H. K. Musaev (Baku State Univ., Azerbaijan),

V. B. Shakhmurov (Okan Univ., Istanbul, Turkey)

B-COERCIVE CONVOLUTION EQUATIONSIN WEIGHTED FUNCTION SPACES AND APPLICATIONS

В-КОЕРЦИТИВНІ РІВНЯННЯ В ЗГОРТКАХ У ВАГОВИХ ФУНКЦІОНАЛЬНИХ ПРОСТОРАХ ТА ЇХ ЗАСТОСУВАННЯ

We study the B-separability properties of elliptic convolution operators in weighted Besov spaces and establish sharp estimates for the resolvents of the convolution operators. As a result, it is shown that these operators are positive and, in addition, play the role of negative generators of analytic semigroups. Moreover, the maximal B-regularity properties of the Cauchy problem for a parabolic convolution equation are established. Finally, these results are applied to obtain the maximal regularity properties for anisotropic integro-differential equations and the system of infinitely many convolution equations.

Вивчаються властивості B-сепарабельності еліптичних операторів згортки у зважених просторах Бєсова. Встановлено точні оцінки для резольвент операторів згортки. В результаті показано, що ці оператори є додатними, а також від'ємними генераторами аналітичних напівгруп. Крім того, встановлено властивості максимальної B-регулярності задачі Коші для параболічного рівняння у згортках. Ці результати застосовано до отримання властивостей максимальної регулярності для анізотропних інтегро-диференціальних рівнянь та для систем нескінченного числа рівнянь у згортках.

Introduction. In recent years, maximal regularity properties for differential operator equations have been studied extensively, e.g., in [1-8, 12, 13, 18, 20, 22, 26, 28, 29]. Moreover, convolution-differential equations (CDEs) have been investigated, e.g., in [10, 16, 19, 21, 22, 27] and the references therein. However, convolution differential-operator equations (CDOEs) is relatively less investigated subject. In [14, 18, 21, 23, 24] parabolic type CDEs with operator coefficient was investigated. In [15, 21] regularity properties of degenerate CDOEs studed in weighted L_p spaces. In conrary to these, the main aim of the present paper is to obtain separability property of the elliptic CDOE

$$(L+\lambda)u = \sum_{|\alpha| \le l} a_{\alpha} * D^{\alpha}u + A * u + \lambda u = f(x)$$
(1.1)

and the maximal regularity property of the Cauchy problem for the parabolic CDOE

$$\frac{\partial u}{\partial t} + \sum_{|\alpha| \le l} a_{\alpha} * D^{\alpha} u + A * u = f(t, x), \quad u(0, x) = 0$$

in E-valued weighted Besov spaces, where E is a Banach space, A = A(x) is a linear operator in $E, a_{\alpha} = a_{\alpha}(x)$ are complex-valued functions and λ is a complex spectral parameter.

By using the Fourier multiplier theorems in weighted Banach valued Besov spaces $B^s_{p,q,\gamma}(R^n;E)$, in Section 2 we derive the coercive estimate of resolvent and particularly and we show that this operator is positive. Namely, we prove that for all $f \in B^s_{p,q,\gamma}(R^n;E)$ there is a unique solution

$$u \in B_{p,q,\gamma}^{l,s}(\mathbb{R}^n; E(A), E)$$

of the problem (1.1) and the following uniformly estimate holds:

$$\sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \|a_{\alpha} * D^{\alpha} u\|_{B^{s}_{p,q,\gamma}(R^{n};E)} +$$

$$+\|A*u\|_{B^{s}_{p,q,\gamma}(R^{n};E)}+|\lambda|\|u\|_{B^{s}_{p,q,\gamma}(R^{n};E)}\leq C\|f\|_{B^{s}_{p,q,\gamma}(R^{n};E)}.$$

Particularly, this result implies that if $f \in B^s_{p,q,\gamma}(R^n;E)$, then all terms of the equations (1.1) are also from $B^s_{p,q,\gamma}(R^n;E)$, (i.e., all terms are separated). This important effect allows to obtain some spectral properties of the convolution operator Q.

Moreover, under some assumptions we conclude that the corresponding convolution operator Q has a domain coinciding with the Besov space

$$B_{p,q,\gamma}^{l,s}\big(R^n;E(A),E\big)=B_{p,q,\gamma}^{l,s}(R^n;E)\cap B_{p,q,\gamma}^s\left(R^n;E(A)\right)$$

and there are positive constants \mathcal{C}_1 and \mathcal{C}_2 such that

$$C_1 \|u\|_{B^{l,s}_{p,q,\gamma}(R^n;E(A),E)} \le \|Qu\|_{B^s_{p,q,\gamma}(R^n;E)} \le C_2 \|u\|_{B^{l,s}_{p,q,\gamma}(R^n;E(A),E)}$$

for all $u \in B_{p,q,\gamma}^{l,s}(\mathbb{R}^n; E(A), E)$.

By using the positivity properties of the convolution operator Q and the semigroup theory, in Section 3 we conclude that the above Cauchy problem has a unique solution satisfying the coercive estimate. In Sections 4 and 5, by putting concrete vector spaces instead of E and concrete linear operators instead of E, the maximal regularity properties of convolution differential operators are obtained in vector valued Besov spaces.

1. Notations and background. Let E be a Banach space and $\gamma = \gamma(x), \ x = (x_1, x_2, \dots, x_n)$, be a positive measurable weighted function on a measurable subset $\Omega \subset R^n$. Let $L_{p,\gamma}(\Omega; E)$ denote the space of strongly E-valued functions that are defined on Ω with the norm

$$||f||_{L_{p,\gamma}(\Omega;E)} = ||f||_{L_p(E;\gamma)} = \int_{\Omega} \left(||f(x)||_E^p \gamma(x) \, dx \right)^{1/p}, \quad 1 \le p < \infty.$$

For $\gamma(x) \equiv 1$, the space $L_{p,\gamma}(\Omega; E)$ will be denoted by $L_p = L_p(\Omega; E)$,

$$||f||_{L_{\infty,\gamma}(\Omega;E)} = ||f||_{L_{\infty}(E;\gamma)} = \operatorname{ess\,sup}_{x \in \Omega} \Big[\gamma(x) ||f(x)||_{E}\Big].$$

The weighted $\gamma(x)$ we will consider satisfy an A_p condition; i.e., $\gamma(x) \in A_p$, 1 , if there is a positive constant <math>C such that

$$\left(\frac{1}{|Q|} \int\limits_{Q} \gamma(x) dx\right) \left(\frac{1}{|Q|} \int\limits_{Q} \gamma^{-\frac{1}{p-1}}(x) dx\right)^{p-1} \le C$$

for all compacts $Q \subset \mathbb{R}^n$.

Let \mathbb{C} be the set of complex numbers and

$$S_{\varphi} = \left\{ \lambda; \lambda \in \mathbb{C}, |\arg \lambda| \leq \varphi \right\} \cup \{0\}, \quad 0 \leq \varphi < \pi.$$

Let E_1 and E_2 be two Banach spaces and $L(E_1, E_2)$ denotes the spaces of bounded linear operators acting from E_1 to E_2 . For $E_1 = E_2 = E$ it will be denoted by L(E).

A closed linear operator function A = A(x) is said to be uniformly φ -positive in Banach space E, if D(A(x)) is dense in E and does not depend on x and there is a positive constant M so that

$$\left\| \left(A(x) + \lambda I \right)^{-1} \right\|_{L(E)} \le M \left(1 + |\lambda| \right)^{-1}$$

for every $x \in R^n$ and $\lambda \in S_{\varphi}, \varphi \in [0, \pi)$, where I is an identity operator in E. Sometimes instead of $A + \lambda I$ we will write $A + \lambda$ and it will be denoted by A_{λ} . It is known [25] (§ 1.15.1) that there exists fractional powers A^{θ} of the positive operator A.

Let $E(A^{\theta})$ denote the space $D(A^{\theta})$ with graphical norm

$$\|u\|_{E\left(A^{\theta}\right)} = \left(\|u\|_{E}^{p} + \|A^{\theta}u\|_{E}^{p}\right)^{\frac{1}{p}}, \qquad 1 \le p < \infty, \quad -\infty < \theta < \infty.$$

Let $S = S(R^n; E)$, or simply S(E) denotes Schwarz class, i.e., the space of E-valued rapidly decreasing smooth functions on R^n equipped with its usual topology generated by seminorms. $S(R^n; \mathbb{C})$ denoted by just S.

Let $S'(R^n; E)$ denote the space of all continuous linear operators, $L: S \longrightarrow E$, equipped with the bounded convergence topology. Recall $S(R^n; E)$ is norm dense in $B^s_{p,q,\gamma}(R^n; E)$ when

$$1 \le p < \infty, \quad 1 \le q < \infty, \quad \gamma \in A_p.$$

We shall use Fourier analytic definition of weighted Besov spaces in this study. Therefore, we need to consider some subsets $\{J_k\}_{k=0}^{\infty}$ and $\{I_k\}_{k=0}^{\infty}$ of \mathbb{R}^n . Let $\{J_k\}_{k=0}^{\infty}$ given by

$$J_0 = \{t \in \mathbb{R}^n : |t| \le 1\}, \qquad J_k = \{t \in \mathbb{R}^n : 2^{k-1} \le |t| \le 2^k\} \text{ for } k \in \mathbb{N}.$$

Enlarge each J_k to form a sequence $\{I_k\}_{k=0}^{\infty}$ of overlapping subsets defined by

$$I_0 = \{t \in \mathbb{R}^n : |t| \le 2\}, \qquad I_k = \{t \in \mathbb{R}^n : 2^{k-1} \le |t| \le 2^{k+1}\} \quad \text{for} \quad k \in \mathbb{N}.$$

Next, we define the unity $\{\varphi_k\}_{k\in\mathbb{N}_0}$ of functions from $S(R^n;R)$, where $\mathbb{N}_0=\{0\}\cup\mathbb{N},\ \mathbb{N}=\{1,2,\ldots\}$ is the of natural numbers. Let $\psi\in S(R,R)$ be nonnegative function with support in $[2^{-1},2]$, which satisfies

$$\sum_{k=-\infty}^{\infty} \psi(2^{-k}s) = 1 \quad \text{for} \quad s \in R \setminus \{0\}$$

and

$$\varphi_k(t) = \psi(2^{-k}|t|), \qquad \varphi_0(t) = 1 - \sum_{k=1}^{\infty} \varphi_k(t) \qquad \text{for} \quad k \in \mathbb{N}, \quad t \in \mathbb{R}^n.$$

Let $\varphi_k \equiv 0$ if k < 0. Later, we will need the following useful properties:

$$\operatorname{supp} \varphi_k \subset \overline{I}_k \quad \text{for each} \quad k \in \mathbb{N}_0,$$

$$\sum_{k=0}^{\infty} \varphi_k(s) = 1 \qquad \text{for each} \quad s \in R^n,$$

$$J_m \cap \operatorname{supp} \varphi_k = \varnothing \qquad \text{if} \quad |m-k| > 1,$$

$$\varphi_{k-1}(s) + \varphi_k(s) + \varphi_{k+1}(s) = 1 \qquad \text{for each} \quad s \in \operatorname{supp} \varphi_k, \quad k \in \mathbb{N}_0.$$

Let $1 \le p \le q \le \infty$ and $s \in R$. The weighted Besov space is the set of all functions $f \in S'(R;E)$ for which

$$\begin{split} \|f\|_{B^{s}_{p,q}(E;\gamma)} &= \|f\|_{B_{p,q,\gamma}(R^{n};E)} = \left\| \left\{ 2^{ks} \left(\check{\varphi}_{k} * f \right) \right\}_{k=0}^{\infty} \right\|_{l_{q}(L_{p,\gamma}(R^{n};E))} \equiv \\ &= \begin{cases} \left[\sum_{k=0}^{\infty} 2^{ksq} \, \|\check{\varphi}_{k} * f \|_{L_{p,\gamma}(R^{n};E)}^{q} \right]^{\frac{1}{q}} & \text{if} \quad q \neq \infty, \\ \sup_{k \in \mathbb{N}_{0}} \left[2^{ks} \, \|\check{\varphi}_{k} * f \|_{L_{p,\gamma}(R^{n};E)} \right] & \text{if} \quad q = \infty \end{cases} \end{split}$$

is finite; here p and s are main and smoothness indexes respectively.

Let $\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_n),\ |\alpha|=\sum_{k=1}^n\alpha_k$, where α_k are integers and $D^\alpha=D_1^{\alpha_1}D_2^{\alpha_2}\ldots D_n^{\alpha_n}$. An E-valued generalized function $D^\alpha f$ is called a generalized derivative in the sense of Schwarz distributions of the function $f\in S(R^n;E)$, equality

$$\langle D^{\alpha} f, \varphi \rangle = (-1)^{|\alpha|} \langle f, D^{\alpha} \varphi \rangle$$

holds for all $\varphi \in S$.

Let F denote the Fourier transform. Through this section the Fourier transformation of a function f will be denoted by \hat{f} , $Ff = \hat{f}$ and $F^{-1}f = \check{f}$. It is known that

$$F\left(D_{x}^{\alpha}f\right)=\left(i\xi_{1}\right)^{\alpha_{1}}\ldots\left(i\xi_{n}\right)^{\alpha_{n}}\widehat{f},\qquad D_{\xi}^{\alpha}\left(F\left(f\right)\right)=F\left[\left(-ix_{1}\right)^{\alpha_{1}}\ldots\left(-ix_{n}\right)^{\alpha_{n}}f\right]$$

for all $f \in S'(R^n; E)$, where $\xi = (\xi_1, \xi_2, \dots, \xi_n) \in R^n$.

Let E_0 and E be two Banach spaces and E_0 is continuously and densely embedded to E. Let l is a positive integer and $D_k^l = \frac{\partial^l}{\partial x_k^l}$. Consider the E-valued function spaces defined by

$$B^{l,s}_{p,q,\gamma}(\Omega;E_0,E) = \left\{ u : u \in B^s_{p,q,\gamma}(\Omega;E_0), D^l_k u \in B^s_{p,q,\gamma}(\Omega;E), \right.$$

$$||u||_{B^{l,s}_{p,q,\gamma}(\Omega;E_0,E)} = ||u||_{B^s_{p,q,\gamma}(\Omega;E_0)} + \sum_{k=1}^n ||D^l_k u||_{B^s_{p,q,\gamma}(\Omega;E)} < \infty$$

A function $u \in B_{p,q,\gamma}^{l,s}(\mathbb{R}^n;E(A),E)$ satisfying the equation (1.1) a.e. on \mathbb{R}^n is called a solution of (1.1).

The CDOE (1.1) is said to be weighted B-separable (or $B^s_{p,q,\gamma}(R^n;E)$ -separable) if for all $f \in B^s_{p,q,\gamma}(R^n;E)$ it has a unique solution $u \in B^{l,s}_{p,q,\gamma}(R^n;E(A),E)$ and

$$\sum_{|\alpha| \le l} \|a_{\alpha} * D^{\alpha} u\|_{B^{s}_{p,q,\gamma}(R^{n};E)} + \|A * u\|_{B^{s}_{p,q,\gamma}(R^{n};E)} \le C \|f\|_{B^{s}_{p,q,\gamma}(R^{n};E)}.$$

Let E_1 and E_2 be two Banach spaces. A function $\Psi \in L_\infty \left(R^n; L(E_1, E_2) \right)$ is called a multiplier from $B^s_{p,q,\gamma}(R^n; E_1)$ to $B^s_{p,q,\gamma}(R^n; E_2)$ for $p \in (1,\infty)$ and $q \in [1,\infty]$ if the map $u \to Ku = F^{-1}\Psi(\xi)Fu, \ u \in S(R^n; E_1)$ are well defined and extends to a bounded linear operator

$$K: B^s_{p,q,\gamma}(\mathbb{R}^n; E_1) \to B^s_{p,q,\gamma}(\mathbb{R}^n; E_2).$$

 $M_p^q(E_1, E_2, s)$ denotes the collection of multiplier from $B_{p,q}^s(R^n; E_1)$ to $B_{p,q}^s(R^n; E_2)$. Let

$$\Phi_h = \{ \Psi_h \in M_p^q(E_1, E_2, s), h \in M(h) \}.$$

We say that Φ_h is a collection of uniformly bounded multipliers (UBM) if there exists a positive constant M independent on $h \in M(h)$ such that

$$||F^{-1}\Psi_h Fu||_{B^s_{p,q}(\mathbb{R}^n;E_2)} \le M||u||_{B^s_{p,q}(\mathbb{R}^n;E_1)}$$

for all $h \in M(h)$ and $u \in S(\mathbb{R}^n; E_1)$.

Definition 1.1. Let E be a Banach space and $1 \le p \le 2$. Let E so that

$$||Ff||_{L_{n'}(R^n;E)} \le C||f||_{L_p(R^n;E)}$$
 for each $f \in S(R^n,E)$,

where $\frac{1}{p} + \frac{1}{p'} = 1$. Then the space E is said to be the Fourier type p.

Definition 1.2. Let A = A(x), $x \in \mathbb{R}^n$, be a closed linear operator in E with domain definition D(A) independent of x. Then, the Fourier transformation of A(x) is defined as

$$\langle \hat{A}u, \varphi \rangle = \langle Au, \hat{\varphi} \rangle, \quad u \in D(A), \quad \varphi \in S(\mathbb{R}^n).$$

(For details see [3, p. 7].)

Let $h \in R, m \in \mathbb{N}$ and $e_k, k = 1, 2, ..., n$, be standart unit vectors of R^n . Let

$$\Delta_k(h) f(x) = f(x + he_k) - f(x).$$

Definition 1.3. Let A = A(x) be a closed linear operator in E with the domain definition D(A) independent of x. It is differentiable if

$$\left(\frac{\partial A}{\partial x_k}\right)u = \lim_{h \to 0} \frac{\|\Delta_k(h)A(x)u\|_E}{h} < \infty, \quad u \in D(A).$$

Let A = A(x), $x \in \mathbb{R}^n$, be a closed linear operator in E with domain definition D(A) independent of x and $u \in S^{r}(\mathbb{R}^n; E(A))$. We define the convolution A * u in the distribution sense (see, e.g., [3]).

The space $C^{(m)}(\Omega; E)$ will denote the spaces of E-valued uniformly bounded, m-times continuously differentiable functions on Ω .

Let us first recall an important fact [11] (Corollary 4.11) that will used in this section.

Theorem 1.1. Let $p, q \in [1, \infty]$. If $\Psi \in C^l(\mathbb{R}^n, L(E_1, E_2))$ satisfies for some positive constant K,

$$\sup_{x \in R^n} \left\| (1 + |x|)^{|\alpha|} D^{\alpha} \Psi(x) \right\|_{L(E_1, E_2)} \le K$$

for each multiindex α with $|\alpha| \leq l$, then Ψ is Fourier multiplier from $B_{p,q}^s(R^n, E_1)$ to $B_{p,q}^s(R^n, E_2)$ provided one of the following conditions hold:

- (a) E_1 and E_2 are arbitrary Banach spaces and l = n + 1;
- (b) E_1 and E_2 are uniformly convex Banach spaces and l = n;
- (c) E_1 and E_2 have Fourier type p and $l = \left\lceil \frac{n}{p} \right\rceil + 1$.
- **2. Convolution-elliptic operator equations.** In this section we present the separability properties of the CDOE

$$(L+\lambda)u = \sum_{|\alpha| \le l} a_{\alpha} * D^{\alpha}u + A * u + \lambda u = f(x),$$

where A = A(x) is a linear operator in a Banach space E, $a_{\alpha} = a_{\alpha}(x)$ are complex valued functions and λ is a complex parameter.

We fined the sufficient conditions under which the problem is separable in $B^s_{p,q,\gamma}(\mathbb{R}^n;E)$.

Condition 2.1. Let $a_{\alpha} \in L_{\infty}(\mathbb{R}^n)$ such that the following conditions satisfied:

$$L(\xi) = \sum_{|\alpha| \le l} \hat{a}_{\alpha}(\xi)(i\xi)^{\alpha} \in S_{\varphi_1}, \qquad |L(\xi)| \ge C |a_0(\xi)| |\xi|^l,$$

$$|a_0(\xi)| = \max_{\alpha} |\hat{a}_{\alpha}(\xi)|.$$

For proving the main result of this section let at first, show the following lemmas.

Lemma 2.1. Suppose the Condition 2.1 holds. Assume $\hat{A}(\xi)$ is an uniformly φ -positive operator in a Banach space E with $0 < \varphi < \pi - \varphi_1$. Then operator functions

$$\sigma_0(\xi,\lambda) = \lambda G(\xi,\lambda), \qquad \sigma_1(\xi,\lambda) = \hat{A}(\xi)G(\xi,\lambda),$$
$$\sigma_2(\xi,\lambda) = \sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \hat{a}_{\alpha}(\xi)(i\xi)^{\alpha} G(\xi,\lambda)$$

are uniformly bounded, where

$$G(\xi,\lambda) = \left[\hat{A}(\xi) + \lambda + L(\xi)\right]^{-1}.$$

Proof. Let us note that for the sake of simplicity we shall note change constants in every step. By virtue of [9] (Lemma 2.3), for $L(\xi) \in S_{\varphi_1}$, $\lambda \in S_{\varphi}$ and $\varphi_1 + \varphi < \pi$ there is a positive constant C so that

$$\left|\lambda + L(\xi)\right| \ge C\left(|\lambda| + \left|L(\xi)\right|\right). \tag{2.1}$$

By using the resolvent properties of positive operators and by (2.1) we obtain

$$\|\sigma_{0}(\xi,\lambda)\|_{L(E)} \leq M|\lambda| \Big[1 + |\lambda| + |L(\xi)| \Big]^{-1} \leq M_{0},$$

$$\|\sigma_{1}(\xi,\lambda)\|_{L(E)} = \|I - (\lambda + L(\xi))G(\xi,\lambda)\|_{L(E)} \leq$$

$$\leq 1 + |\lambda + L(\xi)| \|G(\xi,\lambda)\|_{L(E)} \leq 1 + M|\lambda + L(\xi)| (1 + |\lambda + L(\xi)|)^{-1} \leq M_{1}.$$

Next, let us consider σ_2 . It is clear to see that

$$\begin{aligned} & \left\| \sigma_2(\xi,\lambda) \right\|_{L(E)} = \left\| \sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \hat{a}_{\alpha}(\xi) (i\xi)^{\alpha} G(\xi,\lambda) \right\|_{L(E)} \le \\ & \le C \sum_{|\alpha| \le l} |\lambda| \left| \hat{a}_{\alpha}(\xi) \right| \left[|\xi| |\lambda|^{-\frac{1}{l}} \right]^{|\alpha|} \left\| G(\xi,\lambda) \right\|_{L(E)} \le \\ & \le C \sum_{|\alpha| \le l} |\lambda| \left| \hat{a}_{\alpha}(\xi) \right| \prod_{k=1}^{n} \left[|\xi_k| |\lambda|^{-\frac{1}{l}} \right]^{\alpha_k} \left\| G(\xi,\lambda) \right\|_{L(E)}. \end{aligned}$$

Therefore, $\sigma_2(\xi,\lambda)$ is bounded if

$$\sum_{|\alpha| \le l} |\lambda| |\hat{a}_{\alpha}(\xi)| \prod_{k=1}^{n} \left[|\xi_{k}| |\lambda|^{-\frac{1}{l}} \right]^{\alpha_{k}} ||G(\xi, \lambda)||_{L(E)} \le C.$$

Since \hat{A} is uniformly positive and $L(\xi) \in S_{\varphi_1}$, by using the well known inequalities

$$y_1^{\alpha_1} y_2^{\alpha_2} \dots y_n^{\alpha_n} \le C \left(1 + \sum_{k=1}^n y_k^l \right), \quad y_k \ge 0, \quad |\alpha| \le l,$$
 (2.2)

for $y_k = \left(|\lambda|^{-\frac{1}{l}}|\xi_k|\right)^{\alpha_k}$ we obtain

$$\sum_{|\alpha| \le l} |\lambda| |\hat{a}_{\alpha}(\xi)| \prod_{k=1}^{n} \left[|\xi_{k}| |\lambda|^{-\frac{1}{l}} \right]^{\alpha_{k}} \left\| G(\xi, \lambda) \right\|_{L(E)} \le$$

$$\le C \sum_{k=l} |\lambda| |\hat{a}_{\alpha}(\xi)| \left[1 + \sum_{k=1}^{n} |\xi_{k}|^{l} |\lambda|^{-1} \right] \left[1 + |\lambda + L(\xi)| \right]^{-1}.$$

Taking into account Condition 2.1 and by (2.2) we get

$$\left\|\sigma_2(\xi,\lambda)\right\|_{L(E)} \le C \left[\left|\lambda\right| + \sum_{k=1}^n \left|\xi_k\right|^l\right] \left[1 + \left|\lambda\right| + \left|L(\xi)\right|\right]^{-1} \le$$

$$\le C \left[\left|\lambda\right| + \sum_{k=1}^n \left|\xi_k\right|^l\right] \left[1 + \left|\lambda\right| + \sum_{|\alpha| \le l} \left|\hat{a}_\alpha(\xi)\right| \left|\xi^\alpha\right|\right]^{-1} \le C.$$

Lemma 2.2. Let all conditions of Lemma 2.1 hold. Let $\hat{a}_{\alpha} \in C^{(n)}(\mathbb{R}^n)$, $[D^{\beta}\hat{A}(\xi)]\hat{A}^{-1}(\xi) \in C(\mathbb{R}^n; L(E))$ for $|\beta| \leq n+1$ and

$$\left\| \left[D^{\beta} \hat{A}(\xi) \right] \hat{A}^{-1}(\xi) \right\|_{L(E)} \le C_1. \tag{2.3}$$

Then operator functions $D^{\beta}\sigma_{j}(\xi,\lambda),\ j=0,1,2,$ are uniformly bounded.

Proof. Let us first estimate $\frac{\partial \sigma_1}{\partial \xi_i}$. It is easy to see that

$$|D^{\beta}\hat{a}_{\alpha}(\xi)| \le C_2, \quad |\beta| \le n+1. \tag{2.4}$$

Really,

$$\left\| \frac{\partial \sigma_1}{\partial \xi_i} \right\|_{L(E)} \le \|I_1\|_{L(E)} + \|I_2\|_{L(E)} + \|I_3\|_{L(E)},$$

where

$$I_{1} = \left[\frac{\partial \hat{A}(\xi)}{\partial \xi_{i}}\right] G(\xi, \lambda), \qquad I_{2} = \hat{A}(\xi) \left[\frac{\partial \hat{A}(\xi)}{\partial \xi_{i}}\right] \left[G(\xi, \lambda)\right]^{2}$$

and

$$I_3 = \hat{A}(\xi) \left[\frac{\partial L(\xi)}{\partial \xi_i} \right] \left[G(\xi, \lambda) \right]^2.$$

By using (2.3) we get

$$||I_1||_{L(E)} = \left\| \left[\frac{\partial \hat{A}(\xi)}{\partial \xi_i} \right] \hat{A}^{-1}(\xi) \hat{A}(\xi) G(\xi, \lambda) \right\|_{L(E)} \le$$

$$\le \left\| \left[\frac{\partial \hat{A}(\xi)}{\partial \xi_i} \right] \hat{A}^{-1}(\xi) \right\|_{L(E)} \left\| \sigma_1(\xi, \lambda) \right\|_{L(E)} \le C.$$

Due to resolvent properties of \hat{A} and by using (2.3) we obtain

$$\left\|I_{2}\right\|_{L(E)} \leq \left\|\left[\frac{\partial \hat{A}(\xi)}{\partial \xi_{i}}\right] \hat{A}^{-1}(\xi)\right\|_{L(E)} \left\|\sigma_{1}(\xi,\lambda)\right\|_{L(E)}^{2} \leq C.$$

By using (2.3), (2.4) for $\lambda \in S_{\varphi}$ and $L(\xi) \in S_{\varphi_1}$ with $\varphi_1 + \varphi < \pi$ we have

$$\begin{aligned} \left\|I_{3}\right\|_{L(E)} &\leq \left|\frac{\partial L(\xi)}{\partial \xi_{i}}\right| \left\|G(\xi,\lambda)\right\|_{L(E)} \left\|\sigma_{1}(\xi,\lambda)\right\|_{L(E)} \leq \\ &\leq C \sum_{|\alpha| \leq l} \left[\left|\frac{\partial \hat{a}_{\alpha}(\xi)}{\partial \xi_{i}}\right| \left|\xi^{\alpha}\right| + \left|\hat{a}_{\alpha}(\xi)\right| \left|\xi_{1}^{\alpha_{1}} \dots \xi_{i}^{\alpha_{i}-1} \dots \xi_{n}^{\alpha_{n}}\right|\right] \left[1 + \left|\lambda + L(\xi)\right|\right]^{-1} \leq C. \end{aligned}$$

Then by using (2.2) we get from above $||I_3||_{L(E)} \leq C$. In a similar way the uniformly boundedness of $\sigma_0(\xi,\lambda)$ is proved. Next we shall prove $\frac{\partial}{\partial \xi_i} \sigma_2(\xi,\lambda)$ is uniformly bounded. Similarly,

$$\left\| \frac{\partial}{\partial \xi_i} \sigma_2(\xi, \lambda) \right\|_{L(E)} \le \|J_1\|_{L(E)} + \|J_2\|_{L(E)} + \|J_3\|_{L(E)} + \|J_4\|_{L(E)},$$

where

$$J_{1} = \sum_{|\alpha| \leq l} |\lambda|^{1 - \frac{|\alpha|}{l}} \left[\frac{\partial \hat{a}_{\alpha}(\xi)}{\partial \xi_{i}} \right] (i\xi)^{\alpha} G(\xi, \lambda),$$

$$J_{2} = \sum_{|\alpha| \leq l} |\lambda|^{1 - \frac{|\alpha|}{l}} \hat{a}_{\alpha}(\xi) i \alpha_{i} \xi_{i}^{-1} (i\xi)^{\alpha} G(\xi, \lambda),$$

$$J_{3} = \sum_{|\alpha| \leq l} |\lambda|^{1 - \frac{|\alpha|}{l}} \hat{a}_{\alpha}(\xi) (i\xi)^{\alpha} \left[\frac{\partial L(\xi)}{\partial \xi_{i}} \right] \left[G(\xi, \lambda) \right]^{2}$$

and

$$J_4 = \sum_{|\alpha| < l} |\lambda|^{1 - \frac{|\alpha|}{l}} \hat{a}_{\alpha}(\xi) (i\xi)^{\alpha} \left[\frac{\partial}{\partial \xi_i} \hat{A}(\xi) \right] \left[G(\xi, \lambda) \right]^2.$$

Let us first show J_1 is uniformly bounded. Since,

$$||J_1||_{L(E)} \le \sum_{|\alpha| \le l} \left| \frac{\partial \hat{a}_{\alpha}(\xi)}{\partial \xi_i} \right| \left| ||\lambda|^{1 - \frac{|\alpha|}{l}} (i\xi)^{\alpha} G(\xi, \lambda) \right||_{L(E)}.$$

By resolvent properties of \hat{A} , by virtue of (2.1), (2.2) and (2.4) we obtain $||J_1||_{L(E)} \leq C$. In a similar way by using (2.1), (2.2) and (2.4) we get

$$||J_k||_{L(E)} \le C, \quad k = 2, 3, 4.$$

Hence, operator functions $\frac{\partial \sigma_j}{\partial \xi_i}$, j=0,1,2, are uniformly bounded. Now, it remains to show $D^{\beta}\sigma_j(\xi,\lambda)$ are uniformly bounded for $|\beta| \leq n+1$. It is clear to see that

$$\left\| \frac{\partial^2 \sigma_1}{\partial \xi_i^2} \right\|_{L(E)} \le \|I_4\|_{L(E)} + \|I_5\|_{L(E)} + \|I_6\|_{l(E)},$$

where

$$I_{4} = \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}^{2}} G(\xi, \lambda) - \left[\frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \right]^{2} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial L(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2},$$

$$I_{5} = \left[\frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \right]^{2} \left[G(\xi, \lambda) \right]^{2} + \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}^{2}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}^{2}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}^{2}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}^{2}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} - \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial^{2} \hat{A}(\xi)}{\partial \xi_{$$

$$-2\hat{A}(\xi) \left[\frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \hat{A}(\xi) \right] \left[\frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} + \frac{\partial L(\xi)}{\partial \xi_{i}} \right] \left[G(\xi, \lambda) \right]^{3} +$$

$$+ \hat{A}(\xi) \frac{\partial L(\xi)}{\partial \xi_{i}} \left[\frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} + \frac{\partial L(\xi)}{\partial \xi_{i}} \right] \left[G(\xi, \lambda) \right]^{3},$$

$$I_{6} = \frac{\partial \hat{A}(\xi)}{\partial \xi_{i}} \frac{\partial L(\xi)}{\partial \xi_{i}} \left[G(\xi, \lambda) \right]^{2} + \hat{A}(\xi) \frac{\partial^{2} L(\xi)}{\partial \xi_{i}^{2}} \left[G(\xi, \lambda) \right]^{2}.$$

By using resolvent properties of positive operator $\hat{A}(\xi)$ and conditions of lemma we have

$$||I_4||_{L(E)} \le \left\| \frac{\partial^2 \hat{A}(\xi)}{\partial \xi_i^2} \hat{A}^{-1}(\xi) \right\| ||\sigma_1|| + \left\| \frac{\partial \hat{A}(\xi)}{\partial \xi_i} \hat{A}^{-1}(\xi) \right\|^2 ||\sigma_1||^2 +$$

$$+ 2 ||\sigma_1|| \left\| \frac{\partial \hat{A}(\xi)}{\partial \xi_i} \hat{A}^{-1}(\xi) \right\| \left\| \left[\frac{\partial \hat{A}(\xi)}{\partial \xi_i} + \frac{\partial L}{\partial \xi_i} \right] \hat{A}^{-1}(\xi) \right\| ||\sigma_1||^2.$$

Then by using (2.1)–(2.4) we obtain from above $||I_4||_{L(E)} \le M$. By using the same arguments we get

$$||I_k||_{L(E)} \le M, \quad k = 5, 6.$$

From the representations of $\sigma_j(\xi,\lambda)$, j=0,1,2, it easy to see that operator functions $D^{\beta}\sigma_j(\xi,\lambda)$ contain the similar terms as I_k ; namely, the functions $D^{\beta}\sigma_j(\xi,\lambda)$ will be represented as the combinations of principal terms

$$\left[D^{m}\hat{A}(\xi) + \xi^{\sigma}D^{\gamma}\hat{a}_{\alpha}(\xi)\right] \left[\hat{A}(\xi) + \lambda + L(\xi)\right]^{-|\beta|}, \tag{2.5}$$

where $|m| \le |\beta|$ and $|\sigma| + |\gamma| \le |\beta|$. So, by using the similar arguments as above we obtain

$$||D^{\beta}\sigma_j(\xi,\lambda)|| \le C, \quad j=0,1,2.$$

Hence, we get operator functions $D^{\beta}\sigma_{j}(\xi,\lambda)$ are uniformly bounded for each multiindex $|\beta| \leq n+1$.

Lemma 2.3. Let all conditions of Lemma 2.2 are satisfied and

$$|\xi|^{\eta} |D^{\beta} \hat{a}_{\alpha}(\xi)| \le C_1, \qquad |\xi|^{\eta} || [D^{\beta} \hat{A}(\xi)] \hat{A}^{-1}(\xi) ||_{L(E)} \le C_2.$$
 (2.6)

Then the estimates hold

$$|\xi|^{\eta} ||D^{\beta} \sigma_j(\xi, \lambda)||_{L(E)} \le M, \quad j = 0, 1, 2,$$

for all $\eta \leq |\beta| \leq n+1$ and $\xi \in \mathbb{R}^n$.

Proof. Since, $D^{\beta}\sigma_j(\xi,\lambda)$ is in the form of (2.5), by reasoning as in Lemma 2.2, by (2.6) we have

$$\||\xi_i|^{\eta} D^{\beta} \sigma_j(\xi, \lambda)\|_{L(E)} \le C, \qquad j = 0, 1, 2, \quad i = 1, 2, \dots, n,$$

that in its turn implies assertion of Lemma 2.3.

From Lemma 2.3 we obtain the following corollary.

Corollary 2.1. Let all conditions of Lemma 2.3 are satisfied, $p,q \in [1,\infty)$. Then operator-functions $\sigma_j(\xi,\lambda)$, j=0,1,2, are UBM in $B^s_{p,q,\gamma}(R^n;E)$.

Proof. To prove $\sigma_j(\xi,\lambda)$ are UBM in $B_{p,q,\gamma}^{s,\gamma}(\mathbb{R}^n;E)$, we need the following estimates:

$$\left\| (1+|\xi|)^{\eta} D^{\beta} \sigma_j(\xi,\lambda) \right\|_{L_{\infty}(\mathbb{R}^n,L(E))} \le K, \quad K > 0,$$

for $\xi \in \mathbb{R}^n \setminus 0$, $|\beta| \leq n+1$. From Lemma 2.3 it follows $\sigma_i \in C^{(n)}(\mathbb{R}^n \setminus 0, L(E))$ and

$$\|D^{\beta}\sigma_{j}(\xi,\lambda)\|_{L_{\infty}(L(E)))} \leq K_{1}, \qquad |\xi|^{\eta} \|D^{\beta}\sigma_{j}(\xi,\lambda)\|_{L_{\infty}(L(E)))} \leq K_{2}, \quad \eta \leq |\beta| \leq n+1.$$

Hence, operator functions $\sigma_i(\xi,\lambda)$ are Fourier multipliers in $B^s_{p,q,\gamma}(R^n,E)$. Let we denote $B^s_{p,q,\gamma}(R^n,E)$ by X.

Now we are ready to state the main result of the present section.

Condition 2.2. Suppose the following conditions be satisfied:

- (1) $L(\xi) = \sum_{|\alpha| \le l} \hat{a}_{\alpha}(\xi)(i\xi)^{\alpha} \in S_{\varphi_1}, \ |L(\xi)| \ge C|a_0(\xi)||\xi|^l, \ |a_0(\xi)| = \max_{\alpha} |\hat{a}_{\alpha}(\xi)|, \ \xi = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^n;$
 - (2) E is a Banach space;
 - (3) $\hat{A}(\xi)$ is an uniformly φ -positive operator in E, with $0 < \varphi < \pi \varphi_1$ and

$$[D^{\beta} \hat{A}(\xi)] \hat{A}^{-1}(\xi) \in C(\mathbb{R}^n; L(E)),$$

$$\hat{a}_{\alpha} \in C(\mathbb{R}^n), \qquad |\xi|^k \left| D^{\beta} \hat{a}_{\alpha}(\xi) \right| \le C_1, \quad k \le |\beta| \le n+1,$$

$$|\xi|^k \left\| [D^{\beta} \hat{A}(\xi)] \hat{A}^{-1}(\xi) \right\|_{L(E)} \le C_2, \quad k \le |\beta| \le n+1.$$

Theorem 2.1. Suppose the Condition 2.2 is satisfied, then for $f \in B^s_{p,q,\gamma}(R^n; E)$, $p,q \in [1,\infty)$, the equation (1.1) has a unique solution $u \in B^{l,s}_{p,q,\gamma}(R^n; E(A), E)$ and the following coercive uniform estimate holds:

$$|\lambda| \|u\|_X + \sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \|a_\alpha * D^\alpha u\|_X + \|A * u\|_X \le C \|f\|_X$$
 (2.7)

for $\lambda \in S_{\varphi}$ with $|\lambda| \geq \lambda_0 > 0$.

Proof. By applying the Fourier transform to equation (1.1), we obtain

$$\left[\hat{A}(\xi) + L(\xi) + \lambda\right] u^{\hat{}}(\xi) = f^{\hat{}}(\xi).$$

Since $L(\xi) \in S_{\varphi_1}$ for $\xi \in \mathbb{R}^n$ and \hat{A} is a positive operator in E, we get $[\hat{A}(\xi) + L(\xi) + \lambda]^{-1} \in E(E)$. So we obtain that the solution of the equation (1.1) can be represented in the form

$$u(x) = F^{-1} [\hat{A}(\xi) + \lambda + L(\xi)]^{-1} f^{\hat{}}.$$

There are positive constants C_1 and C_2 such that

$$C_1|\lambda|\|u\|_X \le \|F^{-1}[\sigma_0(\xi,\lambda)f^{\hat{}}]\|_X \le C_2|\lambda|\|u\|_X,$$

$$C_1\|A*u\|_X \le \|F^{-1}[\sigma_1(\xi,\lambda)f^{\hat{}}]\|_X \le C_2\|A*u\|_X,$$
(2.8)

$$C_{1} \sum_{|\alpha| \leq l} |\lambda|^{1 - \frac{|\alpha|}{l}} \|a_{\alpha} * D^{\alpha} u\|_{X} \leq \|F^{-1} [\sigma_{2}(\xi, \lambda) f^{\hat{}}]\|_{X} \leq$$

$$\leq C_{2} \sum_{|\alpha| \leq l} |\lambda|^{1 - \frac{|\alpha|}{l}} \|a_{\alpha} * D^{\alpha} u\|_{X},$$

where

$$\sigma_0(\xi,\lambda) = \lambda \left[\hat{A}(\xi) + (\lambda + L(\xi)) \right]^{-1}, \qquad \sigma_1(\xi,\lambda) = \hat{A}(\xi) \left[\hat{A}(\xi) + \lambda + L(\xi) \right]^{-1},$$
$$\sigma_2(\xi,\lambda) = \sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \hat{a}_{\alpha}(\xi) (i\xi)^{\alpha} \left[\hat{A}(\xi) + \lambda + L(\xi) \right]^{-1}.$$

To show the estimate (2.7) it is enough to prove that operator functions $\sigma_j(\xi, \lambda)$, j = 0, 1, 2, are UBM in X. This fact is obtained from the Lemma 2.3. That is we obtain the assertion.

Let Q be the operator in $X = B_{p,q,\gamma}^s(R^n; E)$ generated by problem (1.1) for $\lambda = 0$, i.e.,

$$D(Q) \subset X_0 = B_{p,q,\gamma}^{l,s}(R^n; E(A), E), \qquad Qu = \sum_{|\alpha| \le l} a_\alpha * D^\alpha u + A * u.$$

Result 2.1. Assume all conditions of Theorem 2.1 hold. Then for all $\lambda \in S_{\varphi}$, $|\lambda| \geq \lambda_0 > 0$, there exist the resolvent of operator Q and the following estimate holds:

$$\sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \left\| a_{\alpha} * \left[D^{\alpha} (Q + \lambda)^{-1} \right] \right\|_{L(X)} +$$

$$+|\lambda| \|(Q+\lambda)^{-1}\|_{L(X)} + \|A*(Q+\lambda)^{-1}\|_{L(X)} \le C.$$

Condition 2.3. Let

$$D(A) = D(\hat{A}) = D(\hat{A}(\xi_0)), \quad \xi_0 \in \mathbb{R}^n.$$

Moreover, there are positive constants C_1 and C_2 so that for $u \in D(A)$, $x \in \mathbb{R}^n$,

$$C_1 \|\hat{A}(\xi_0)u\| \le \|A(x)u\| \le C_2 \|\hat{A}(\xi_0)u\|.$$

Remark 2.1. The Condition 2.2 is checked for regular elliptic operators with sufficiently smooth coefficients. Really, by setting $E = L_{p_1}(\Omega), \ p_1 \in (1, \infty)$, for bounded domain $\Omega \subset R^m$ with enough smooth boundary $\partial \Omega$ and by putting regular elliptic operators instead of A(x) and $\hat{A}(\xi)$ one can get it. So, by virtue of [17, 19] we obtain that the operators A(x), $\hat{A}(\xi)$ are positive and the above estimates hold.

Theorem 2.2. Assume all conditions of Theorem 2.1 and Condition 2.3 are satisfied. Then the problem (1.1) has a unique solution $u \in X_0$ and the coercive uniform estimate holds

$$\sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \|D^{\alpha}u\|_X + \|Au\|_X \le C\|f\|_X$$

for all $f \in X$, $p, q \in [1, \infty)$ and $\lambda \in S_{\varphi}$ with $|\lambda| \ge \lambda_0 > 0$.

Proof. By applying the Fourier transform to equation (1.1), we have $\hat{u}(\xi) = D(\xi, \lambda) f^{\hat{}}(\xi)$, where

$$D(\xi, \lambda) = \left[\hat{A}(\xi) + L(\xi) + \lambda \right]^{-1}.$$

So we obtain that the solution of equation (1.1) can be represented as $u(x) = F^{-1}D(\xi, \lambda)f^{\hat{}}$. Moreover, by Condition 2.2 we get

$$\left\|AF^{-1}D(\xi,\lambda)f^{\hat{}}\right\|_{X} \leq M\left\|\hat{A}(\xi_{0})F^{-1}D(\xi,\lambda)f^{\hat{}}\right\|_{Y}.$$

Hence, by using (2.8) it sufficient to show that the operator functions

$$\sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \xi^{\alpha} D(\xi, \lambda) \quad \text{and} \quad \hat{A}(\xi_0) D(\xi, \lambda)$$

are UBMs in X. Really, in view of (3) part of Condition 2.2 these fact are proved by reasoning as in Lemma 2.3.

Condition 2.4. There are positive constants C_1 and C_2 such that

$$C_1 \sum_{k=1}^{n} |a_k \xi_k|^l \le |L(\xi)| \le C_2 \sum_{k=1}^{n} |a_k \xi_k|^l, \quad \xi \ne 0,$$

and

$$D(A) = D(\hat{A}) = D(A(x_0)), \qquad \hat{A}(\xi)A^{-1}(x_0) \in L_{\infty}(\mathbb{R}^n; B(E)), \quad \xi, x_0 \in \mathbb{R}^n,$$

$$C_1 ||A(x_0)u|| \le ||A(x)u|| \le C_2 ||A(x_0)u||, \qquad u \in D(A), \quad x \in \mathbb{R}^n.$$

Theorem 2.3. Let all conditions of Theorem 2.2 and Condition 2.4 hold. Then for $u \in X_0$ there are positive constants M_1 and M_2 so that

$$M_1 \|u\|_{X_0} \le \sum_{|\alpha| \le l} \|a_\alpha * D^\alpha u\|_X + \|A * u\|_X \le M_2 \|u\|_{X_0}.$$

Proof. The left part of the above inequality is obtained from Theorem 2.2. So, it remains to prove the right-hand side of the estimate. Really, from Condition 2.3 we have

$$||A * u||_X \le M ||F^{-1} \hat{A} \hat{u}||_X \le C ||F^{-1} \hat{A} A^{-1}(x_0) A(x_0) \hat{u}||_X \le$$
$$\le C ||F^{-1} A(x_0) \hat{u}||_X \le C ||A u||_X, \quad u \in X_0.$$

Hence, applying the Fourier transform to equation (1.1) and by reasoning as Theorem 2.2, it is sufficient to prove that the function

$$\sum_{|\alpha| \le l} \hat{a}_{\alpha} \xi^{\alpha} \left[\sum_{k=1}^{n} \xi_{k}^{l_{k}} \right]^{-1}$$

is a multiplier in X. Then by using Condition 2.3 and proof of Lemma 2.3 we get the desired result.

Result 2.2. Theorem 2.3 implies the estimate

$$C_1 \|u\|_{X_0} \le \|Qu\|_X \le C_2 \|u\|_{X_0}$$

for $u \in X_0$.

Result 2.3. Result 2.1 particularly implies that the operator Q+a is positive in X for a>0, i.e., if \hat{A} is uniformly positive for $\varphi\in\left(\frac{\pi}{2},\pi\right)$, then it is clear to see that the operator Q+a is a generator of an analytic semigroup in X.

3. The Cauchy problem for parabolic CDOE. In this section we derive the maximal regularity properties of parabolic CDOE.

Let E_0 and E be two Banach spaces, where E_0 is continuously and densely embedded into E. Let $X=B^s_{p,q,\gamma}(R^n;E),\ Y=B^s_{p,q,\gamma}(R_+;X)$ and $X_0=B^{l,s}_{p,q,\gamma}\big(R^n;E_0,E\big).\ \tilde{B}^{l,1,s}_{p,q,\gamma}\big(R_+^n;E_0,E\big)$ denotes the space of all functions $u\in \tilde{B}^{l,1,s}_{p,q,\gamma}\big(R_+^n;E_0,E\big)$ that possess the generalized derivatives

$$D_t u, D_x^{\alpha} u \in B_{p,q,\gamma}^s(R_+; X)$$

with the norm

$$\|u\|_{B^{l,1,s}_{p,q,\gamma}\left(R^n_+;E_0,E\right)} = \|u\|_{B^s_{p,q,\gamma}(R_+;X)} + \|D_t u\|_{B^s_{p,q,\gamma}(R_+;X)} + \|D^\alpha u\|_{B^s_{p,q,\gamma}(R_+;X)}.$$

Consider the Cauchy problem for parabolic CDOE

$$\frac{\partial u}{\partial t} + \sum_{|\alpha| \le l} a_{\alpha} * D^{\alpha} u + A * u = f(t, x), \quad u(0, x) = 0, \tag{3.1}$$

where A = A(x) is a linear operator in E, $a_{\alpha} = a_{\alpha}(x)$ are complex-valued functions.

Theorem 3.1. Assume Condition 2.2 holds for $\varphi \in \left(\frac{\pi}{2}, \pi\right)$, s > 0. Suppose $\gamma \in A_p$ and E is a Banach space satisfies the B-weighted multiplier condition. Then for $f \in Y$ the problem (3.1) has a unique solution $u \in \tilde{B}^{1,1,s}_{p,q}(R^{n+1}_+; E(A), E)$ satisfying the estimate

$$\left\| \frac{\partial u}{\partial t} \right\|_{Y} + \sum_{|\alpha| \le l} \|a_{\alpha} * D^{\alpha} u\|_{Y} + \|A * u\|_{Y} \le C \|f\|_{Y}. \tag{3.2}$$

Proof. It is clear to see that

$$\tilde{B}_{p,q}^{l,1,s}(R_{+}^{n+1};E(A),E) = B_{p,q}^{1,s}(R_{+};D(Q),X).$$

Fom the Result 2.1 that the operator Q is positive in X for $\varphi > \frac{\pi}{2}$. Then it is known that the operator Q generated an analytic semigroup in X. It is easy to see that the problem (3.1) can be expressed as the following problem:

$$\frac{\partial u}{\partial t} + Qu(t) = f(t), \qquad u(0) = 0, \quad t \in R_+. \tag{3.3}$$

In view of resolvent properties of Q, $\varphi \in \left(\frac{\pi}{2}, \pi\right)$, by virtue of [3] (Proposition 8.10), [15, 19] and by Result 2.2 we obtain that, for $f \in Y$ the equation (3.3) has a unique solution $u \in B^{1,s}_{p,q}(R_+; D(Q), X)$ satisfying

$$\left\| \frac{\partial u}{\partial t} \right\|_{X} + \|Qu\|_{X} \le C \|f\|_{X}. \tag{3.4}$$

By Theorem 2.1 and estimate (3.4) we obtain (3.2).

4. Degenerate convolution elliptic equations. Consider the E-valued weighted Besov spaces $B_{p,q,\gamma}^{[l],s}(\Omega;E_0,E)$ defined as

$$B_{p,q,\gamma}^{[l],s}(\Omega; E_0, E) = \left\{ u; \ u \in B_{p,q,\gamma}^s(\Omega; E_0), \ D_{x_k}^{[l]} u \in B_{p,q,\gamma}^s(\Omega; E) \right\},\,$$

$$||u||_{B_{p,q,\gamma}^{[l],s}(\Omega;E_0,E)} = ||u||_{B_{p,q,\gamma}^s(\Omega;E_0)} + \sum_{k=1}^n ||D_{x_k}^{[l]}u||_{B_{p,q,\gamma}^s(\Omega;E)} < \infty.$$

Let us consider the following degenerate elliptic CDOE:

$$(L+\lambda)u = \sum_{|\alpha| \le l} a_{\alpha} * D^{[\alpha]}u + A * u + \lambda u = f.$$

$$(4.1)$$

We shall show that for all $f \in B^s_{p,q,\gamma}(R^n;E)$ and sufficiently large $|\lambda|, \ \lambda \in S_{\varphi}$ the equation (4.1) has a unique solution $u \in B^{[l],s}_{p,q,\gamma}\big(R^n;E(A),E\big)$ and the coercive uniform estimate

$$\sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \left\| a_{\alpha} * D^{[\alpha]} u \right\|_{B^{s}_{p,q,\gamma}(R^{n};E)} + \|A * u\|_{B^{s}_{p,q,\gamma}(R^{n};E)} + |\lambda| \|u\|_{B^{s}_{p,q,\gamma}(R^{n};E)} \le$$

$$\le C \|f\|_{B^{s}_{p,q,\gamma}(R^{n};E)} \tag{4.2}$$

holds.

Recall that $\tilde{\gamma}_k(x)$, $k=1,2,\ldots,n$, are positive measurable functions in R and

$$D^{[\alpha]} = D_1^{[\alpha_1]} D_2^{[\alpha_2]} \dots D_n^{[\alpha_n]}, \qquad D_k^{[a_k]} = \left(\tilde{\gamma}_k(x_k) \frac{\partial}{\partial x_k}\right)^{a_k}, \qquad \tilde{\gamma} = \left(\tilde{\gamma}_1, \tilde{\gamma}_2, \dots, \tilde{\gamma}_n\right).$$

It is clear that under the substitution

$$z_k = \int_0^{x_k} \tilde{\gamma}_k^{-1}(y) \, dy \tag{4.3}$$

spaces $B^s_{p,q}(R^n;E)$ and $B^{[l],s}_{p,q}(R^n;E(A),E)$ are mapped isomorphically onto the weighted spaces $B^s_{p,q,\gamma}(R^n;E),\ B^{l,s}_{p,q,\gamma}(R^n;E(A),E)$ respectively, where

$$\gamma = \prod_{k=1}^{n} \tilde{\gamma}_k (x_k(z_k)).$$

Moreover, under substitution (4.3) the degenerate problem (4.1) is redused to the following nondegenerate problem:

$$(L+\lambda)u = \sum_{|\alpha| \le l} a_{\alpha} * D^{\alpha}u + A * u + \lambda u = f$$

$$\tag{4.4}$$

considered in weighted space $B^s_{p,q,\gamma}(R^n;E)$, where A is a linear operator in Banach space E and a_{α} are complex numbers.

Now, we consider Cauchy problem the degenerate parabolic convolution equation

$$\frac{\partial u}{\partial t} + \sum_{|\alpha| \le l} a_{\alpha} * D^{[\alpha]} u + A * u = f(t, x),$$

$$u(0, x) = 0, \qquad t \in R_{+}, \quad x \in R.$$

$$(4.5)$$

In a similar way, under the substitution (4.3) the degenerate Cauchy problem (4.5) considered in $B_{p,q}^s(R^n;E)$ is transformed into undegenerate Cauchy problem (3.1) considered in the weighted space $B_{p,q,\gamma}^s(R^n;E)$.

Let H be the operator generated by problem (4.1), i.e.,

$$D(H) = B^{[l],s}_{p,q,\gamma} \big(R^n; E(A), E \big), \qquad Hu = \sum_{|\alpha| \le l} a_\alpha * D^{[\alpha]} u + A * u,$$

and we denote $B_{p,q,\gamma}^s(\mathbb{R}^n;E)$ by X.

From Theorems 2.1 and 3.1 we obtain the following results.

Result 4.1. Under conditions of Theorem 2.1 and (4.3) the equation (4.1) has a unique solution u(x) that belongs to space $B_{p,q,\gamma}^{[l],s}(\mathbb{R}^n;E(A),E)$ and the coercive uniform estimate

$$\sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \|a_{\alpha} * D^{[\alpha]} u\|_{X} + \|A * u\|_{X} + |\lambda| \|u\|_{X} \le C \|f\|_{X}$$

holds for all $f \in B^s_{p,q,\gamma}(R^n; E)$ and for sufficiently large $\lambda \in S_{\varphi}$.

Moreover, for $\lambda \in S_{\varphi}$ there exist the resolvent of operator H and has the estimate

$$\sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \|a_{\alpha} * D^{[\alpha]} (H + \lambda)^{-1} \|_{L(X)} +$$

$$+\|A*(H+\lambda)^{-1}\|_{L(X)} + \|\lambda(H+\lambda)^{-1}\|_{L(X)} \le C.$$

Result 4.2. For all $f \in B^s_{p,q,\gamma}(R_+;X)$ there is unique solution u(t,x) of problem (4.1) satisfying the following coercive estimate:

$$\left\| \frac{\partial u}{\partial t} \right\|_{Y} + \sum_{|\alpha| \le l} \left\| a_{\alpha} * D^{[\alpha]} u \right\|_{Y} + \|A * u\|_{Y} \le C \|f\|_{Y}.$$

5. Boundary-value problems for CDEs. In this section the boundary-value problems (BVPs) for the anisotropic type integro-differential equations is studied. The maximal regularity properties of this problem in weighted mixed $B_{\mathbf{p},q,\gamma}^s$ norm is obtained. In this direction it can be mention, e.g., the works [3, 10, 11, 16, 19]. Let $\tilde{\Omega} = R^n \times \Omega$, where $\Omega \subset R^\mu$ is an open connected set with compact C^{2m} -boundary $\partial\Omega$. Consider the BVP for CDE

$$(L+\lambda)u = \sum_{|\alpha| \le l} a_{\alpha} * D^{\alpha}u + \sum_{|\alpha| \le 2m} \left(b_{\alpha} c_{\alpha} D_{y}^{\alpha} \right) * u + \lambda u = f(x,y), \tag{5.1}$$

$$x \in \mathbb{R}^n, \quad y \in \Omega \subset \mathbb{R}^\mu,$$

$$B_{j}u = \sum_{|\beta| \le m_{j}} b_{j\beta}(y) D_{y}^{\beta} u(x, y) = 0, \quad y \in \partial\Omega,$$
(5.2)

where

$$D_{j} = -i\frac{\partial}{\partial y_{j}}, \qquad y = (y_{1}, \dots, y_{\mu}), \qquad a_{\alpha} = a_{\alpha}(x), \qquad b_{\alpha} = b_{\alpha}(x), \qquad c_{\alpha} = c_{\alpha}(y),$$

$$\alpha = (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}), \qquad u = u(x, y), \quad j = 1, 2, \dots, m.$$

Let $\tilde{\Omega} = R^n \times \Omega$, $\mathbf{p} = (p_1, p)$, and $\gamma(x) = |x|^{\alpha}$, $L_{\mathbf{p},\gamma}(\tilde{\Omega})$ will be denote the space of all \mathbf{p} -summable scalar-valued functions with weighted mixed norm (see, e.g., [7], § 1), i.e., the space of all measurable functions f defined on $\tilde{\Omega}$, for which

$$\|f\|_{L_{\mathbf{p},\gamma}\left(\tilde{\Omega}\right)} = \left(\int\limits_{R^n} \left(\int\limits_{\Omega} |f(x,y)|^{p_1} \gamma(x) dx\right)^{\frac{p}{p_1}} dy\right)^{\frac{1}{p}} < \infty.$$

Analogously $B_{\mathbf{p},q,\gamma}^{s}(\tilde{\Omega})$ denotes the Besov space with corresponding weighted mixed norm [7] (§ 18) and let

$$\begin{split} \tilde{B}^{s}_{\mathbf{p},q,\gamma}\left(\tilde{\Omega}\right) &= B^{s}_{p,q,\gamma}\left(R^{n};B^{s}_{p_{1},q,\gamma}(\Omega)\right), \\ \tilde{B}^{l,2m,s}_{\mathbf{p},q,\gamma}(\tilde{\Omega}) &= B^{l,s}_{p,q,\gamma}\left(R^{n};B^{2m,s}_{p_{1},q,\gamma}(\Omega),B^{s}_{p_{1},q,\gamma}(\Omega)\right). \end{split}$$

Let Q denote the operator generated by BVP (5.1), (5.2).

In general, $l \neq 2m$ so equation (5.1) is anisotropic. For l = 2m we get isotropic equation.

Theorem 5.1. Let the following conditions be satisfied:

- (1) $c_{\alpha} \in C\left(\bar{\Omega}\right)$ for each $|\alpha| = 2m$ and $c_{\alpha} \in L_{\infty}(\Omega) + L_{r_k}(\Omega)$ for each $|\alpha| = k < 2m$ with $r_k \ge p_1, \ p_1 \in (1, \infty)$ and $2m k > \frac{l}{r_k}, \ -1 < \alpha < p 1, \ k = 1, 2, \dots, n;$
 - (2) $b_{j\beta} \in C^{2m-m_j}(\partial\Omega)$ for each $j, \beta, m_j < 2m, p, q \in (1, \infty)$;
 - (3) for $y \in \bar{\Omega}$, $\xi \in R^{\mu}$, $\lambda \in S_{\varphi_0}$, $\varphi_0 \in \left(0, \frac{\pi}{2}\right)$, $|\xi| + |\lambda| \neq 0$, let $\lambda + \sum_{|\alpha| = 2m} c_{\alpha}(y) \xi^{\alpha} \neq 0$;
 - (4) for each $y_0 \in \partial \Omega$ local BVP in local coordinates corresponding to y_0

$$\lambda + \sum_{|\alpha|=2m} c_{\alpha}(y_0) D^{\alpha} g(y) = 0,$$

$$B_{j0}g = \sum_{|\beta|=m_j} b_{j\beta}(y_0)D^{\beta}g(y) = h_j, \quad j = 1, 2, \dots, m,$$

has a unique solution $g(y) \in C_0(R_+)$ for all $h = (h_1, h_2, \dots, h_m) \in R^m$ and for $\xi' \in R^{\mu-1}$ with $|\xi'| + |\lambda| \neq 0$;

(5) the (1) part of Condition 2.2 satisfied; $\hat{a}_{\alpha}, \hat{b}_{\alpha} \in C^{(n)}(\mathbb{R}^n)$ and there are positive constants C_1 and C_2 , so that

$$|\xi|^k |D^\beta \hat{a}_\alpha(\xi)| \le C_1, \qquad |\xi|^k |D^\beta \hat{b}_\alpha(\xi)| \le C_2$$

for all $k \leq |\beta| \leq n+1$ and $\xi \in \mathbb{R}^n \setminus \{0\}$.

Then for all $f \in \tilde{B}^{s}_{\mathbf{p},q,\gamma}(\tilde{\Omega})$ problem (5.1), (5.2) has a unique solution $u \in \tilde{B}^{l,2m,s}_{\mathbf{p},q,\gamma}(\tilde{\Omega})$ and the following coercive uniform estimate holds:

$$\sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \|a_{\alpha} * D^{\alpha} u\|_{\tilde{B}^{s}_{\mathbf{p},q,\gamma}\left(\tilde{\Omega}\right)} + |\lambda| \|u\|_{\tilde{B}^{s}_{\mathbf{p},q,\gamma}\left(\tilde{\Omega}\right)} +$$

$$+ \sum_{|\alpha| < 2m} \|b_{\alpha} c_{\alpha} D^{\alpha} * u\|_{\tilde{B}^{s}_{\mathbf{p},q,\gamma}(\tilde{\Omega})} \le C \|f\|_{\tilde{B}^{s}_{\mathbf{p},q,\gamma}(\tilde{\Omega})}$$

for $\lambda \in S_{\varphi}$ and $\varphi \in [0, \pi)$.

Proof. Let $X = B^s_{p_1,q,\gamma}(\Omega)$. Consider the operator A defined by the following equalities:

$$D(A) = B_{p_1,q}^{2m,s}(\Omega; B_j u = 0), \qquad A(x)u = \sum_{|\alpha| \le 2m} b_{\alpha}(x) c_{\alpha}(y) D^{\alpha} u(y). \tag{5.3}$$

The problem (5.1), (5.2) can be rewritten in the form of (1.1), where $u(x)=u(x,\cdot),\ f(x)=f(x,\cdot)$ are functions with values in $X=B^s_{p_1,q,\gamma}(\Omega)$. It is easy to see that $\hat{A}(\xi)$ and $D^\beta\hat{A}(\xi)$ are operators in X defined by

$$D(\hat{A}) = D(D^{\beta}\hat{A}) = B_{p_1,q}^{2m,s}(\Omega; B_j u = 0),$$

$$\hat{A}(\xi)u = \sum_{|\alpha| \le 2m} \hat{b}_{\alpha}(\xi)c_{\alpha}(y)D^{\alpha}u(y), \quad |\beta| \le n,$$
(5.4)

$$D_{\xi}^{\beta} \hat{A}(\xi) u = \sum_{|\alpha| \le 2m} D_{\xi}^{\beta} \hat{b}_{\alpha}(\xi) c_{\alpha}(y) D^{\alpha} u(y).$$

In view of conditions (1)–(5) and by virtue of [17, 19] the operators $\hat{A}(\xi) + \lambda$ and $D^{\beta}\hat{A}(\xi) + \lambda$ for sufficiently large $\lambda > 0$ are uniformly positive in X. Moreover, following problems for $f \in X$ and for arg $\lambda \in S_{\varphi_0}$, $|\lambda| \to \infty$:

$$\lambda u(y) + \sum_{|\alpha| \le 2m} \hat{b}_{\alpha}(\xi) c_{\alpha}(y) D^{\alpha} u(y) = f(y),$$

$$B_{j} u = \sum_{|\beta| \le m_{j}} b_{j\beta}(y) D^{\beta} u(y) = 0, \quad j = 1, 2, \dots, m,$$

$$(5.5)$$

$$\lambda u(y) + \sum_{\alpha \le 2m} D^{\beta} \hat{b}_{\alpha}(\xi) c_{\alpha}(y) D^{\alpha} u(y) = f(y),$$

$$B_{j} u = \sum_{|\beta| \le m_{j}} b_{j\beta}(y) D^{\beta} u(y) = 0, \quad j = 1, 2, \dots, m,$$

$$(5.6)$$

has unique solutions belong to $B_{p_1,q,\gamma}^{2m,s}(\Omega)$ and the coercive estimates hold

$$||u||_{B^{2m,s}_{n_1,n_2}(\Omega)} \le C ||(\hat{A}(\xi) + \lambda)u||_X, \qquad ||u||_{B^{2m,s}_{n_1,n_2}(\Omega)} \le C ||(D^{\beta}\hat{A}(\xi) + \lambda)u||_X \tag{5.7}$$

for solutions of problems (5.5) and (5.6) respectively. Then by (5.4) in view of (5) condition and by virtue of embedding theorems [7] (§ 18.4) and [21] we obtain

$$\begin{split} \big\| (\hat{A}(\xi) + \lambda) u \big\|_{X} &\leq C \|u\|_{B^{2m,s}_{p_{1},q,\gamma}(\Omega)} \leq C \big\| (\hat{A}(\xi) + \lambda) u \big\|_{X}, \\ \big\| (D^{\beta} \hat{A}(\xi) + \lambda) u \big\|_{X} &\leq C \|u\|_{B^{2m,s}_{p_{1},q,\gamma}(\Omega)} \leq C \big\| (D^{\beta} \hat{A}(\xi) + \lambda) u \big\|_{X}. \end{split} \tag{5.8}$$

Morever by using condition (5), for $u \in B_{p_1,q,\gamma}^{2m,s}(\Omega)$ we have

$$|\xi|^k \left\| (D^\beta \hat{A}(\xi) + \lambda) u \right\|_X \le C \left\| (\hat{A}(\xi) + \lambda) u \right\|_X,$$

i.e., all conditions of Theorem 2.1 hold and we obtain the assertion.

6. The system of infinite many integro-differential equations. Consider the following infinity system of convolution equation:

$$\sum_{|\alpha| < l} a_{\alpha} * D^{\alpha} u_{m} + \sum_{j=1}^{\infty} d_{j} * u_{j}(x) + \lambda u = f_{m}(x), \qquad x \in \mathbb{R}^{n}, \quad m = 1, 2, \dots, \infty.$$
 (6.1)

Condition 6.1. There are positive constants C_1 and C_2 so that for $\{d_j(x)\}_1^{\infty} \in l_r$ for all $x \in \mathbb{R}^n$ and some $x_0 \in \mathbb{R}^n$,

$$C_1 |d_j(x_0)| \le |d_j(x)| \le C_2 |d_j(x_0)|.$$

Let

$$D(x) = \{d_m(x)\}, \quad d_m > 0, \quad u = \{u_m\}, \qquad D * u = \{d_m * u_m\}, \quad m = 1, 2, \dots, \infty,$$

$$l_r(D) = \left\{ u : u \in l_r, ||u||_{l_r(D)} = ||D * u||_{l_r} = \left(\sum_{m=1}^{\infty} |d_m(x_0) * u_m|^r \right)^{\frac{1}{r}} < \infty \right\}, \quad 1 < r < \infty.$$

Let Q be a differential operator in $X=B^s_{p,q,\gamma}\big(R^n;l_r\big)$ generated by problem (6.1) and $B=L\big(B^s_{p,q,\gamma}(R^n;l_r)\big)$. Here $\gamma(x)=|x|^\alpha,\ -1<\alpha< p-1$.

Theorem 6.1. Suppose the first part of Conditions 2.1 and 6.1 hold, \hat{a}_{α} , $\hat{d}_{m} \in C^{(n)}(\mathbb{R}^{n})$ and there are positive constants C_{1} and C_{2} so that

$$|\xi|^k |D^\beta \hat{a}_\alpha(\xi)| \le C_1, \qquad |\xi|^k |D^\beta \hat{d}_m(\xi)| \le C_2$$

for all $k \leq |\beta| \leq n+1$ and $\xi \in \mathbb{R}^n \setminus \{0\}$.

Then:

(a) for all $f(x) = \{f_m(x)\}_1^{\infty} \in B_{p,q,\gamma}^s(R^n; l_r(D))$ for $\lambda \in S_{\varphi}$, $\varphi \in [0,\pi)$, problem (6.1) has a unique solution $u = \{u_m(x)\}_1^{\infty}$ that belongs to space $B_{p,q,\gamma}^{l,s}(R^n; l_r(D), l_r)$ and the coercive uniform estimate

$$\sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \|a_{\alpha} * D^{\alpha} u\|_{X} + \|D * u\|_{X} + |\lambda| \|u\|_{X} \le C \|f\|_{X}$$
(6.2)

holds for the solution of the problem (6.1);

(b) for $\lambda \in S_{\varphi}$ there exists a resolvent $(Q + \lambda)^{-1}$ of operator Q and

$$\sum_{|\alpha| \le l} |\lambda|^{1 - \frac{|\alpha|}{l}} \|a_{\alpha} * [D^{\alpha} (Q + \lambda)^{-1}]\|_{B} + \|D * (Q + \lambda)^{-1}\|_{B} + \|\lambda (Q + \lambda)^{-1}\|_{B} \le C.$$
(6.3)

Proof. Really, let $E = l_r$, A be infinite matrices, such that

$$A = [d_m(x)\delta_{jm}], \quad m, j = 1, 2, \dots, \infty.$$

Then

$$\hat{A}(\xi) = \left[\hat{d}_m(\xi)\delta_{jm}\right], \qquad D^{\beta}\hat{A}(\xi) = \left[D^{\beta}\hat{d}_m(\xi)\delta_{jm}\right], \quad m, j = 1, 2, \dots, \infty.$$

It is clear to see that \hat{A} and $D^{\beta}\hat{A}(\xi)$ are uniformly positive in l_r . Therefore, by virtue of Theorem 2.1 and Result 2.1 we obtain that the problem (6.1) for all $f \in X$ and $\lambda \in S_{\varphi}$ has a unique solution $u \in B^{l,s}_{p,q,\gamma}(R^n; l_r(D), l_r)$ and estimates (6.2), (6.3) are satisfied.

Remark 6.1. There are a lot of positive operators in concrete Banach spaces. Therefore, putting concrete Banach spaces instead of E and concrete positive differential, pseudodifferential operators, or finite, infinite matrices, etc. instead of operator A on (1.1) or (3.1) we can obtain the maximal regularity properties of different class of convolution equations and Cauchy problems for parabolic CDOEs or system of equations by virtue of Theorems 2.1 and 3.1.

References

- 1. Agarwal R. P., Bohner R., Shakhmurov V. B. Maximal regular boundary value problems in Banach-valued weighted spaces // Bound. Value Probl. 2005. 1. P. 9–42.
- 2. Amann H. Linear and quasi-linear equations. Birkhäuser, 1995. Vol. 1.
- 3. *Amann H.* Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications // Math. Nachr. 1997. **186**. S. 5–56.
- 4. Arendt W., Bu S. Tools for maximal regularity // Math. Proc. Cambridge Phil. Soc. 2003. 134. P. 317 336.
- 5. Ashyralyev A. A survey of results in the theory of fractional spaces generated by positive operators // TWMS J. Pure and Appl. Math. 2015. 6, № 2. P. 129–157.
- 6. *Bhalekar S., Patade J.* Analytical solutions of nonlinear equations with proportional delays // Appl. and Comput. Math. 2016. 15, № 3. P. 331–345.
- 7. Besov O. V., Ilin V. P., Nikolskii S. M. Integral representations of functions and embedding theorems. Moscow, 1975.
- 8. *Bota C., Caruntu B., Lazureanu C.* The least square homotopy perturbation method for boundary value problems // Appl. and Comput. Math. 2017. 16, № 1. P. 39–47.
- 9. *Dore G., Yakubov S.* Semigroup estimates and non coercive boundary value problems // Semigroup Forum. 2000. **60**. P. 93 121.
- 10. *Engler H*. Strong solutions of quasiliniar integro-differential equations with singular kernels in several space dimension // Electron. J. Different. Equat. 1995. 1995, № 2. P. 1–16.
- 11. Girardi M., Weis L. Operator-valued multiplier theorems on Besov spaces // Math. Nachr. 2003. 251. S. 34-51.
- 12. Gorbachuk V. I., Gorbachuk M. L. Boundary value problems for differential-operator equations. Kiev: Naukova Dumka, 1984.
- 13. *Huang Y., Liu Z. H., Wang R.* Quasilinearization for higher order impulsive fractional differential equations // Appl. and Comput. Math. 2016. 15, № 2. P. 159 171.
- 14. *Keyantuo V., Lizama C.* Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces // Stud. Math. 2005. **168**. P. 25 50.

- 15. *Musaev H. K., Shakhmurov V. B.* Regularity properties of degenerate convolution-elliptic equations // Bound. Value Probl. 2016. **50**. P. 1–19.
- 16. *Poblete V.* Solutions of second-order integro-differential equations on periodic Besov spaces // Proc. Edinburgh Math. Soc. 2007. 50, № 2. P. 477 492.
- 17. Prüss J. Evolutionary integral equations and applications. Basel: Birkhäuser, 1993.
- 18. *Shakhmurov V. B.* B-separable anisotropic convolution operators and applications // Georg. Math. J. 2013. 20, № 1. P. 129 149.
- 19. *Shakmurov V. B.* Embedding operators in vector-valued weighted Besov spaces and applications // J. Funct. Spaces and Appl. 2012. 2012. –15 p.
- 20. Shakhmurov V. B. Embedding theorems in Banach-valued B-spaces and maximal B-regular differential operator equations // J. Inequal. and Appl. 2006. P. 1–22.
- 21. Shakhmurov V. B., Musaev H. K. Separability properties of convolution-differential operator equations in weighted L_p spaces // Appl. and Comput. Math. -2015. -14, No. 2. -P. 221-233.
- 22. *Shakhmurov V. B., Musaev H.* Maximal regular convolution-differential equations in weighted Besov spaces // Appl. and Comput. Math. − 2017. − **16**, № 2. − P. 190 − 200.
- 23. Shakhmurov V. B., Shahmurov R. Maximal B-regular integro-differential equations // Chinese Ann. Math. 2008. 30, № 1. P. 39 50.
- 24. *Shakhmurov V. B., Shahmurov R.* Sectorial operators with convolution term // Math. Inequal. and Appl. 2010. 13, № 2. P. 387 404.
- 25. Triebel H. Interpolation theory. Function spaces. Differential operators. Amsterdam: North-Holland, 1978.
- 26. *Vashisht L. K.* Banach frames generated by compact operators associated with a boundary value problem // TWMS J. Pure and Appl. Math. −2015. −6, № 2. − P. 254 −258.
- 27. *Vergara V.* Maximal regularity and global well-posedness for a phase field system with memory // J. Integral Equat. and Appl. 2007. 19, № 1. P. 93 115.
- 28. *Yakubov S., Yakubov Ya.* Differential-operator equations. Ordinary and partial differential equations. Boca Raton: Chapmen and Hall / CRC, 2000.
- 29. Zhang Lihong, Ahmad Bashir, Wang Guotao. Existence and approximation of positive solutions for nonlinear fractional integro-differential boundary value problems on an unbounded domain // Appl. and Comput. Math. − 2016. − 15, № 2. − P. 149 − 158.

Received 05.04.16