

Following the line of Savaş et al. [28] we now introduce the following definition using ideals.

Definition 2. Let \mathcal{I} be an ideal of $\mathcal{P}(\mathbb{N})$. A number L is said to be an $A^{\mathcal{I}}$ -statistical cluster point of the number sequence $x=(x_k)$ if for each $\varepsilon>0$, $\delta_{A^{\mathcal{I}}}(K_{\varepsilon})\neq 0$, where $K_{\varepsilon}=\{k\in\mathbb{N}: |x_k-L|<\varepsilon\}$. We denote the set of all $A^{\mathcal{I}}$ -statistically cluster points of x by $\Gamma_{A^{\mathcal{I}}}(x)$.

Note that the statement $\delta_{A^{\mathcal{I}}}(K_{\varepsilon}) \neq 0$ means that either $\delta_{A^{\mathcal{I}}}(K_{\varepsilon}) > 0$ or K_{ε} fails to have $A^{\mathcal{I}}$ -density.

Remark 1. If $\mathcal{I} = \mathcal{I}_f$ and $A = (C_1)$, then the above Definition 2 yields the usual definition of A-statistical cluster point of the number sequence introduced by [9].

Definition 3. If \mathcal{I} -st_A $\supset \mathcal{I}$ -st_B, A is said to be stronger than B in the \mathcal{I} -statistical convergence sense.

Definition 4. Matrices A and B are called consistent in the \mathcal{I} -statistical convergence sense if \mathcal{I} -st_A-lim $x = \mathcal{I}$ -st_B-lim x whenever $x \in \mathcal{I}$ -st_A $\cap \mathcal{I}$ -st_B. If A is stronger than B in the \mathcal{I} -statistical convergence sense and consistent with B in the \mathcal{I} -statistical convergence sense, then write $A \overset{\mathcal{I}$ -st}{\supset} B. If $A \overset{\mathcal{I}$ -st}{\supset} B and $B \overset{\mathcal{I}$ -st}{\supset} A, are called equivalent in the \mathcal{I} -statistical convergence sense. In this case it is denoted as $A \overset{\mathcal{I}$ -st}{\sim} B (see [12]).

Throughout this section $A=(a_{nk})$ and $B=(b_{nk})$ will denote nonnegative regular summability matrices.

Theorem 1. If the condition

$$\mathcal{I}\text{-}\lim\sup_{n}\sum_{k=1}^{\infty}|a_{nk}-b_{nk}|=0$$
(1)

holds, then $\delta_{A^{\mathcal{I}}}\left(K\right)=0$ if and only if $\delta_{B^{\mathcal{I}}}\left(K\right)=0$ for every $K\subseteq\mathbb{N}.$

Proof. If $\delta_{A^{\mathcal{I}}}(K) = 0$, then

$$\left\{ n \in \mathbb{N} : \sum_{k \in K} a_{nk} \ge \delta \right\} \in \mathcal{I}$$

for any $\delta > 0$. Since

$$|(A_{\chi_K})_n - (B_{\chi_K})_n| \le \sum_{k \in K} |a_{nk} - b_{nk}| \le \sum_{k=1}^{\infty} |a_{nk} - b_{nk}|,$$

we have \mathcal{I} - $\limsup_n |(A_{\chi_K})_n - (B_{\chi_K})_n| = 0$ by (1), which implies

$$\delta_{B^{\mathcal{I}}}(K) = \mathcal{I}\text{-}\lim_{n} \sum_{k \in K} b_{nk} = 0.$$

Sufficiency follows from the symmetry.

Hence we can get the following results from Theorem 1.

Theorem 2. If A and B satisfy the condition (1), then

- (i) \mathcal{I} -st_A = \mathcal{I} -st_B,
- (ii) $\Gamma_{A^{\mathcal{I}}}(x) = \Gamma_{B^{\mathcal{I}}}(x)$ for a real number sequence x.

The \mathcal{I} -statistical limits in (i) of Theorem 2 agree (i.e., \mathcal{I} -st_B- $\lim x = L$ implies \mathcal{I} -st_A- $\lim x = L$). Therefore, if A and B satisfy condition (1) of Theorem 1, then A and B are consistent in the \mathcal{I} -statistical convergence sense.

Note that the support sets generated by nonnegative summability methods A and B can be used to determine when, if a sequence x is both $A^{\mathcal{I}}$ -statistically convergent and $B^{\mathcal{I}}$ -statistically convergent, the $A^{\mathcal{I}}$ -statistical and $B^{\mathcal{I}}$ -statistical limits of x agree. In [2], Connor and Kline, using the " $\beta\mathbb{N}$ program" have shown that A and B assign the same statistical limit to x if $K_A \cap K_B \neq \emptyset$, where the sets K_A and K_B are the support sets of the nonnegative regular summability matrices A and B.

The next corollary shows that we have the same result under different conditions.

328 M. GÜRDAL, E. SAVAŞ

Corollary 1. If A and B satisfy the conditions (1) of Theorem 1, then $A \stackrel{\mathcal{I}\text{-st}}{\sim} B$.

Definition 5. The real number sequence $x=(x_k)$ is said to be $A^{\mathcal{I}}$ -statistically bounded if there is a number K such that $\delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N} \colon |x_k| > K\}) = 0$.

Recall that $A^{\mathcal{I}}$ -statistically boundedness of real number sequences implies that \mathcal{I} -st_A-lim sup x and \mathcal{I} -st_A-lim inf x are finite and \mathcal{I} -st_A-lim sup x and \mathcal{I} -st_A-lim inf x are the greatest and least $A^{\mathcal{I}}$ -statistically cluster point of such an x [16].

For any complex number sequence $x = (x_k)$ the A-statistical core of x is given by

$$\operatorname{st}_A$$
-core $\{x\} = \bigcap_{H \in \mathcal{H}(x)} H$,

where $\mathcal{H}(x)$ is the collection of all closed half-planes H that satisfy $\delta_A(\{k \in \mathbb{N} : x_k \in H\}) = 1$ (see [4]).

From Theorem 6 in [4], it is shown that for every A-statistically bounded complex number sequence $x = (x_k)$

$$\operatorname{st}_{A}\operatorname{-core}\left\{ x\right\} =\bigcap_{z\in\mathbb{C}}B_{x}\left(z\right) ,$$

where $B_x(z) = \{w \in \mathbb{C} : |w-z| \le \mathcal{I}\text{-st}_A\text{-}\lim\sup_k |x_k-z|\}$. When $A = C_1$ we shall simply write st-core instead of st_{C_1} -core (see [11]).

Recall that the core of any A-statistically bounded real number sequence x, that is, st_A -core $\{x\}$, is the interval $[\operatorname{st}_A$ - $\liminf x$, st_A - $\limsup x]$ [4]. In analogy to the st_A -core $\{x\}$ we first give a definition of $A^{\mathcal{I}}$ -core of bounded real number sequence x as follows.

Definition 6. If x is any $A^{\mathcal{I}}$ -statistically bounded real number sequence, then we define its $A^{\mathcal{I}}$ -core by

$$\left[\mathcal{I}\text{-st}_A\text{-}\liminf x, \,\, \mathcal{I}\text{-st}_A\text{-}\limsup x\right].$$

We use \mathcal{I} -st_A-core (x) to denote $A^{\mathcal{I}}$ -core of real number sequence x.

Hence we can get the following from (ii) of Theorem 2.

Corollary 2. If A and B satisfy the conditions (1) of Theorem 1, then \mathcal{I} -st_A-core $\{x\}$ = \mathcal{I} -st_B-core $\{x\}$ for every bounded real sequence x.

Let $\mathcal{I} = \mathcal{I}_f$. Then all these results imply the similar theorems for A-statistical cluster points which are investigated in [5].

3. \mathcal{B} -statistical convergence via ideals. In this section, we produce \mathcal{B} -analogues via ideals of the results of Fridy and Orhan [10].

We give some analogue definitions for the method \mathcal{B} .

Definition 7. A sequence $x = (x_k)_{k \in \mathbb{N}}$ is called $\mathcal{B}^{\mathcal{I}}$ -statistically convergent to the number L, if for any $\varepsilon > 0$ and $\delta > 0$

$$\left\{n \in \mathbb{N} : \sum_{k \in K(\varepsilon)} b_{nk}(i) \ge \delta \text{ for all } i = 1, 2, \dots \right\} \in \mathcal{I},$$

where $K(\varepsilon) = \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}$. In this case we write $L = \mathcal{I}\text{-st}_{\mathcal{B}}\text{-lim }x_k$. We say that a set $K \subseteq \mathbb{N}$ has $\mathcal{B}^{\mathcal{I}}$ -density if

$$\delta_{\mathcal{B}^{\mathcal{I}}}\left(K
ight):=\mathcal{I}\text{-}\lim_{n}\sum_{k\in K}b_{nk}\left(i
ight)=\mathcal{I}\text{-}\lim_{n}\sum_{k=1}^{\infty}b_{nk}\left(i
ight)\chi_{K}\left(k
ight)=$$

$$= \mathcal{I}\text{-}\lim_n \left(\mathcal{B}\chi_K\right)_n, \quad \text{uniformly for} \quad i=1,2,\dots$$

exists. Then a sequence $x=(x_k)_{k\in\mathbb{N}}$ is said to be $\mathcal{B}^{\mathcal{I}}$ -statistically convergent to L if for each $\varepsilon>0$ the set $K\left(\varepsilon\right)$ has $\mathcal{B}^{\mathcal{I}}$ -density zero, where $K\left(\varepsilon\right)=\left\{k\in\mathbb{N}:\ |x_k-L|\geq\varepsilon\right\}$.

Throughout the paper by $\delta_{\mathcal{B}^{\mathcal{I}}}(K) \neq 0$ we mean that either $\delta_{\mathcal{B}^{\mathcal{I}}}(K) > 0$ or K fails to have \mathcal{B} -density.

Let \mathcal{I}_f be the family of all finite subsets of \mathbb{N} . Let $\mathcal{I} = \mathcal{I}_f$, then $\mathcal{B}^{\mathcal{I}}$ -statistically convergent is the \mathcal{B} -statistical convergence introduced by [21]. In particular, if $\mathcal{I} = \mathcal{I}_f$ and $\mathcal{B} = (C_1)$, then $\mathcal{B}^{\mathcal{I}}$ -statistical convergence is reduced the usual statistical convergence. For $\mathcal{B} = (A)$, it is reduced to $A^{\mathcal{I}}$ -statistical cluster point [16].

Definition 8. Let \mathcal{I} be an ideal of $\mathcal{P}(\mathbb{N})$. The number ζ is said to be $\mathcal{B}^{\mathcal{I}}$ -statistical cluster point of a sequence $x=(x_k)$ if for each $\varepsilon>0$, $\delta_{\mathcal{B}^{\mathcal{I}}}(K_{\varepsilon})\neq 0$, where $K_{\varepsilon}=\{k\in\mathbb{N}: |x_k-\zeta|<\varepsilon\}$. We denote the set of all $\mathcal{B}^{\mathcal{I}}$ -statistically cluster points of x by $\Gamma_{\mathcal{B}^{\mathcal{I}}}(x)$.

Note that for $\mathcal{B}=(A)$ in Definition 8, we get $A^{\mathcal{I}}$ -statistical cluster point [16]. For $\mathcal{B}=(C_1)$ and $\mathcal{I}=\mathcal{I}_f$, these are reduced to the usual statistical cluster point [9]. For a number sequence $x=(x_k)$, we write

$$M_q = \{g \in \mathbb{R} : \delta_{\mathcal{B}^{\mathcal{I}}} \{k : x_k > g\} \neq 0\}$$
 and $M^f = \{f \in \mathbb{R} : \delta_{\mathcal{B}^{\mathcal{I}}} \{k : x_k < f\} \neq 0\}$.

Then we define the \mathcal{B} -statistical limit superior and \mathcal{B} -statistical limit inferior of x as follows:

$$\mathcal{I}\text{-st}_{\mathcal{B}}\text{-}\limsup x = \begin{cases} \sup M_g, & M_g \neq \emptyset, \\ -\infty, & M_g = \emptyset, \end{cases}$$

and

$$\mathcal{I}\text{-st}_{\mathcal{B}}\text{-}\liminf x = \begin{cases} \inf M^f, & M^f \neq \emptyset, \\ +\infty, & M^f = \emptyset. \end{cases}$$

Definition 9. The real number sequence $x = (x_k)$ is said to be $\mathcal{B}^{\mathcal{I}}$ -statistically bounded if there is a number K such that

$$\delta_{\mathcal{B}^{\mathcal{I}}}\left(\left\{k \in \mathbb{N} : |x_k| > K\right\}\right) = 0.$$

The next statement is an analogue of Theorem 2.7 of [21].

Theorem 3. (a) If $\beta = \mathcal{I}\text{-st}_{\mathcal{B}}\text{-}\limsup x$ is finite, then for each $\varepsilon > 0$

$$\delta_{\mathcal{B}^{\mathcal{I}}}\left(\left\{k \in \mathbb{N} : x_k > \beta - \varepsilon\right\}\right) \neq 0 \quad \text{and} \quad \delta_{\mathcal{B}^{\mathcal{I}}}\left(\left\{k \in \mathbb{N} : x_k > \beta + \varepsilon\right\}\right) = 0.$$
 (2)

Conversely, if (2) holds for each $\varepsilon > 0$ then $\beta = \mathcal{I}\text{-st}_{\mathcal{B}}\text{-}\limsup x$.

(b) If $\alpha = \mathcal{I}$ -st_B-lim inf x is finite, then for each $\varepsilon > 0$,

$$\delta_{\mathcal{B}^{\mathcal{I}}}(\{k \in \mathbb{N} : x_k < \alpha + \varepsilon\}) \neq 0$$
 and $\delta_{\mathcal{B}^{\mathcal{I}}}(\{k \in \mathbb{N} : x_k < \alpha - \varepsilon\}) = 0.$ (3)

Conversely, if (3) holds for each $\varepsilon > 0$, then $\alpha = \mathcal{I}\text{-st}_{\mathcal{B}}\text{-}\liminf x$.

By Definition 8 we see that Theorem 3 can be interpreted by saying that \mathcal{I} -st_{\mathcal{B}}-lim sup x and \mathcal{I} -st_{\mathcal{B}}-lim inf x are the greatest and the least $\mathcal{B}^{\mathcal{I}}$ -statistically cluster points of x.

The next theorem reinforces this observation.

Theorem 4. For every real sequence x,

$$\mathcal{I}$$
-st _{\mathcal{B}} - $\liminf x \leq \mathcal{I}$ -st _{\mathcal{B}} - $\limsup x$.

330 M. GÜRDAL, E. SAVAŞ

Proof. First consider the case in which $\mathcal{I}\text{-st}_{\mathcal{B}}\text{-lim}\sup x=-\infty$. Hence we have $M_g=\varnothing$, so for every $g\in\mathbb{R},\ \delta_{\mathcal{B}^{\mathcal{I}}}\{k:x_k>g\}=0$ which implies that $\delta_{\mathcal{B}^{\mathcal{I}}}\{k:x_k\leq g\}=1$, so for every $f\in\mathbb{R},\ \delta_{\mathcal{B}^{\mathcal{I}}}\{k:x_k< f\}\neq 0$. Hence, $\mathcal{I}\text{-st}_{\mathcal{B}}\text{-lim}\inf x=-\infty$.

The case in which $\mathcal{I}\text{-st}_{\mathcal{B}}\text{-lim sup }x=+\infty$ needs no proof, so we next assume that $\beta=\mathcal{I}\text{-st}_{\mathcal{B}}$ -lim sup x is finite, and let $\alpha=\mathcal{I}\text{-st}_{\mathcal{B}}\text{-lim inf }x$. Given $\varepsilon>0$ we show that $\beta+\varepsilon\in M^f$, so that $\alpha\leq\beta+\varepsilon$. By Theorem 3(a), $\delta_{\mathcal{B}^{\mathcal{I}}}\left\{k:x_k>\beta+\frac{\varepsilon}{2}\right\}=0$, since $\beta=\sup\left\{g\in\mathbb{R}:\delta_{\mathcal{B}^{\mathcal{I}}}\left\{k:x_k>g\right\}\neq\emptyset\right\}$. This implies $\delta_{\mathcal{B}^{\mathcal{I}}}\left\{k:x_k\leq\beta+\frac{\varepsilon}{2}\right\}=1$, which, in turn, gives $\delta_{\mathcal{B}^{\mathcal{I}}}\left\{k:x_k<\beta+\varepsilon\right\}=1$. Hence $\beta+\varepsilon\in M^f$, and since ε is arbitrary this proves that $\alpha\leq\beta$.

Remark 2. If \mathcal{I} -st_A-lim x exists, then a sequence x is $A^{\mathcal{I}}$ -statistically bounded.

Note that $\mathcal{B}^{\mathcal{I}}$ -statistical boundedness of real number sequences implies that \mathcal{I} -st_{\mathcal{B}}-lim sup and \mathcal{I} -st_{\mathcal{B}}-lim inf are finite, so that properties (a) and (b) of Theorem 3 hold good.

Theorem 5. The $\mathcal{B}^{\mathcal{I}}$ -statistically bounded sequence x is $\mathcal{B}^{\mathcal{I}}$ -statistically convergent if and only if \mathcal{I} -st_{\mathcal{B}}-lim inf $x = \mathcal{I}$ -st_{\mathcal{B}}-lim sup x.

Proof. We prove the *necessity* first. Let $L = \mathcal{I}\text{-st}_{\mathcal{B}}\text{-lim }x$ and $\varepsilon > 0$. Then

$$\delta_{\mathcal{B}^{\mathcal{I}}}\left(\left\{k \in \mathbb{N} : x_k > L + \varepsilon\right\}\right) = 0 \text{ and } \delta_{\mathcal{B}^{\mathcal{I}}}\left(\left\{k \in \mathbb{N} : x_k < L - \varepsilon\right\}\right) = 0.$$

So for any $g \geq L + \varepsilon$ and $f < L - \varepsilon$, the sets $\delta_{\mathcal{B}^{\mathcal{I}}}(M_g) = 0$ and $\delta_{\mathcal{B}^{\mathcal{I}}}(M^f) = 0$. We conclude $\sup \{g \colon \delta_{\mathcal{B}^{\mathcal{I}}}(M_g) \neq 0\} \leq L + \varepsilon$ and $\inf \{f \colon \delta_{\mathcal{B}^{\mathcal{I}}}(M^f) \neq 0\} \geq L - \varepsilon$. Combining with Theorem 4, we conclude that $L = \mathcal{I}\text{-st}_{\mathcal{B}}\text{-lim}\inf x = \mathcal{I}\text{-st}_{\mathcal{B}}\text{-lim}\sup x$.

To prove *sufficiency*, suppose that $L = \mathcal{I}\text{-st}_{\mathcal{B}}\text{-}\liminf x = \mathcal{I}\text{-st}_{\mathcal{B}}\text{-}\limsup x$ and x be $\mathcal{B}^{\mathcal{I}}$ -statistical bounded. Then for $\varepsilon > 0$, by (2) and (3), we have

$$\delta_{\mathcal{B}^{\mathcal{I}}}\left(\left\{k\colon x_{k} > L + \frac{\varepsilon}{2}\right\}\right) = 0 \quad \text{and} \quad \delta_{\mathcal{B}^{\mathcal{I}}}\left(\left\{k\colon x_{k} < L - \frac{\varepsilon}{2}\right\}\right) = 0.$$

We conclude that $L = \mathcal{I}\text{-st}_{\mathcal{B}}\text{-lim }x$.

We state the following result without proof, since the result can be established using same the technique applied for the Theorems 3.3 and 3.4 of [21].

Theorem 6. (i) If number sequence x is bounded from above and \mathcal{B} -summable to the number $L = \mathcal{I}$ -st $_{\mathcal{B}}$ -lim sup x, then x is $\mathcal{B}^{\mathcal{I}}$ -statistical convergent to L.

(ii) If number sequence x is bounded from below and \mathcal{B} -summable to the number $L = \mathcal{I}$ -st_{\mathcal{B}}-lim inf x, then x is $\mathcal{B}^{\mathcal{I}}$ -statistical convergent to L.

Let $\mathcal{I} = \mathcal{I}_f$. Then all these results in Section 3 imply the similar theorems for \mathcal{B} -statistical convergence which are investigated in [21].

References

- 1. Bell H.T. Order summability and almost convergence // Proc. Amer. Math. Soc. 1973. 38. P. 548 552.
- 2. *Connor J. A., Kline J.* On statistical limit points and the consistency of statistical convergence // J. Math. Anal. and Appl. 1996. 197. P. 392–399.
- 3. Das P., Savaş E., Ghosal S. K. On generalizations of certain summability methods using ideals // Appl. Math. Lett. 2011. 24. P. 1509 1514.
- 4. *Demirci K.* A-statistical core of a sequence // Demonstr. Math. − 2000. − 33, № 2. − P. 343 − 353.
- 5. Demirci K. On A-statistical cluster points // Glas. Mat. 2002. 37, № 57. P. 293 301.
- 6. Edely O. H. H., Mursaleen M. On statistically A-summability // Math. Comput. Modelling. 2009. 49, № 8. P. 672 680.
- 7. Fast H. Sur la convergence statistique // Colloq. Math. 1951. 2. P. 241 244.

- 8. Freedman A. R., Sember J. J. Densities and summability // Pacif. J. Math. − 1981. − 95, № 2. − P. 293 305.
- 9. Fridy J. A. Statistical limit points // Proc. Amer. Math. Soc. 1993. 118. P. 1187 1192.
- 10. Fridy J. A., Orhan C. Statistical limit superior and inferior // Proc. Amer. Math. Soc. 1997. 125. P. 3625 3631.
- 11. Fridy J. A., Orhan C. Statistical core theorems // J. Math. Anal. and Appl. 1997. 208. P. 520 527.
- 12. Fridy J. A., Khan M. K. Tauberian theorems via statistical convergence // Math. Anal. and Appl. 1998. 228. P. 73 95.
- 13. Gürdal M. On ideal convergent sequences in 2-normed spaces // Thai. J. Math. 2006. 4, № 1. P. 85–91.
- Gürdal M., Açık I. On *I*-Cauchy sequences in 2-normed spaces // Math. Inequal. Appl. 2008. 11, № 2. P. 349 354.
- 15. Gürdal M., Şahiner A. Extremal *I*-limit points of double sequences // Appl. Math. E-Notes. 2008. 8. P. 131 137.
- 16. Gürdal M., Sarı H. Extremal A-statistical limit points via ideals // J. Egypt. Math. Soc. 2014. 22. P. 55 58.
- 17. *Kolk E.* Inclusion relations between the statistical convergence and strong summability // Acta et Comm. Univ. Tartu. Math. 1998. 2. P. 39–54.
- 18. Kostyrko P., Macaj M., Salat T. I-convergence // Real Anal. Exchange. 2000. 26, № 2. P. 669 686.
- 19. Kostyrko P., Macaj M., Salat T., Sleziak M. *I*-convergence and extremal *I*-limit points // Math. Slovaca. 2005. 55. P. 443 464.
- 20. *Miller H. I.* A measure theoretical subsequence characterization of statistical convergence // Trans. Amer. Math. Soc. -1995. -347, No. 5. -P. 1881 1919.
- 21. Mursaleen M., Edely O. H. H. Generalized statistical convergence // Inform. Sci. 2004. 161. P. 287 294.
- 22. *Mursaleen M., Mohiuddine S. A., Edely O. H. H.* On ideal convergence of double sequences in intuitionistic fuzzy normed spaces // Comput. Math. Appl. 2010. **59**. P. 603 611.
- 23. *Mursaleen M., Mohiuddine S. A.* On ideal convergence in probabilistic normed spaces // Math. Slovaca. 2012. 62, № 1. P. 49 62.
- 24. Nabiev A., Pehlivan S., Gürdal M. On I-Cauchy sequences // Taiwan. J. Math. 2007. 11, № 2. P. 569 576.
- 25. *Pehlivan S.* Strongly almost convergent sequences defined by a modulus and uniformly statistical convergence // Soochow J. Math. 1994. 20. P. 205 211.
- 26. Şahiner A., Gürdal M., Saltan S., Gunawan H. Ideal convergence in 2-normed spaces // Taiwan. J. Math. 2007. 11, № 4. P. 1477 1484.
- 27. Savaş E., Das P. A generalized statistical convergence via ideals // Appl. Math. Lett. 2011. 24. P. 826-830.
- 28. Savaş E., Das P., Dutta S. A note on strong matrix summability via ideals // Appl. Math. Lett. 2012. 25. P. 733 738.
- 29. *Schoenberg I. J.* The integrability of certain functions and related summability methods // Amer. Math. Mon. 1959. 66, № 5. P. 362 375.
- 30. Steiglitz M. Eine verallgemeinerung des begriffs der fastkonvergenz // Math. Jap. 1973. 18. P. 53 70.
- 31. Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique // Colloq. Math. 1951. 2. P. 73 74.

Received 04.10.13,

after revision -23.11.16