Pham Duc Thoan (Nat. Univ. Civil Engineering, Hanoi, Vietnam)

REMARK ON THE TAUTNESS MODULO AN ANALYTIC HYPERSURFACE OF HARTOGS-TYPE DOMAINS

ЗАУВАЖЕННЯ ЩОДО НАТЯГУ ОБЛАСТЕЙ ТИПУ ХАРТОГСА ЗА МОДУЛЕМ АНАЛІТИЧНОЇ ГІПЕРПОВЕРХНІ

We present sufficient conditions for the tautness modulo an analytic hypersurface of Hartogs-type domains $\Omega_H(X)$ and Hartogs-Laurent-type domains $\Sigma_{u,v}(X)$. We also propose a version of Eastwood's theorem for the tautness modulo an analytic hypersurface.

Наведено достатні умови натягу областей типу Хартогса $\Omega_H(X)$ та Хартогса – Лорана $\Sigma_{u,v}(X)$ за модулем аналітичної гіперповерхні. Сформульовано версію теореми Іствуда для натягу за модулем аналітичної гіперповерхні.

1. Introduction. Let X be a complex space and let $H: X \times \mathbb{C}^m \to [-\infty; +\infty)$ be an upper semicontinuous function such that $H(z,w) \geq 0$ and $H(z,\lambda w) = |\lambda|H(z,w)$ with $\lambda \in \mathbb{C}, \ z \in X, \ w \in \mathbb{C}^m$. We put

$$\Omega_H(X) := \{(z, w) \in X \times \mathbb{C}^m : H(z, w) < 1\},\$$

and call it a Hartogs-type domain. For each $z \in X$, we denote by $\Omega_H(z) := \{w \in \mathbb{C}^m : H(z,w) < < 1\}$ the fiber of $\Omega_H(X)$ at z. Here, if $H(z,w) = h(w)e^{u(z)}$ for $z \in X, w \in \mathbb{C}^m$, where h,u are upper semicontinuous, $h \not\equiv 0$ and $h(\lambda w) = |\lambda|h(w)$ with $\lambda \in \mathbb{C}$, we denote $\Omega_H(X)$ by $\Omega_{u,h}(X)$ and the fiber by $\Omega_h := \{w \in \mathbb{C}^m : h(w) < 1\}$.

The following properties are known (see [1]):

 $\Omega_h \in \mathbb{C}^m$ if and only if there exists a positive constant C such that $h(w) \geq C||w||$ for all $w \in \mathbb{C}^m$;

h is plurisubharmonic on \mathbb{C}^m if and only if $\log h$ is plurisubharmonic on \mathbb{C}^m ;

 Ω_h is taut if and only if $\Omega_h \in \mathbb{C}^m$ and h is continuous plurisubharmonic on \mathbb{C}^m .

For u, v are upper semicontinuous functions on X with u + v < 0 on X, we put

$$\Sigma_{u,v}(X) := \{(z,\lambda) \in X \times \mathbb{C} : e^{v(z)} < |\lambda| < e^{-u(z)}\},$$

and call it a Hartogs – Laurent-type domain.

In the past ten years, much attention has been given to the properties of Hartogs-type domains from the viewpoint of hyperbolicity and tautness complex analysis (see [2, 3, 5, 7, 9, 11–14]). In [7], S. H. Park obtained necessary and sufficient conditions for the hyperbolicity and tautness of certain Hartogs-type domains and Hartogs-Laurent-type domains. In particular, in [13], D. D. Thai, M. A. Duc, P. J. Thomas and N. V. Trao considered the tautness modulo an analytic subset S of Hartogs-type domains in general situation. However, the original proof in [13] is based on Zorn's lemma, and it is not elementary. Notice that the results in [13] were proved for any analytic subset. When the analytic subset $S = \emptyset$, those results (see [13], Theorem 2.3) seem to be very different from previous results (see [7], Theorem 5.2, and [14], Theorem 1.2) by observing that given results in [13] do not need the tautness of the fibers $\Omega_H(z)$, but they do need in [7] and [14]. Moreover,

in the case of an analytic hypersurface, we can show a contradiction. For instance, we consider the following example. Let

$$h(w) := h(w_1, w_2) = |w_1^2 + w_2^2|^{\frac{1}{2}}, \quad (w_1, w_2) \in \mathbb{C}^2.$$

It is easy to check that $h(\lambda w) = |\lambda| h(w) \ge 0$, $\lambda \in \mathbb{C}$, $w = (w_1, w_2) \in \mathbb{C}^2$ and h is continuous on \mathbb{C}^2 and $\log h$ is plurisubharmonic on \mathbb{C}^2 , but the fiber Ω_h is unbounded. Hence, Ω_h is not taut. Let $u(z) := \log |z|$, it is a continuous subharmonic function on $X := \mathbb{C} \setminus \{0,1\}$. Put $S = \{-1\}$. It is clear to see that X is taut, hence X is taut modulo S (see Definition 2.2). Consider

$$H: X \times \mathbb{C}^2 \to [0; +\infty), \qquad H(z, w) = h(w)e^{u(z)},$$

which is continuous and log-plurisubharmonic on $X \times \mathbb{C}^2$. Thank to [7] (Theorem 5.2), we deduce that $\Omega_{u,h}(X \setminus S)$ is not taut. By Theorem 2.3 (iii) in [13] and Remark 2.1 below, we can see that $\Omega_{u,h}(X) \setminus \widetilde{S} = \Omega_{u,h}(X \setminus S)$ is taut, where $\widetilde{S} := S \times \mathbb{C}^2$. This is a contradiction.

Hence, in our opinion, for the tautness modulo an analytic subset \widetilde{S} of certain Hartogs-type domains $\Omega_H(X)$, the tautness of the fibers $\Omega_H(z)$ can not be dropped.

The first purpose of this paper is to give some general versions for the tautness modulo an analytic hypersurface of Hartogs-type domains and Hartogs-Laurent-type domains. Finally, we give a version of Eastwood's theorem for the tautness modulo an analytic hypersurface of a complex space. To finish the proofs, we use the ideas and arguments in [7] to avoid using Zorn's lemma.

2. Preliminaries. Let Δ be the open unit disk in the complex plane. For a complex space X, we denote by $\operatorname{Hol}(\Delta,X)$ the set of all holomorphic maps from Δ to X and by $B_n(z,r)$ the n-dimensional Euclidean open ball with center z and radius r>0 and by $\rho(a,b):=\tanh^{-1}\frac{|a-b|}{|1-\overline{a}b|}$ the Poincaré distance on the open unit disk Δ .

Definition 2.1 [6, p. 68]. Let X be a complex space and let S be an analytic subset in X. We say that X is hyperbolic modulo S if for every pair of distinct points p,q of X we have $d_X(p,q)>0$ unless both are contained in S, where d_X is the Kobayashi pseudodistance of X.

If $S = \emptyset$, then X is said to be hyperbolic.

Definition 2.2 [6, p. 240]. Let X be a complex space and let S be an analytic subset in X. We say that X is taut modulo S if $Hol(\Delta, X)$ is normal modulo S, i.e., for every sequence $\{f_n\}$ in $Hol(\Delta, X)$ one of the following holds:

- (i) there exists a subsequence of $\{f_n\}$ which converges uniformly on every compact subset to $f \in \text{Hol}(\Delta, X)$ in $\text{Hol}(\Delta, X)$;
- (ii) the sequence $\{f_n\}$ is compactly divergent modulo S in $\operatorname{Hol}(\Delta,X)$, i.e., for each compact set $K \subset \Delta$ and each compact set $L \subset X \setminus S$, there exists an integer N such that $f_n(K) \cap L = \emptyset$ for all $n \geq N$.

If $S=\varnothing$, then X is said to be taut. It is immediately from the definition that if $S\subset S'\subset X$ and X is taut modulo S, then it is taut modulo S', so in particular if X is taut, it is taut modulo S for any analytic subset S.

For z', z'' in X, we put

$$\widetilde{k}_X(z',z'') = \inf\{\rho(a,b) : a,b \in \Delta, \exists \varphi \in \operatorname{Hol}(\Delta,X), \varphi(a) = z', \varphi(b) = z''\} = \inf\{\rho(0,a) : a \in \Delta, \exists \varphi \in \operatorname{Hol}(\Delta,X), \varphi(0) = z', \varphi(a) = z''\},$$

which is called the Lempert function on X.

Related to the tautness of a complex space, there is a function $k_X^{(2)}$ defined as follows.

Definition 2.3 [5]. Let X be a complex space. We define

$$k_X^{(2)}(z',z'') = \inf\{\widetilde{k}_X(z',z_1) + \widetilde{k}_X(z_1,z'') : z_1 \in X\} =$$

$$= \inf\{\rho(0,a) + \rho(0,b) : a,b \in \Delta, \exists \varphi_1, \varphi_2 \in \operatorname{Hol}(\Delta,X),$$

$$\varphi_1(0) = z', \varphi_1(a) = \varphi_2(0), \varphi_2(b) = z''\}, \ z',z'' \in X.$$

Similar to the above definition, for the tautness modulo an analytic subset S of X, there is a function $\widetilde{k}_X^{(2)}$ defined as follows.

Definition 2.4 [3]. Let X be a complex space and let S be an analytic subset of X. We define

$$\widetilde{k}_{X}^{(2)}(z',z'') = \inf\{\widetilde{k}_{X\setminus S}(z',z_1) + \widetilde{k}_{X}(z_1,z'') : z_1 \in X \setminus S\} =$$

$$= \inf\{\rho(0,a) + \rho(0,b) : a,b \in \Delta, \exists \varphi_1 \in \operatorname{Hol}(\Delta,X \setminus S),$$

$$\varphi_2 \in \operatorname{Hol}(\Delta,X), \varphi_1(0) = z', \varphi_1(a) = \varphi_2(0), \varphi_2(b) = z''\},$$

where $z' \in X \setminus S$ and $z'' \in X$.

Obviously, $k_X^{(2)} \leq \widetilde{k}_X^{(2)} \leq \widetilde{k}_X$.

We recall the following result, which is similar to Royden's criterion for the taut domains [8].

Proposition 2.1 [3]. Let X be a complex space and let S be an analytic hypersurface in X. Then X is taut modulo S if and only if

$$B_{\widetilde{k}_G^{(2)}}(z_0, R) := \{ z \in X : \widetilde{k}_X^{(2)}(z_0, z) < R \} \subseteq X$$

for any R > 0 and $z_0 \in X \setminus S$.

Proposition 2.2 [3]. Let X be a complex space, S be an analytic subset in X and $X = \bigcup_{i \in I} X_i$ be the irreducible decomposition of X. Then X is taut modulo S if and only if X_i is taut modulo $S_i := X_i \cap S$ for all $i \in I$.

Lemma 2.1 [10]. Let Z be a complex manifold. Let S be a hypersurface of a complex space X. If $\{\varphi_n\}_{n\geq 1}\subset \operatorname{Hol}(Z,X\setminus S)$ converging uniformly on every compact subsets of Z to a mapping $\varphi\in \operatorname{Hol}(Z,X)$, then either $\varphi(Z)\subset X\setminus S$ or $\varphi(Z)\subset S$.

The following statement is an immediate consequence of the criterion for the tautness modulo an analytic hypersurface.

Corollary 2.1 [3]. Let X be a complex space and let S be an analytic hypersurface of X. If X is not taut modulo S, then there exist a number R > 0, sequences $\{z_n\}_{n \geq 0} \subset X$, $\{f_n\}_{n \geq 1} \subset \operatorname{Hol}(\Delta, X \setminus S)$, $\{g_n\}_{n \geq 1} \subset \operatorname{Hol}(\Delta, X)$ and $\{\alpha_n\}_{n \geq 1}$, $\{\beta_n\}_{n \geq 1} \subset [0; 1)$ such that for $n \geq 1$, we have

- (i) $\widetilde{k}_X^{(2)}(z_0, z_n) < R$,
- (ii) $f_n(0) = z_0 \in X \setminus S$,
- (iii) $f_n(\alpha_n) = g_n(0)$,
- (iv) $g_n(\beta_n) = z_n, z_n \to w \in \partial X \text{ or } |z_n| \to \infty,$
- (v) $\alpha_n \to \alpha_0, \ \beta_n \to \beta_0.$

Remark 2.1. We could have $X \setminus S$ being taut without X being taut modulo S. For instance, $\mathbb{C} \setminus \{0,1\}$ is taut, but \mathbb{C} is not taut modulo $\{0,1\}$. On the other hand, there are examples of domains taut modulo S such that $X \setminus S$ is not taut. Just take X a taut domain and S such that the codimension of S is at least 2. Then $X \setminus S$ is not pseudoconvex, therefore not taut.

However, when S is an analytic hypersurface, using Lemma 2.1, we can show that if X is taut modulo S then $X \setminus S$ is also taut. Indeed, we take any sequence $\{f_n\} \subset \operatorname{Hol}(\Delta, X \setminus S)$. Suppose that $\{f_n\}$ is not compactly divergent in $\operatorname{Hol}(\Delta, X \setminus S)$, we deduce that $\{f_n\}$ is not compactly divergent modulo S in $\operatorname{Hol}(\Delta, X)$ either. By the tautness modulo hypersurface S of X, it implies that $\{f_n\}$ converges uniformly on every compact subset of Δ to a mapping $f \in \operatorname{Hol}(\Delta, X)$. By Lemma 2.1, we have either $f \in \operatorname{Hol}(\Delta, X \setminus S)$ or $f(\Delta) \subset S$. By the assumption, $\{f_n\}$ is normally convergent in $\operatorname{Hol}(\Delta, X \setminus S)$.

3. The tautness of Hartogs-type domains and of Hartogs-Laurent-type domains. Firstly, we give a theorem for the tautness modulo an analytic hypersurface of Hartogs-type domains as follows.

Theorem 3.1. Let X be a complex space and let S be an analytic hypersurface in X. If X is taut modulo S, the fiber $\Omega_H(z)$ is taut for each $z \in X$, H is continuous on $X \times \mathbb{C}^m$ and H is plurisubharmonic on $(X \setminus S) \times \mathbb{C}^m$, then $\Omega_H X$ is taut modulo $\widetilde{S} := S \times C^m$.

Proof. Suppose that $\Omega_H(X)$ is not taut modulo S. By Proposition 2.2, we can assume that X is an irreducible complex space. By Corollary 2.1, we can choose a number R>0, sequences $\{z_n\}_{n\geq 0}\subset\Omega_H(X)$ and

$$\{f_n\}_{n\geq 1}\subset \operatorname{Hol}(\Delta,\Omega_H(X)\setminus \widetilde{S}), \qquad \{g_n\}_{n\geq 1}\subset \operatorname{Hol}(\Delta,\Omega_H(X))$$

and $\{\alpha_n\}_{n\geq 1}, \{\beta_n\}_{n\geq 1}\subset [0;1)$ satisfying the properties (i) to (v). By the definition of $\widetilde{k}^{(2)}$, we have

$$\widetilde{k}_{\Omega_H(X)}^{(2)}(z_0, z_n) \ge \widetilde{k}_X^{(2)}(z_0^1, z_n^1),$$

where $z_n=(z_n^1,z_n^2)\in X\times\mathbb{C}^m$. Since the property (i), it implies that $\{z_n^1\}_{n\geq 1}\subset B_{\widetilde{k}_X^{(2)}}(z_0^1,R)$. By Proposition 2.1, we may see that $\{z_n^1\}_{n\geq 1}\to a_0^1\in X$ as $n\to\infty$. For each $n\geq 1$, we denote

$$f_n := (f_n^1, f_n^2) \in \operatorname{Hol}(\Delta, X \setminus S) \times \operatorname{Hol}(\Delta, \mathbb{C}^m)$$

and

$$g_n := (g_n^1, g_n^2) \in \operatorname{Hol}(\Delta, X) \times \operatorname{Hol}(\Delta, \mathbb{C}^m).$$

By the property (ii), we have $f_{n_k}^1(0)=z_0^1\in X\setminus S$. Then, since the tautness modulo S of X, we may choose a subsequence $\{f_{n_k}^1\}\subset \{f_n^1\}$ such that

$$f_{n_k}^1 \stackrel{K}{\Rightarrow} f_0^1 \in \operatorname{Hol}(\Delta, X),$$

i.e., $\{f_{n_k}^1\}$ is converging uniformly on every compact subset of Δ to $f_0^1 \in \operatorname{Hol}(\Delta, X)$. It is clear to see that $f_0^1(0) = z_0^1 \in X \setminus S$. Since $f_n^1 \in \operatorname{Hol}(\Delta, X \setminus S)$, applying Lemma 2.1, we have $f_0^1 \in \operatorname{Hol}(\Delta, X \setminus S)$. Then the properties (iii) and (v) yield that

$$\lim_{k \to \infty} g_{n_k}^1(0) = \lim_{k \to \infty} f_{n_k}^1(\alpha_{n_k}) = f_0^1(\alpha_0) \in X \setminus S.$$

Hence, there exists a subsequence of $\{g_{n_k}^1\}$, without loss of generality, we assume that $g_{n_k}^1 \stackrel{K}{\Rightarrow} g_0^1 \in \operatorname{Hol}(\Delta, X)$. Then we have

$$g_0^1(0) = f_0^1(\alpha_0) \in X \setminus S.$$
 (1)

In particular,

$$g_0^1(\beta_0) = \lim_{k \to \infty} g_{n_k}^1(\beta_{n_k}) = \lim_{k \to \infty} z_{n_k}^1 := a_0^1 \in X.$$
 (2)

Assume that $\lim_{n\to\infty}\|z_n^2\|=\infty$. Put $z_n^2=r_nw_n$ with $\|w_n\|=1$ and $r_n\in\mathbb{R},\ n\geq 1$. It implies that $\lim_{n\to\infty}r_n=\infty$ and $\lim_{k\to\infty}w_{n_k}=w_0\neq 0$ with some subsequence $\{w_{n_k}\}$ of $\{w_n\}$. By $H(z_n^1,r_nw_n)=r_nH(z_n^1,w_n)<1$ and since continuity of H on $X\times\mathbb{C}^m$, we have

$$\lim_{k \to \infty} H(z_{nk}^1, w_{n_k}) = H(a_0^1, w_0) = 0.$$

Thus, $H(a_0^1, L) = 0 < 1$ with a complex line $L = tw_0$ in \mathbb{C}^m $(t \in \mathbb{C})$. It implies that the fiber $\Omega_H(a_0^1) = L$. But L is not taut, so we have a contradiction to the assumption. Therefore, since the property (iv), we obtain

$$\lim_{n \to \infty} z_n = (a_0^1, a_0^2) = a_0 \in \partial \Omega_{H(X)}.$$
 (3)

Step 1: Choose $c_2 \in (0,1)$ such that $\beta_n \in c_2^2 \Delta$, $n \geq 1$. Since (1), we have $(g_0^1)(\Delta) \not\subset S$. It implies that $(g_0^1)^{-1}(S)$ is an analytic subset in the open unit disc Δ , so it is a discrete set. Then $(g_0^1)^{-1}(S)$ does not have any accumulation point in Δ . Therefore, we can assume that

$$c_2 \Delta \cap (g_0^1)^{-1}(S) = \varnothing. \tag{4}$$

We put $E_2 := c_2^{-1}\Delta$. For each $n \ge 1$, we define a map $\widetilde{g}_n : E_2 \to X \times C^m$ by

$$\widetilde{g}_n(\lambda) = (\widetilde{g}_n^1(\lambda), \widetilde{g}_n^2(\lambda)) := g_n(\beta_n \lambda).$$

Clearly,

$$\{\widetilde{g}_n\}_{n\geq 1} \subset \operatorname{Hol}(E_2, \Omega_H(X)).$$
 (5)

Put $F_2:=\bigcup_{n\geq 1}(\beta_nE_2)$. Using (v), it is easy to check that $F_2\Subset \Delta$. Let $M:=g_0^1(\overline{F_2})$. Since $\beta_n\in c_2^2\Delta,\ n\geq 1$, we have $\beta_n< c_2^2$. It implies that

$$\beta_n E_2 = \beta_n c_2^{-1} \Delta \subset c_2 \Delta, \ n \ge 1.$$

Then $g_0^1(\overline{F_2})\subset g_0^1(\overline{c_2\Delta})$. This and (4) imply that $M\Subset X\setminus S$. Notice that X is hyperbolic modulo S and $d=d_X$ is the Kobayashi pseudodistance, then $\delta:=\operatorname{dist}(M,\partial(X\setminus S))/3>0$. Since $\{g_{n_k}^1\}$ converges uniformly on \overline{F}_2 , we may take $n_0\in\mathbb{N}$ such that $d\big(g_{n_k}^1(\lambda),g_0^1(\lambda)\big)<\delta,\ \lambda\in\overline{F}_2$ and $n_k>n_0$. Hence, for $v_0\in\partial(X\setminus S),\ \lambda\in\overline{F}_2$, we obtain

$$d(g_{n_k}^1(\lambda), v_0) \ge d(g_0^1(\lambda), v_0) - d(g_{n_k}^1(\lambda), g_0^1(\lambda)) \ge \operatorname{dist}(M, \partial X) - \delta \ge 2\delta.$$

Then we get $d\big(g^1_{n_k}(\overline{F}_2),\partial(X\setminus S)\big)\geq 2\delta>0,$ which implies that

$$K := g_0^1(\overline{F}_2) \cup \left(\bigcup_{n_k \ge n_0} g_{n_k}^1(\overline{F}_2)\right) \subseteq X \setminus S.$$
 (6)

ISSN 1027-3190. Укр. мат. журн., 2020, т. 72, № 1

Particularly,

$$K' := \{ g_{n_k}^1(\beta_{n_k}\lambda), g_0^1(\beta_0\lambda) : \lambda \in E_2, n_k \ge n_0 \} \subset K.$$
 (7)

We now assume that the family $\{\widetilde{g}_n^2\}$ is not uniformly bounded in E_2 . Then there exist a subsequence $\{\widetilde{g}_{n_k}^2\}$ and a sequence $\{\lambda_k\} \subset E_2$ such that

$$\lim_{k \to \infty} \|\widetilde{g}_{n_k}^2(\lambda_k)\| = \infty.$$

Put $\widetilde{g}_{n_k}^2(\lambda_k) = r_k w_k$ with $\|w_k\| = 1$ and $r_k \in \mathbb{R}$. Similar to the above argument, we have $\lim_{k \to \infty} r_k = \infty$ and $\lim_{k \to \infty} w_k = w_0 \neq 0$. Since (6) and (7), we deduce that

$$\lim_{k \to \infty} \widetilde{g}_{n_k}^1(\lambda_k) = b_0 \in \overline{K} \subset X \setminus S.$$

Since (5), we obtain

$$r_k H(\widetilde{g}_{n_k}^1(\lambda_k), w_k) = H(\widetilde{g}_{n_k}^1(\lambda_k), \widetilde{g}_{n_k}^2(\lambda_k)) < 1.$$

By continuity of H, we have

$$\lim_{k \to \infty} H(\widetilde{g}_{n_k}^1(\lambda_k), w_k) = H(b_0, w_0) = 0.$$

Repeat the same argument in the above, we will get a contradiction to the tautness of the fiber $\Omega_H(z)$ again. Therefore, $\tilde{g}_{n_k}^2$ is uniformly bounded in E_2 . Applying to Montel's theorem, without loss of generality, we can assume

$$\widetilde{g}_{n_k}^2 \stackrel{K}{\Rightarrow} \widetilde{g}_0^2 \in \operatorname{Hol}(E_2, \mathbb{C}^m)$$

as $k \to \infty$. In particular,

$$\widetilde{g}_0^2(1) = \lim_{k \to \infty} \widetilde{g}_{n_k}^2(1) = \lim_{k \to \infty} g_{n_k}^2(\beta_{n_k}) = \lim_{k \to \infty} z_{n_k}^2 = a_0^2.$$
 (8)

Put $\varphi_{n_k}:=H\circ \widetilde{g}_{n_k}$ on E_2 . Since $\varphi_{n_k}<1$ on E_2 for any $n_k\geq n_0$, we have $\varphi_0:=H\circ \widetilde{g}_0\leq 1$ on E_2 , where $\widetilde{g}_0:=\left(\widetilde{g}_0^1,\widetilde{g}_0^2\right)$ and $\widetilde{g}_0^1(\lambda):=g_0^1(\beta_0\lambda),\ \lambda\in E_2$. It follows from (2) that

$$\widetilde{g}_0^1(1) = g_0^1(\beta_0) = a_0^1.$$
 (9)

Since (3), (8) and (9), we get $\varphi_0(1) = H(a_0) = 1$. By H is plurisubharmonic on $(X \setminus S) \times \mathbb{C}^m$, φ_0 is subharmonic on E_2 . Thus, the maximum principle for subharmonic functions implies that $\varphi_0 \equiv 1$ on E_2 , and hence

$$\widetilde{g}_0(0) = \left(\widetilde{g}_0^1(0), \widetilde{g}_0^2(0)\right) \in \partial \Omega_H(X). \tag{10}$$

Step 2: We are going to apply the same argument as in Step 1 to $\{f_n\}_{n\geq 1}$ and $\{\alpha_n\}_{n\geq 0}$. Choose $c_1\in (0,1)$ such that $\alpha_n\in E_1:=c_1^{-1}\Delta$ for $n\geq 1$. We define a holomorphic function $\widetilde{f_n}:E_1\to\Omega_H(X)$ by

$$\widetilde{f}_n(\lambda) = (\widetilde{f}_n^1(\lambda), \widetilde{f}_n^2(\lambda)) := f_n(\alpha_n \lambda), \quad \lambda \in E_1.$$

Then we also have

$$\widetilde{f}_{n_k}^2 \stackrel{K}{\Rightarrow} \widetilde{f}_0^2 \in \operatorname{Hol}(E_1, \mathbb{C}^m)$$

as $k \to \infty$. Since condition (iii), we observe that

$$\widetilde{g}_0(0) = \lim_{k \to \infty} \widetilde{g}_{n_k}(0) = \lim_{k \to \infty} g_{n_k}(0) = \lim_{k \to \infty} f_{n_k}(\alpha_{n_k}) = \lim_{k \to \infty} \widetilde{f}_{n_k}(1) = \widetilde{f}_0(1), \tag{11}$$

where $\widetilde{f}_0 := (\widetilde{f}_0^1, \widetilde{f}_0^2)$ and $\widetilde{f}_0^1(\lambda) := f_0^1(\alpha_0\lambda), \ \lambda \in E_1$. Put

$$\psi_0(\lambda) = H \circ (\widetilde{f}_0)(\lambda) \le 1, \quad \lambda \in E_1.$$

Obviously, since (10) and (11), we obtain $\psi_0(1) = H(\widetilde{f}_0(1)) = 1$. It follows from the maximum principle for ψ_0 that $\psi_0 \equiv 1$ on E_1 . This implies that

$$\widetilde{f}_0(0) = \lim_{k \to \infty} \widetilde{f}_{n_k}(0) = \lim_{k \to \infty} f_{n_k}(0) = z_0 \in \partial \Omega_H(X),$$

which contradicts the condition (ii).

Theorem 3.1 is proved.

We know that the tautness of $X \setminus S$ does not imply the tautness modulo S of X in general. But, using Theorem 1.2 in [14], we have the following assertion in special situations of Hartogs-type domains.

Corollary 3.1. Let X be a complex space being taut modulo an analytic hypersurface S. Assume that H is continuous on $\widetilde{S} := S \times \mathbb{C}^m$ and the fiber $\Omega_H(z)$ is taut for each $z \in S$. If $\Omega_H(X) \setminus \widetilde{S}$ is taut, then $\Omega_H(X)$ is taut modulo \widetilde{S} .

Due to Barth [1], Ω_h is taut if and only if $\Omega_h \in \mathbb{C}^m$ and h is continuous plurisubharmonic on \mathbb{C}^m . In addition, if u is plurisubharmonic then e^u is. We immediately have the following corollary.

Corollary 3.2. Let X be a complex space and S be an analytic hypersurface in X. If X is taut modulo S, the fiber Ω_h is taut, u is continuous on X and u is plurisubharmonic on $X \setminus S$, then $\Omega_{u,h}(X)$ is taut modulo $\widetilde{S} := S \times C^m$.

We recall the Example 2.4 in [13]. Let $X=\{(z_1,z_2)\in\mathbb{C}^2:z_1z_2=0\}$ and $S=\{(z_1,z_2)\in\mathbb{C}^2:z_2=0\}$. We can check that X is taut modulo S. We put $u(z)=u(z_1,z_2):=\log|z_2|$ and h(w)=|w| with $w\in\mathbb{C}$. Obviously, u is plurisubharmonic on $X\setminus S$ and continuous on X. It is easy to see that the fiber Ω_h is taut, $H(z,w):=h(w)e^{u(z)}$ is continuous on $X\times\mathbb{C}$ and $\log H$ is plurisubharmonic on $(X\setminus S)\times\mathbb{C}$. Applying Corollary 3.2, we deduce that $\Omega_{u,h}$ is taut modulo $S:=S\times\mathbb{C}$.

Notice that we also obtain this conclusion by direct proof as in [13]. However, we can not get one from Theorem 2.3 (iii) in [13]. Because $\log H$ is not plurisubharmonic on $X \times \mathbb{C}$, since u is not plurisubharmonic on X.

Now, we give a necessary condition for the tautness modulo of Hartogs - Laurent-type domains.

Proposition 3.1. If $\Sigma_{u,v}(X)$ is taut modulo $S := S \times \mathbb{C}$, then u and v are continuous on $X \setminus S$, where S is an analytic subset of X.

Proof. Suppose the contrary. Without loss of generality, we can assume that u is not continuous at $z_0 \in X \setminus S$. By upper semicontinuity of u, we can choose a number $R \in \mathbb{R}$ and a sequence $\{z_n\} \subset X \setminus S$ such that $z_n \to z_0$ as $n \to \infty$ and $-u(z_0) < -R < -u(z_n)$ for any $n \in \mathbb{N}$. Since $u(z_0) \neq -\infty$ and $u(z_0) + v(z_0) < 0$, we may take an $\alpha \in \mathbb{R}$ such that $v(z_0) < -\alpha < -u(z_0)$. Since upper semicontinuity of v, we can assume that $v(z_n) < -\alpha$ for n > 1. Put

$$C := \frac{1}{2} \min \left\{ -u(z_0) + \alpha, -R + u(z_0) \right\} > 0$$

and

$$\hat{u} := u - u(z_0) - \frac{C}{2}, \qquad \hat{v} := v + u(z_0) + \frac{C}{2}.$$

ISSN 1027-3190. Укр. мат. журн., 2020, т. 72, № 1

Obviously, the mapping

$$(z,w) \in \Sigma_{u,v}(X) \mapsto \left(z, we^{u(z_0) + \frac{C}{2}}\right) \in \Sigma_{\hat{u},\hat{v}}(X)$$

is biholomorphic, so $\Sigma_{\hat{u},\hat{v}}(X)$ is taut modulo \widetilde{S} . We put

$$\hat{R} := -u(z_0) + R - \frac{C}{2}, \qquad \hat{\alpha} := -u(z_0) + \alpha - \frac{C}{2}.$$

It is easy to show that $\hat{v}(z_n) < -\hat{\alpha}$ for any $n \in \mathbb{N}$. Hence, for any $n \geq 1$,

$$\max\{\hat{v}(z_0), \hat{v}(z_n)\} < -\hat{\alpha} < -C < 0 < -\hat{u}(z_0) < C < -\hat{R} < -\hat{u}(z_n). \tag{12}$$

We define $f_n(\lambda) := (z_n, e^{C\lambda}), \ \lambda \in \Delta \text{ for } n \geq 1.$ Observe that

$$e^{\hat{v}(z_n)} < e^{-C} < |e^{C\lambda}| < e^{C} < e^{-\hat{u}(z_n)}, \quad n > 1, \quad \lambda \in \Delta.$$

It implies that $\{f_n\} \subset \operatorname{Hol}(\Delta, \Sigma_{\hat{u}, \hat{v}} \setminus \widetilde{S})$ by $z_n \in X \setminus S, \ n \geq 1$. Because, $e^{\hat{v}(z_0)} < e^{-C} < e^0 < e^{-\hat{u}(z_0)}$ and $z_0 \in X \setminus S$, we have

$$f_n(0) = (z_n, 1) \to (z_0, 1) \in \Sigma_{\hat{u}, \hat{v}} \setminus \widetilde{S}.$$

By the tautness modulo \widetilde{S} of $\Sigma_{\hat{u},\hat{v}}$, we get

$$f_n(\lambda) \stackrel{K}{\Rightarrow} f(\lambda) = (z_0, e^{C\lambda}) \in \text{Hol}(\Delta, \Sigma_{\hat{u}, \hat{v}})$$

as $n \to \infty$. It implies that $e^{\hat{v}(z_0)} < e^{CRe\lambda} < e^{-\hat{u}(z_0)}$ for any $\lambda \in \Delta$. By letting $\lambda \to 1$, we have a contradiction to (12).

Hence, Proposition 3.1 is proved.

The following proposition gives a sufficient condition for the tautness modulo of Hartogs – Laurent-type domains.

Proposition 3.2. If X is taut modulo an analytic hypersurface S, u is continuous on X, plurisubharmonic on $X \setminus S$ and v is continuous plurisubharmonic on X, then $\Sigma_{u,v}(X)$ is taut modulo $\widetilde{S} := S \times \mathbb{C}$.

Proof. Let a sequence $\{\varphi_n\}\subset \operatorname{Hol}(\Delta,\Sigma_{u,v}(X))$. We have $\Sigma_{u,v}(X)\subset \Omega_{u,|.|}(X)$, where |.| is the norm on $\mathbb C$. By Corollary 3.2, $\Omega_{u,|.|}(X)$ is taut modulo $\widetilde S$. It implies that there exists a subsequence $\{\varphi_{n_k}\}\subset \{\varphi_n\}$ which is either normally convergent or compactly divergent modulo $\widetilde S$ in $\operatorname{Hol}(\Delta,\Omega_{u,|.|}(X))$. In the latter case, the sequence $\{\varphi_{n_k}\}$ as a subfamily of $\operatorname{Hol}(\Delta,\Sigma_{u,v}(X))$, diverges compactly modulo $\widetilde S$. Then, we only suppose that $\{\varphi_{n_k}\}$ is normally convergent in $\operatorname{Hol}(\Delta,\Omega_{u,|.|}(X))$. Put $\varphi_{n_k}:=(f_{n_k},g_{n_k})$, where $\{f_{n_k}\}\subset\operatorname{Hol}(\Delta,X)$ and $\{g_{n_k}\}\subset\operatorname{Hol}(\Delta,\mathbb C)$. We denote

$$\varphi := (f, g) \in \operatorname{Hol}(\Delta, \Omega_{u, |.|}(X))$$

where $f \in \operatorname{Hol}(\Delta, X)$ and $g \in \operatorname{Hol}(\Delta, \mathbb{C})$, such that $f_{n_k} \stackrel{K}{\Rightarrow} f$ and $g_{n_k} \stackrel{K}{\Rightarrow} g$ as $k \to \infty$. We have

$$e^{(v \circ f_{n_k})(\lambda)} < |g_{n_k}(\lambda)| < e^{-(u \circ f_{n_k})(\lambda)}$$

and

$$|g(\lambda)| < e^{-(u \circ f)(\lambda)}, \quad \lambda \in \Delta.$$

Since $(g_{n_k})^{-1}(0) = \varnothing$ for any $k \ge 1$, it follows from Hurwitz's theorem that either $g \equiv 0$ or g never vanishes. If $g \equiv 0$ then $\varphi(\Delta) \subset \partial \Sigma_{u,v}(X)$, which implies that $\{\varphi_{n_k}\}$ as a subfamily of $\operatorname{Hol}(\Delta, \Sigma_{u,v}(X))$ diverges compactly. Now, we suppose that $g \not\equiv 0$ and define

$$\hat{v} := \frac{1}{|g(\lambda)|} e^{(v \circ f)(\lambda)}, \quad \lambda \in \Delta.$$

It implies that \hat{v} is continuous subharmonic on Δ . By continuity of v, we have $\hat{v}(\lambda) \leq 1$ for any $\lambda \in \Delta$. It follows from the maximum principle for subharmonic that either $\hat{v} \equiv 1$ on Δ or $\hat{v} < 1$ on Δ . Therefore, it is either $\varphi(\Delta) \subset \partial \Sigma_{u,v}(X)$ or $\varphi(\Delta) \subset \Sigma_{u,v}(X)$. Then $\{\varphi_n\}$ is either normally convergent in $\operatorname{Hol}(\Delta, \Sigma_{u,v}(X))$ or compactly divergent. Thus, since the above arguments, $\{f_n\}$ is either compactly divergent modulo \widetilde{S} or normally convergent in $\operatorname{Hol}(\Delta, \Sigma_{u,v}(X))$. It implies that $\Sigma_{u,v}(X)$ is taut modulo \widetilde{S} .

4. Eastwood's theorem for the tautness modulo. Similar to Eastwood's theorem for the hyperbolicity and tautness of a complex space (see [4, 9, 11]), we give a version of Eastwood's theorem for the tautness modulo an analytic hypersurface of a complex space.

Theorem 4.1. Let \widetilde{X} and X be two complex spaces. Let $\pi: \widetilde{X} \to X$ be a holomorphic mapping and let S be an analytic hypersurface in X. Suppose that for each $p \in X$, there exists an open neighborhood U := U(p) in X such that $\pi^{-1}(U)$ is taut modulo $\widetilde{S} := \pi^{-1}(S)$. If X is taut modulo S, then \widetilde{X} is also taut modulo \widetilde{S} .

Proof. As in the proof of Theorem 3.1, we can consider X as an irreducible complex space. Suppose that \widetilde{X} is not taut modulo \widetilde{S} . Then by Corollary 2.1, we can take sequences $\{z_n\}_{n\geq 0}\subset \Omega_H(X),\ \{f_n\}\subset \operatorname{Hol}(\Delta,\widetilde{X}\setminus\widetilde{S}), \{g_n\}\subset \operatorname{Hol}(\Delta,\widetilde{X})$ and sequences $\{\alpha_n\}_{n\geq 1}, \{\beta_n\}_{n\geq 1}\subset [0;1)$ satisfying the properties (ii) to (v). We put

$$\widetilde{f}_n = \pi \circ f_n \in \operatorname{Hol}(\Delta, X \setminus S)$$
 (13)

and

$$\widetilde{g}_n = \pi \circ g_n \in \text{Hol}(\Delta, X), \quad n \ge 1.$$

By the property (ii), $\lim_{n\to\infty}\widetilde{f}_n(0)=\lim_{n\to\infty}\pi(z_0)\in X\setminus S$. Since X is taut modulo S, there exists a sequence $\{\widetilde{f}_{n_k}\}\subset\{\widetilde{f}_n\}$ such that

$$\widetilde{f}_{n_k} \stackrel{K}{\Rightarrow} \varphi_1 \in \operatorname{Hol}(\Delta, X)$$

as $k \to \infty$. By (13) and applying Lemma 2.1, it implies that $\varphi_1 \in \text{Hol}(\Delta, X \setminus S)$. By the property (iii), we get

$$\lim_{k \to \infty} \widetilde{g}_{n_k}(0) = \lim_{k \to \infty} \widetilde{f}_{n_k}(\alpha_{n_k}) = \varphi_1(\alpha_0) \in X \setminus S.$$

Then $\{\widetilde{g}_n\}$ contains a subsequence $\{\widetilde{g}_{n_k}\}$ converging uniformly on compact subsets to a map $\varphi_2 \in \operatorname{Hol}(\Delta,X)$ as $k \to \infty$. Therefore, for any $\lambda \in \Delta$, there exists an open neighborhood $V_\lambda \subseteq \Delta$ of λ , $U_{\varphi_2(\lambda)}$ and $k_\lambda \in \mathbb{N}$, such that $\pi^{-1}(U_{\varphi_2(\lambda)})$ is taut modulo \widetilde{S} and $g_{n_k}(V_\lambda) \subseteq \pi^{-1}(U_{\varphi_2(\lambda)}) \subset \widetilde{X}$, for any $k \geq k_\lambda$.

Now, we take a point 0 < s < 1. By the compactness of $[-s, \beta_0] \subset \Delta$, we can choose a finite set $\{x_{\mu} : \mu = 1, \dots, q\} \subset [-s, \beta_0]$ such that $[-s, \beta_0] \subset \bigcup_{\mu=1}^q V_{x_{\mu}}$ and for all $\mu \in \{1, \dots, q\}$ exists

 $\nu \in \{1, \dots, q\} \setminus \{\mu\}$ such that $V_{x_{\mu}} \cap V_{x_{\nu}} \neq \emptyset$. After a rearrangement, we can assume that $\beta_0 \in V_q$ and $V_{x_{\mu}} \cap V_{x_{\mu+1}} \neq \emptyset$, $\mu \in \{1, \dots, q-1\}$. For $\lambda = \beta_0$, we consider $g_{n_k} \in \text{Hol}(V_{\beta_0}, \pi^{-1}(U_{\varphi_2(\beta_0)}))$.

Assume that there exists a subsequence $\{g_{n_{k_1}}\}\subset\{g_{n_k}\}$ converging uniformly on compact subset to map $g_{\beta_0}\in\operatorname{Hol}(V_{\beta_0},\pi^{-1}(U_{\varphi_2(\beta_0)}))$ as $k_1\to\infty$. By the property (iv), we have

$$\lim_{k_1\to\infty}z_{n_{k_1}}=\lim_{k_1\to\infty}g_{n_{k_1}}(\beta_{n_{k_1}})=g_{\beta_0}(\beta_0)\in\widetilde{X}.$$

That is a contradiction to the condition (iv). Hence, by the tautness modulo \widetilde{S} of $\pi^{-1}(U_{\varphi_2(\beta_0)})$, it implies that g_{n_k} diverges compactly modulo on V_{β_0} . But, since $\beta_0 \in V_{x_q} \cap V_{\beta_0} \neq \varnothing$, we can choose a sequence $\{g_{n_{k_2}}\} \subset \{g_{n_{k_1}}\}$ which diverges compactly modulo on V_{x_q} . Because $V_{x_q} \cap V_{x_q-1} \neq \varnothing$, we also choose a subsequence $\{g_{n_{k_3}}\} \subset \{g_{n_{k_2}}\}$ which diverges compactly modulo on $V_{x_{q-1}}$. And, we can proceed to q-2, in this manner, we can choose $\mu_0 \in \{1,\ldots,q\}$ with $0 \in V_{x_{\mu_0}}$ and a subsequence $\{g_{n_{k_4}}\} \subset \{g_{n_{k_3}}\}$ diverges compactly modulo on $V_{x_{\mu_0}}$. Thus, in view of (iii), we have either

$$\lim_{k_4 \to \infty} f_{n_{k_4}}(\alpha_{n_{k_4}}) = \lim_{k_4 \to \infty} g_{n_{k_4}}(0) = \hat{a_0} \in \partial \widetilde{X}, \tag{14}$$

or

$$\lim_{k_{4}\to\infty} f_{n_{k_{4}}}(\alpha_{n_{k_{4}}}) \in \widetilde{S}. \tag{15}$$

Applying the above argument for the sequence $f_{n_{k_4}} \subset \operatorname{Hol}(\Delta, \widetilde{X} \setminus \widetilde{S})$, we can choose a subsequence $\{f_{n_{k_5}}\}$ of $\{f_{n_{k_4}}\}$ that diverges compactly modulo on V_{α_0} . Because if $f_{n_{k_5}} \stackrel{K}{\Rightarrow} f_{\alpha_0} \in \operatorname{Hol}(V_{\alpha_0}, \pi^{-1}(U_{\varphi_1(\alpha_0)}))$, by Lemma 2.1, we have $f_{\alpha_0} \in \operatorname{Hol}(V_{\alpha_0}, \pi^{-1}(U_{\varphi_1(\alpha_0)}) \setminus \widetilde{S})$. It implies that

$$\lim_{k_5 \to \infty} f_{n_{k_5}}(\alpha_{n_{k_5}}) = f_{\alpha_0}(\alpha_0) \in \pi^{-1}(U_{\varphi_1(\alpha_0)}) \setminus \widetilde{S} \subset \widetilde{X} \setminus \widetilde{S}.$$

This is a contradiction to (14) and (15). So, we can take a subsequence $\{f_{n_{k_6}}\}\subset\{f_{n_{k_5}}\}$ such that $\{f_{n_{k_6}}(0)\}$ converges to a point in $\partial\widetilde{X}$ or in \widetilde{S} . Obviously, this is a contradiction to the property (ii). Therefore, \widetilde{X} is taut modulo \widetilde{S} .

Immediately, we get the following corollary.

Corollary 4.1. If $\pi: \widetilde{X} \to X$ is a holomorphic covering between complex spaces, then \widetilde{X} is taut modulo \widetilde{S} if and only if X is taut modulo an analytic hypersurface S in X, where $\widetilde{S} := \pi^{-1}(S)$.

Acknowledgements. The author would like to thank Professor Do Duc Thai for suggesting the problem and helpful advices during the preparation of this work.

References

- T. J. Barth, The Kobayashi indicatrix at the center of a circular domain, Proc. Amer. Math. Soc., 88, 527-530 (1983).
- 2. N. Q. Dieu, D. D. Thai, Complete hyperbolicity of Hartogs domain, Manuscripta Math., 112, 171 181 (2003).
- 3. P. V. Duc, P. N. T. Trang, M. A. Duc, *On tautness modulo an analytic subset of complex spaces*, Acta Math. Vietnam, 42, 717–726 (2017).
- 4. A. Eastwood, À propos des variétés hyperboliques complètes, C. R. Acad. Sci. Paris, 280, 1071 1075 (1975).
- M. Jarnicki, P. Pflug, Invariant distances and metrics in complex analysis, Walter de Gruyter, Berlin, New York (1993).

REMARK ON THE TAUTNESS MODULO AN ANALYTIC HYPERSURFACE OF HARTOGS-TYPE DOMAINS 129

- 6. S. Kobayashi, Hyperbolic complex spaces, Springer-Verlag, Berlin (1998).
- 7. S. H. Park, On hyperbolicity and tautness of certain Hartogs-type domains, Rocky Mountain J. Math., 37, 959–985 (2007).
- 8. H. L. Royden, *Remark on the Kobayashi metric, in:* Several complex variables, II, Lect. Notes Math., **189**, 125 137 (1971).
- 9. D. D. Thai, P. V. Duc, On the complete hyperbolicity and the tautness of the Hartogs domains, Int. J. Math., 11, 103-111 (2000).
- 10. D. D. Thai, M. A. Duc, N. V. Thu, On limit brody curves in C², Kyushu J. Math., 69, № 1, 111 123 (2015).
- 11. D. D. Thai, N. L. Huong, A note on the Kobayashi pseudodistance and the tautness of holomorphic fiber bundles, Ann. Polon. Math., **58**, 1–5 (1980).
- 12. D. D. Thai, P. J. Thomas, D^* -extension property without hyperbolicity, Indiana Univ. Math. J., 47, 1125–1130 (1980).
- 13. D. D. Thai, P. J. Thomas, N. V. Trao, M. A. Duc, *On hyperbolicity and tautness modulo an analytic subset of Hartogs domains*, Proc. Amer. Math. Soc., **141**, 3623 3631 (2013).
- 14. N. V. Trao, T. H. Minh, *Remarks on the Kobayashi hyperbolicity of complex spaces*, Acta Math. Vietnam, **34**, 375–387 (2009).

Received 24.12.15, after revision – 08.01.19