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JACOBI OPERATORS AND ORTHONORMAL
MATRIX-VALUED POLYNOMIALS. 1I

OIIEPATOPH SAKOBI TA OPTOI'OHAJIBHI
OINIEPATOPHO3HAYHI ITOJIIHOMM. 11

We use a system of operator-valued orthogonal polynomials to construct analogs of L. de Branges spaces and establish
their relationship with the theory of nonself-adjoint operators.

I3 BUKOpHCTaHHAM CHCTEMH OIIEPATOPHO3HAYHUX OPTOTOHAIBHUX ITOJIHOMIB OOyI0BaHO aHajoru npoctopis JI. ne bpamxka
Ta BCTAHOBJIEHO iX 3B’SI30K 3 TEOPI€I0 HECAMOCIPSDKEHHUX OIEPaTOPiB.

1. Introduction. This work is based on the main constructions of the first part of the study
(Jacobi operators and orthonormal matrix-valued polynomials. I). Establishment of links between
the constructions of the first part (Jacobi operators and orthogonal polynomials) with the theory of
nonself-adjoint operators and further realization of these constructions in analogues of vector-valued
L. de Branges spaces is the aim of the present study. The works [14, 15] are dedicated to the
connection of Jacobi matrices with L. de Branges spaces. Method of reconstruction of the system
of orthogonal polynomials by the functions specifying the L. de Branges space is one of results of
this paper. In Section 1 using a system of orthonormal matrix-valued polynomials a Hilbert L. de
Branges space is constructed which is an analogue of the well-known L. de Branges space [10, 12]
in the discrete case. In Section 2 connection of these L. de Branges spaces with triangular models of
nonself-adjoint nilpotent operators [10] is established. In Section 3 resolvent of the truncated Jacobi
operator is calculated, and in the case of the finite dimensionality of E, an orthonormal basis of
generating kernels is found.

2. L. de Branges spaces. I. In this section we remind main definitions and facts from the first
part of the work. Denote by L2 (E,dF(z)) the Hilbert space of E-valued vector-functions on R
(dim F =r < o0),

df

12(B,dF(x))) £ { f(a): / (AF (@) (z), }(x))p < 00 b (1)

R

Let the measure dF'(x) satisfy the nd-condition

[ @@ @), Pata) > 8,3 Il
® k=0
for all P,(z) = Z:—o 2¥g, (g € E, 1 < k < n, n € Z,). Then (see Part I) there exists the

family of matrix-valued polynomials {P,(z)}y”, such that

| B @dF@Pu(e) = binlp, koneZy. @
R
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The polynomials {P,(z)};° are the solutions of the finite-difference equations
aPn(z) = Pry1 (%) Bp + Po(%)Cn + Po1(#) By, n € Zy.
Let @, (z) be polynomials of the second kind,
df Po(§) — Pa(z
Q)2 [areP = ez,
R
Construct the Jacobi operator
Co Bj 0 0
By Ci Bj o -
2l 0o B By - 3)
by {Bn,Cn}q . Define the operator-function
af | Po(A)  Puy1(AN)By }
Wy(X) =
NEL G o,
and the involution
df 0 ZIE
[ 5, ]
Specify the operator-function
df “1gy — | An(A) Ba(N)
s Ewowto =] o) oo | ®
besides,
An(N) =T =X P(MQ;i(0)
k=0
Bu(N) =AY Pe(\) P (0)
k=0
Cn(X) = =2 Qr(N)Q1(0)
k=0
Dy(N) =14 A QL(NP;(0)
k=0
Then
Sn()\) = Sn—l()\)an(A)7 ne Z—i—v (6)
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838 R. HATAMLEH, V. A. ZOLOTAREV

where
an(N) T —idmad, my 2 [ gz((g))in((g)) SZ((?J))%((?) } >0, neZi. (1)
I1. Consider the subspaces
zn‘ispan{ipk(x)fk:fkeE(lgkgn)}, neZy, (8)
=0
in L2 (E,dF(z)) (1). The kernel
KaOhu) S BB ), AweC, ©)

k=1

is Hermitian positive [2, 3] and is generating in L,

ﬂmzjmumwuﬁm
R

for all f(\) € £, (VA € C). The orthoprojector in L(E,dF(z)) on L, is given by

uhﬂwﬁ/mwwwwm»
R

Following [2, 3], we every vector f = col|[fo, f1,...], fx € E, k € Z4, from l%+(E) juxtapose
with function f(z) € L&(FE, dF(z)),

F@) =V f@) Y Pula)fi, (10)
k=0

where {Py(x)}o° is a family of orthonormal (2) polynomials. Series (10) converges in the topology
of L3(E,dF(x)) for all f € I (E). Operator V' (10) isometrically maps I5 () on the subspace
in L3(E,dF(z)),

Loo & span {f(x): f(x) € Ln,n € Ty},

which is the closure of the linear span of the subspaces £,, (8). To calculate the inverse of V' (10) is
to calculate the Fourier coefficients

fi= [ Pi@dP @), kezy.
R
The operator V' (10) is a unitary operator from l% (n)(E) on L, (8),

l%+(n)(E) df span{f =col[fo, f1,---s fn] : fx € E;Z 7kl < oo}, (11)

k=1
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besides, Zy(n) ={k € Z+;0<k<n},necZ;.
Let L,(\) = [Ig,0] Sp(N),

Ln(A) = [An(N), Ba(M)], € Zy,

in view of (5). It is obvious that

LaOVILE () = 2= P K (A w),

7

1
besides, K, (A, w) is given by formula (9). Consider the orthoprojectors Py = 5 (Ipgep £ J) in
E @ E, then

La(A)P, = %En()\) p,ils], Ln(\)P. = %En(x) I, —ils],

where the operator-functions E,,(\) and E,()\) in E equal

Ex(N) E 4,0 —iBu(N), En(\) L A,(\) +iBu(A), AeC, nezZ,. (12)

Using Ly, (A)JL} (w) = Lp(N) Py LY (w) — Ly (N)P-L} (w), we obtain

En(\)Ej(w) = En(A) By (w)

K,(\w) =i—— N , nEZy. (13)

Theorem 1. For all n € Z, the operator-functions E,(X), En(N) (12) satisfy the relations

>0, e C+,
<0, eC_,

besides, the function E,(\) (En()\)) is invertible and C (correspondingly, in C_).
Proof. The relations (13) follow from the Hermitian positiveness of the kernel K, (), w) (12).
The inequality E,,(X\)EX(X) — E,(A)EX(X) > 0 for all A € C, follows from
. ~ = A=) — . A=A
En(NE(A) = En(NER(A) = — Y BN = =
k=0

BN Py () =

= uD(Q) >0,
i
in view of the invertibility of D. This implies the invertibility of E()\) (and so the invertibility of
E,()\) also) for all A € C,.
If for some x € R there is such a subsequence {fs}~ (|| fs|| =1 Vs € Z;) that E(z)fs — 0,
s — oo, then K,(\z)fs — 0, s — oo, in virtue of (12), for all A € C. Thus
Z;O Pu(\) P (2)fs — 0, s — oo, therefore 2;0 |PE(2)fs]|2 = 0, s — oo, which is im-

possible, since || P () fs||* = || Dofs||> > 0.
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840 R. HATAMLEH, V. A. ZOLOTAREV
In the case of the self-adjointness of A, ()\) and B,()\) as A € R, the functions E,(\) = E (A)

n
and F,(\) belong to the Hermite — Biehler class [14, 15].
The operator-function Ly () satisfies the recurrent relation

Li(N) = Le—1(Nak(X), k€ Zy, (15)

in view of (6). Taking into account the form of ajx(\) (7), we obtain that Ly () is the solution of
the system of equations

k
Li(A) +4iAY  Lea(MmsJ = [Ig,0], 0<k<n, n€Zy,
s=0

where my, are given by (7) and L_1(\) & [IE,0]. The J-properties of ax(\) (7) imply

. A= .
Su(A)JS)(w) = J = =—— > Sko1(NmSi_y (w),
k=0

and thus
. A — D .
Ln(A)J Ly (w) = — > LeaWmi Ly (w),
k=0
SO,
Ko\ w) =Y Ly (\)myLj_y (w). (16)
k=0

Define the weight spaces

n

17, ) (B ® B,m) < span {f =[fo,-- s ful 0 D (muefi, fr) < OO} ) (17)

k=0
where my, are given by (7); fr = col[ug,vk|; ug, vy € E, 0 < k < n. Factorization by the
metric kernel is executed in this space (17). The spaces (17) are ordered by inclusion l%+ (n)(E @
@ E,m) C Z%+(p)(E @® E,m) as n < p. The inner product in Iz ) (E © E,m) is given by
n
<fa .g> = Zk:O <mk’fk7.gk’> ; where f = [va s 7fn] y 9= [907 s 7.gn] are from ZZ+(n)(E S E>m)
IIL. Every f € ZZ (n)(E @ E,m) we juxtapose with the E-valued vector-function F'()),

FO) =Bf 3 Lot (Nmufi, (18)
k=0

assuming that L () is the solution of (15). The map B is said to be the L. de Branges transform
[10, 12]. Obviously, deg F'(A\) < n. Describe the class of functions F'(\) (18).

Lemma 1. Forall n € 7. the operator-functions En()\), En(\) (12) are polynomials of degree
n + 1, leading coefficients of which are invertible operators.
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Consider the expression E,, 1(\)F()\) where F'()) is given by (18) and A € C. Theorem 1 yields
that this function is holomorphic in Cy and E,1(A\)F(\) — 0 as A\ — oo (since deg F'(\) < n). In
connection with the fact that the function £, !(z)F(z), z € R, behaves at infinity as 2 PN (a € N,
N is a linear bounded operator in F), the integral

/HE,:l(x)F(;E)Hinx < 00
R

converges. Similar fact takes place for the function E~*(A\)F()\) in C, besides,

/HE;l(x)F(x)H?de:/Hﬁgl(gﬁ)p(:ﬁ)‘)zczx,
R R

since (E*(z)) ' E; () = (E;(@) : E-Y(z) as 2 € R in virtue of (14). As a result, we obtain
the inner description of the space of the function F'(\) (17).

Definition 1. Let E,()\) and En()\) be operator-valued polynomials in E of degree n + 1, the
leading coefficients of which are invertible operators, Ey,(0) = E,(0) = I, and (14) take place,
besides, E,(\) and E,()\) are invertible in the semiplanes C., and C_ correspondingly.

The linear span of the entire E-valued (dim E < o0) functions F()) is said to be the L. de
Branges space B (A,,, By,) (here 2A,, = E,, + E‘n, 2B, = E, — E,)if

a) E-L(A\F(N) (EZY(A\)F(N)) is holomorphic in C. (in C_) function, besides, E;*(\)F(\) —
— 0 (E;Y(\)F(X) = 0) as A — 0o and \ € C. (correspondingly, A € C_);

b) the integral

JIE @F@ G de = [ B @F@)) do <0 (19)
R R

is finite.
The inner product in B (A,, B,) is given by

(FO), GO) = 5 / (E;\@)F(2), By (2)G(x))  da.
R

Factorization by the metric kernel is executed in the space B (4, By) .

This definition of the L. de Branges space is the generalization of the classical L. de Branges
space [10, 12] and for vector-valued functions is new.

The function K,,(\, w) (13) is the reproducing kernel in B (4, B,,) ,

(F(A\), Kn(Aw)g)g = (F(w),9)E (20)

for all F(\) € B(A,,By),allweC,andall g € E.
Theorem 2. The operator B (18) specifies the one-to-one correspondence between the spaces

2 (E®E,m) (17) and B (A, By) , besides, the Parseval equality

Zy(n)
(FA), G5 = (f, 9)e;
takes place, where F'(\) = Bf, G(\) = Bg, and f, g € Z%Jr(n) (E® E,m).
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842 R. HATAMLEH, V. A. ZOLOTAREV

Proof. Since
<Kn()\7 w)fa g>E = <Kn(flf, w)fa Kn($7 A)g>[3
where f, g € E, then using (16) we obtain

<Kn()‘7 ’Uj)f, g)E = <f(w),g(/\)>12,

besides, f(w) and g(A) are given by f(w) = [fo(w),..., fa(w)], g(A) = [g0(N),- ., gn(N)]
(frx(w) = col [A’,;_l(w)f, BZ_l(w)f] , gr(A) = col [A;;_l()\)g,BZ_l()\)g} , 0

belong to space (17), for all A, w € C and all f, g € E. Since Bf(w) =
Bg(w) = K, (A, w)g, we obtain the Parseval equality (20).

To conclude the proof, we need to ascertain that L,, & span{ f(w): f € E,w € C} coincides with
L%+(n)(E @ E,m), and, secondly, to show that the space B, d span {K,(A\,w)f: f € E,w e C}
coincides with B (A,, B,). The equality B, = B(A,, B,) follows from (19); since if there is
the function F(\) € B(A,,B,) orthogonal to B,, then, taking into account (20), we obtain
(F(w), f)g =0 forall w € C and all f € E, and thus F'(A\) = 0.

Let L, # l2 (E ® E,m), then there is such a vector g € L2 (n)(E @ E,m) that g L L,,

(f(w), g)r = <f>ZLk1(w)mkgk> (Vf € E),
k=0 E
therefore

n
> L1 (w)mige =0,

Li_1(w)my, = [P(w) B (0), Pu(w)Q}(0)], & € Zy,

therefore .
0="> L 1(w)migi = ZPk I (0)ug + Q(0)vr},
k=0

where g = col [ug, vg], 1 < k < n. Taking into account the orthonormality (2) of the polynomials
{Pr(\)}( , we obtain
Pr(0)ug + Qr(0)vp, =0, 0<k<n.

This signifies that the norm of the vector g in L%+ (n)(E @ E,m) is equal to zero. So, g = 0.
3. Nonself-adjoint operators. IV. Specify the nonself-adjoint operator

(Anf), £ —i Z Jmsfs, 0<k<n, (21)

s=k+1

in 17 Zy(n )(E @ E,m) (17), where J and my, are given by (4) and (7) (dim £ < oo). It is obvious
that A,, (21) is nilpotent. Specifying the operator ¢ : li (n)(E @ E,m) — E® E by the formula

df
onf = Z mes fs
s=0
we obtain the colligation [10]
A, = <Aml%+(n)(E@E,m),apn,E@E,—J). (22)
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Theorem 3. The characteristic Livsic — Brodskii function Sa, (X) = I—i@ (A, — M)~ % (=J)
of the colligation A,, (22) coincides with S,, ()\_1) (5), Sa,,(A) =S, ()\_1) .

The L. de Branges transform B (18) transforms the operator A,, (21) into the shift operator /Tn,
(AF) ()< %(F()\) _F(0)), F(\) € B(An,By). 23)
The operator ¢, = By} equals
Frg S ex(Nu+ea(Wv, g = colfu,v],
where
e1(\) = ATIB, (), ex(V\) = ATH(T - A,(N). (24)
So, we have the colligation
An = (An.B(An Ba) 0, ED B, =), (25)

which is unitary equivalent to A,, (22).

V. Let us turn our attention to the finding of the weight operators {my,}{ by the pair of functions
En()\), En()\), for which Theorem 1 is true and E,(0) = E,(0) = I. To do this, we by E,()\),
En()\) construct the L. de Branges space B (Ap, By), in which we define the operator A, (23),

and then we construct the colligation A, and (25). Let Sy (w) = S (w™'), where 53, (A) is the

characteristic function of A,, (25). It is obvious that Sp' (w) = A, (w) (: 271 (En(w) + E, (w)))

and S (w) = Bp(w) <: (20)~ ! (En(w) - En(w))>, where {Sﬁs(w)}j are blocks Sy, (w) cor-

responding to the decomposition E ¢ E. The remaining blocks Cp(w) = S2'(w) and D, (w) =
= 527 (w) equal

R o O o e

T or A " A—w
- * 26)
Datw) = 1+ o [ EZ2 O )71 o) B = Bnl)
R

_ Theorem 4. Let there be determined two such matrix-functions Ey()\) and E,(\) that a) E, (M),
E,(X\) are polynomials of degree n + 1 with invertible leading coefficients; b) E,(0) = E,(0) = I;

¢) (12) take place; d) E,(\) and E,(\) are invertible in C and in C_ correspondingly. Then by
1 ~ 1 ~
the pair of functions A, (\) = §(En()\) + E,(N), Ba(A) = Q—(En(/\) — E, (X)) we can construct
i
the functions Cp(\), Dy(N) (26) such that the operator-function Sy, () (5) has the J-properties.

Using the J-theory of V. P. Potapov [9, 10], we expand S,,(A) (5) into factors, then the simplest
factors ax(\) are the polynomials of the first degree and are given by (7), where my; > 0 and
meJme =0, 0<k <n.
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Lemma 2. Let m > 0 be an operator in E (dim E < 00) such that mJm = 0, where J is
given by (24), then
PP*  PQ*
m = ,
QP*  QQ"
besides, P, () are linear bounded operators in E satisfying the condition P*(Q) = Q*P.
Proof. The lemma on block-matrix [7] yields that nonnegativity of the operator

A B
m:[B* C]ZO

is equivalent to the conditions: 1) A > 0; 2) solution X of the equation AX = B exists; 3) C —
—X*AX > 0, besides, the expression X*AX does not depend on X. Nonnegativity A > 0 signifies
that A = PP* (we can take P = /A as P). Condition 2 yields that PP*X = B, therefore,
specifying Q* = P* X, we obtain B = PQ".

The requirement mJm = 0 is equivalent to the equalities

AB* = BA, AC =B? B*C=CB.
The first relation implies
0=AB*— BA=PP*'QP" — PQ*"PP*=P{P*Q — Q"P} P,

therefore {P*Q — QP*}|p. = 0 since the images P* and Q* belong to P*E. Taking into account
that ¢ { P*Q) — Q* P} is self-adjoint and equals zero on its image, we obtain the desired condition
P*Q =Q*P.
To conclude the proof of lemma, it is left to show that C' = QQ*. Condition 3 C' — X*AX >0
implies
0<C—-X"AX=C-X"B=C-X"PQ"=C—-QQ".

Existence of the solution of AX = B signifies that A is invertible on BE, therefore the equality
AC = B? yields

C=XB=XPQ*"=X*"PQ* + (X — X*) PQ* = QQ* + (X — X*) PP*X,

and thus (X — X*)PP*X > 0. Since X*: PE — QFE and X: QE — PE, the self-adjoint
operator (X — X*) PP*X maps the subspace span{PFE + QFE?} onto itself. Note that 0 = P*Q) —
— Q*P = P*(X — X*)P and thus the restriction of X — X* on PE equals zero. Therefore
to prove that (X — X*) PP*X = 0, it is necessary to ascertain that the image of the operator
(X — X*) PP*X belongs to PE. Let f € span{PE + QFE} and f 1L PE, then X: QF — PE
implies
0<((X = X")PP'X[, f) = —(X"PP*Xf, f) = = |[P"Xf|*,
and thus P*X f =0 and (X — X*) PP*X f = 0. Thus C' = QQ*.
The condition B*C' = CB holds automatically:

B'C—CB=QP'QQ = QQ'PQ = Q{P'Q—Q"P}Q" =0,
in virtue of P*Q) = Q*P.
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Thus the operators my, in ax(\) (7) are always given by

PkP];‘ Psz
, 1 <k<n. 27
QP QuQn @7)

The “first line” L, (\) = [An()), Bn(\)] of the operator-function S,,(\) (5) satisfies the recurrent
relation L,,(\) = Ly,_1(\)a,(N). Since a,, }(\) = [+iAmyJ, then L, _1(\) = L,(\) (I +iAmy,J),
and thus

mig —

An—1(A) = An(A) + AP, (M) @y,
Bn_1(\) = Bn(\) — AP, (N P,

where P, () is given by

Po(\) £ 4, (M) Py + Bo(N)Qn. (28)

Repeating this step-by-step procedure, we find all the polynomials {P;())}( , besides,

n

AN =T =D P(NQi,  Bu(N) =A>_ P(NP;. (29)
k=0

k=0

Theorem 5. Let operator-functions En(\) and E,(\) satisfying the suppositions a)—d) of
Theorem 4 be given in a Hilbert space E. Then there exists such set of nonnegative operators
{mi}y 27)in E @ E that P;Qy = Q; Py, 0 < k < n, besides,

1) using the recurrent relation Li_1(\) = Li(X) (I + i mygJ) we can construct the whole
Li(\) = [A,(\), Bi(N)], 0 < k < n, by the line Ly(\) = [An(A), Ba(N)] (24,(\) = E,(\) +
+ En(N), 2iBp(A) = En(X) — Ey(N)), besides, deg Ap(\) = deg Br(\) = k + 1;

2) for the functions Ej()\), Ek()\) corresponding to Ly (\), the suppositions a)—d) of Theorem 4
are true,

3) the equalities (28) specify the system of polynomials { Pi,(\)}q such that deg Pi(\) = k, the
leading coefficient of Pi()\) is invertible, Py(0) = Py, and the formulas (29) are true.

4. Jacobi operator. VI. Consider the “nth cut” of the Jacobi operator Jg (3),

Co B 0
a By Cl B, . A .
Bn72 Cnfl By

n—1

0 Bn—l Cn

which is self-adjoint in ZZ (n)(E) (11). Using the form of operator V' (10), we obtain

VJE,nf = xf(x) + Rn(x)fm (€29)

where f(x) =V f = Zk x)fx € Ly (10)(f—col[fo,...,fn]el2 n)( )), and R, (z) is a
polynom1a1 of degree n —1—_1

Ry(2) € Py(2) [Co — 1) + Poy(2) By, 1€ Ly (32)
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846 R. HATAMLEH, V. A. ZOLOTAREV

Taking into account (15), we write R, (z) in the form R, (z) = —P,t1(x)B,.
The operator Jg, (30), after the transform V, turns into the restriction of the operator of
multiplication by the independent variable in £,,,

(Tonf) @) &L Pe,af(@) (Vg =JeaV),

where P is the orthoprojector on L,,.
Calculate the resolvent (Jg, —wl)™', and let g(w) = (Jg, —wl) " f, then Jg,g(w) —
— wg(w) = f. Using (31), we obtain

(z —w)g(z,w) + Ru(x)gn(w) = f(z),

where f(z) =V f = Z x)fr and g(x,w) = Vg(w) = Z:_O Py (x)gr(w). Supposing in
this equahty that 2 = w, we ﬁnd Ry (w)gn(w) = f(w). If w € C is such that R, (w) is invertible
(which is possible in view of the invertibility of the leading coefficient of R,,(z)), then from the last

equality we obtain

o) = (Ton —wr) " o) = LI ()] (w) (33)
Therefore the “kth” component gz (w) of the vector g(w) = (Jg,, — wl) ™ f equals
wtw) = [ Prtayare) { L= S cpcn )
R

Theorem 6. The resolvent of the operator J, £.n (33) is given by (34), and the resolvent of the
operator Jg , (30) is given by formula (47), where f(x) =V f (10), gi(w) is the “kth” component
of the vector g(w), besides, R, (w) equals (32).

We can write the L. de Branges map B (18) from Z%Jr(n) (E® E,m) in B(A,, By) in the form

=Bf= ZPk (0)ug + Q(0)vg]

since Ag—1(A)Py(0) + Br1(MQx(0) = Pu(N), 1 < k < n, where f = [fo,..., f] €13, (E®
® E,m) (fr = col[ug, vg], 0 < k < n). After the transform B (18), the Jacobi operator Jg , (30)
equals

(jE,nF) (A) = Pg(a,,B)AF(A),
where F'(A\) € B(Ay, Bn) and P4, B,) is the orthoprojector on B (A, By,) . Similarly to (34), the

formula
(jE,n - w[>_1F()\) — FQA) ~ (A) H(w)F(w)

is true, besides, R, () is given by (32).
Let dim ¥ = r < oo. Let us find the eigenvectors Jg ,, f = Af of the operator Jg ,, (30), where
f=col[fo,...,fn] € l%+(n)(E) (11). Then

fo=Pi(Nh,... fa=P"\Nh, RIA\h=0,
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where the function R, (\) is given by (32). The last of the equations R} (A)h = 0 defines the
eigenvalues {)\k}q(nﬂ), A € R, of the operator Jg, which are the zeros of the polynomial
det R (A\) = 0 and hy € Ker R}, (\). Therefore fy\, = col [P (Ax) hi, ..., Py (Ag) hi] are the
eigenvectors of Jg ,,, besides, fy, L fr, as Ay # As. When dim Ker R}, (\;) = [ > 1, itis easy to
construct such a basis {hi}ll’“ in Ker R}, (A) that the vectors f3 = col [Py (Ax) Ay, ..., Po (M) BE]
1 < s < [, are orthogonal. To do this one should use the Hilbert—Schmidt orthogonalization. Let
the vectors hy and hy from Ker Ry (A\g) correspond to f), and f)\k from Ker (Jg,,, — Axl), then

= hy, — uihy corresponds to the linear span fﬁ\k = f)\k — pkfxr,, ke € C. Then from f;\k L fa,

we find pp = <Kn (Aks M) ﬁk,hk> {{K, (Ak,Ak)hk,hk>}_1. Using this technique the required

number of times, we obtain an orthogonal set of vectors in {f§ L in Ker {Jg, — A\eI}. So, the
orthogonal basis { f§, } of the eigenvectors of Jp ,, in l%+(n) (E) (11) exists.

Theorem 7. Let dim E = r < oo and {\} be zeros of the polynomial det R},(\) = 0, where
R, (X) is given by (32), besides, Ker R} (\;) = Ly and dim L, = l;; > 1. Suppose that {h; llk
from Ly, are such that <Kn (Mg, Ak) Z,h@ = 0 as s # p. Then the reproducing kernel K, (\, w)
(9) generates the orthogonal basis

{Kp(x,\p) R}, 1<s<l, 1<k<(n+1)r),

in the space L, (8), besides, every function (34) is an eigenfunction for J, En (33) and corresponds
to the eigenvalue \y.
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