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REMARK ON THE TAUTNESS MODULO AN ANALYTIC HYPERSURFACE
OF HARTOGS-TYPE DOMAINS

3AYBAKEHHS I[OJI0O HATATY OBJACTEHN TUITY XAPTOI'CA
3A MOAYJIEM AHAJITHYHOI T'IEPIIOBEPXHI

We present sufficient conditions for the tautness modulo an analytic hypersurface of Hartogs-type domains Q2 (X) and
Hartogs — Laurent-type domains X, ,(X). We also propose a version of Eastwood’s theorem for the tautness modulo an
analytic hypersurface.

HaBeneHo mocratHi yMoBH Hatsry obnacteil tumy Xaprorca Qp (X ) ta Xaprorca—Jlopana X, ,(X) 3a Momynem ana-
niTn4HOI rineproepxHi. CHopMyITbOBaHO BEpCito TeopeMH ICTByna Ui HaTATy 3a MOLYJIEM aHANITHYHOI TilepIIOBEPXHi.

1. Introduction. Let X be a complex space and let H: X x C™ — [—o0;+00) be an upper
semicontinuous function such that H(z,w) > 0 and H(z, Aw) = |\|H(z,w) with A € C, z € X,
w € C™. We put

Qp(X) :={(z,w) e X xC™: H(z,w) < 1},

and call it a Hartogs-type domain. For each z € X, we denote by Qg (2) := {w € C": H(z,w) <
< 1} the fiber of Qp(X) at 2. Here, if H(z,w) = h(w)e*?) for z € X,w € C™, where h,u are
upper semicontinuous, & # 0 and h(Aw) = |A|h(w) with A € C, we denote Qp(X) by €, (X)
and the fiber by Q, := {w € C": h(w) < 1}.
The following properties are known (see [1]):
2, € C™ if and only if there exists a positive constant C' such that h(w) > C|lw]|| for all
we C™;
h is plurisubharmonic on C™ if and only if log h is plurisubharmonic on C™;
Qy, is taut if and only if ;, € C™™ and h is continuous plurisubharmonic on C™.
For w, v are upper semicontinuous functions on X with u + v < 0 on X, we put

Sun(X) = {(z,\) € X x C: "®) < |A] < e7 3},

and call it a Hartogs — Laurent-type domain.

In the past ten years, much attention has been given to the properties of Hartogs-type domains
from the viewpoint of hyperbolicity and tautness complex analysis (see [2, 3, 5, 7, 9, 11-14]). In
[7]1, S. H. Park obtained necessary and sufficient conditions for the hyperbolicity and tautness of
certain Hartogs-type domains and Hartogs — Laurent-type domains. In particular, in [13], D. D. Thai,
M. A. Duc, P. J. Thomas and N. V. Trao considered the tautness modulo an analytic subset S of
Hartogs-type domains in general situation. However, the original proof in [13] is based on Zorn’s
lemma, and it is not elementary. Notice that the results in [13] were proved for any analytic subset.
When the analytic subset S = &, those results (see [13], Theorem 2.3) seem to be very different
from previous results (see [7], Theorem 5.2, and [14], Theorem 1.2) by observing that given results
in [13] do not need the tautness of the fibers Q7 (z), but they do need in [7] and [14]. Moreover,
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in the case of an analytic hypersurface, we can show a contradiction. For instance, we consider the
following example. Let

1
h(w) = h(wy,ws) = |w% +w§\5, (w1, wsy) € C2.

It is easy to check that h(Aw) = |A|h(w) > 0, A € C, w = (w1, w2) € C? and h is continuous on
C? and log h is plurisubharmonic on C2, but the fiber €, is unbounded. Hence, €, is not taut. Let
u(z) := log|z|, it is a continuous subharmonic function on X := C\ {0,1}. Put S = {—1}. It is
clear to see that X is taut, hence X is taut modulo S (see Definition 2.2). Consider

H: X x C? = [0; +00), H(z,w) = h(w)e"?),

which is continuous and log-plurisubharmonic on X x C2. Thank to [7] (Theorem 5.2), we deduce
that Q,, (X \ S) is not taut. By Theorem 2.3 (iii) in [13] and Remark 2.1 below, we can see that
Qun(X)\ S = Qyun(X \ S) is taut, where S := S x C2. This is a contradiction.

Hence, in our opinion, for the tautness modulo an analytic subset S of certain Hartogs-type
domains Q7 (X), the tautness of the fibers Q27 (z) can not be dropped.

The first purpose of this paper is to give some general versions for the tautness modulo an
analytic hypersurface of Hartogs-type domains and Hartogs — Laurent-type domains. Finally, we give
a version of Eastwood’s theorem for the tautness modulo an analytic hypersurface of a complex
space. To finish the proofs, we use the ideas and arguments in [7] to avoid using Zorn’s lemma.

2. Preliminaries. Let A be the open unit disk in the complex plane. For a complex space X,
we denote by Hol(A, X)) the set of all holomorphic maps from A to X and by Bn(z,r)’ the n‘—

a—1b
|1 — ab|

dimensional Euclidean open ball with center z and radius » > 0 and by p(a,b) := tanh™!

the Poincaré distance on the open unit disk A.

Definition 2.1 [6, p. 68]. Let X be a complex space and let S be an analytic subset in X. We
say that X is hyperbolic modulo S if for every pair of distinct points p,q of X we have dx(p,q) > 0
unless both are contained in S, where dx is the Kobayashi pseudodistance of X.

If S = @, then X is said to be hyperbolic.

Definition 2.2 [6, p. 240]. Let X be a complex space and let S be an analytic subset in X.
We say that X is taut modulo S if Hol(A, X)) is normal modulo S, i.e., for every sequence { f,} in
Hol(A, X) one of the following holds:

(i) there exists a subsequence of {f,} which converges uniformly on every compact subset to
f € Hol(A, X)) in Hol(A, X);

(ii) the sequence {f,} is compactly divergent modulo S in Hol(A, X), i.e., for each compact
set K C A and each compact set L C X \ S, there exists an integer N such that f,(K)NL =&
forall n > N.

If S = &, then X is said to be taut. It is immediately from the definition that if S C S’ C X
and X is taut modulo S, then it is taut modulo S’, so in particular if X is taut, it is taut modulo S
for any analytic subset .S.

For 2/, 2" in X, we put

kx (2, 2") =inf{p(a,b): a,b € A,Fp € Hol(A, X), p(a) = 2, p(b) = 2"} =
=inf{p(0,a): a € A,Jp € Hol(A, X), 0(0) = 2’, ¢(a) = 2"},

which is called the Lempert function on X.
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Related to the tautness of a complex space, there is a function kg?) defined as follows.
Definition 2.3 [5]. Let X be a complex space. We define

kg?)(z’, 2y = inf{kx(2,21) + kx(z1,2"): 21 € X} =
= inf{p(0,a) + p(0,b) : a,b € A, Jp1, g2 € Hol(A, X),
@1(0) = z,awl(a) = 902(0)7 ‘PQ(b) = Zﬂ}? Z,,Z” €X.

Similar to the above definition, for the tautness modulo an analytic subset S of X, there is a
function k:g?)
Definition 2.4 [3]. Let X be a complex space and let S be an analytic subset of X. We define

defined as follows.

%g)(z’,z”) = inf{EX\S(z', 7)) + kx(z1,2"): 21 € X\ S} =
= inf{p(0,a) + p(0,b) : a,b € A,Jp; € Hol(A, X \ 5),
@2 € Hol(A, X),¢1(0) = 2, p1(a) = 92(0), p2(b) = 2"},

where 2/ € X \ S and 2" € X.
Obviously, k) < kY < kx.
We recall the following result, which is similar to Royden’s criterion for the taut domains [8] .

Proposition 2.1 [3]. Let X be a complex space and let S be an analytic hypersurface in X.
Then X is taut modulo S if and only if

BE(Z)(ZO,R) ={ze X: Eg?)(z(],z) <R}eX
G

forany R>0and zo € X \ S.

Proposition 2.2 [3]. Let X be a complex space, S be an analytic subset in X and X = |JX;
be the irreducible decomposition of X. Then X is taut modulo S if and only if X; is taut mzoec;ulo
S;:=X;NS foralliel.

Lemma 2.1 [10]. Let Z be a complex manifold. Let S be a hypersurface of a complex space
X. If {¢n}n>1 C Hol(Z, X \ S) converging uniformly on every compact subsets of Z to a mapping
¢ € Hol(Z, X), then either ¢(Z) C X \ S or ¢o(Z) C S.

The following statement is an immediate consequence of the criterion for the tautness modulo an
analytic hypersurface.

Corollary2.1 [3]. Let X be a complex space and let S be an analytic hypersurface of X. If
X is not taut modulo S, then there exist a number R > 0, sequences {zp}n>0 C X, {fu}n>1 C
C Hol(A, X\ S), {gn}n>1 C Hol(A, X) and {an}n>1,{Bn}tn>1 C [0;1) such that for n > 1, we
have

(@) # (20, 20) < R,

(i) fn(0) =20 € X\ S,

(i) fn(an) = gn(0),

(iv) gn(Bn) = 2zn, 2n = w € 90X or |z,| — o0,

(V) an — ao, Bn — Po-
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Remark 2.1. We could have X \ S being taut without X being taut modulo S. For instance,
C\ {0, 1} is taut, but C is not taut modulo {0, 1}. On the other hand, there are examples of domains
taut modulo S such that X'\ S is not taut. Just take X a taut domain and S such that the codimension
of S is at least 2. Then X \ S is not pseudoconvex, therefore not taut.

However, when S is an analytic hypersurface, using Lemma 2.1, we can show that if X is taut
modulo S then X'\ S is also taut. Indeed, we take any sequence { f,,} C Hol(A, X'\ S). Suppose that
{fn} is not compactly divergent in Hol(A, X \ S), we deduce that {f,,} is not compactly divergent
modulo S in Hol(A, X) either. By the tautness modulo hypersurface S of X, it implies that {f,,}
converges uniformly on every compact subset of A to a mapping f € Hol(A, X). By Lemma 2.1,
we have either f € Hol(A, X \ S) or f(A) C S. By the assumption, {f,,} is normally convergent
in Hol(A, X'\ S).

3. The tautness of Hartogs-type domains and of Hartogs — Laurent-type domains. Firstly,
we give a theorem for the tautness modulo an analytic hypersurface of Hartogs-type domains as
follows.

Theorem 3.1. Let X be a complex space and let S be an analytic hypersurface in X. If X is
taut modulo S, the fiber Qy(z) is taut for each z € X, H is continuous on X x C™ and H is
plurisubharmonic on (X \ S) x C™, then QX is taut modulo S := S x C™.

Proof. Suppose that Q(X) is not taut modulo S. By Proposition 2.2, we can assume that
X is an irreducible complex space. By Corollary 2.1, we can choose a number R > (, sequences
{Zn}nzo C QH(X) and

{fatnz1 C HOl(A, Qu(X)\S),  {gntnz1 C Hol(A, Qp(X))

and {o, tn>1, {Bn}n>1 C [0;1) satisfying the properties (i) to (v). By the definition of k), we have

7@

Qu(X) (Zo, Zn) > Eg?) (Z(l)a Zl)a

n

where z, = (25, 2;) € X x C™. Since the property (i), it implies that {2, },>1 C By (25, R). By
X

Proposition 2.1, we may see that {z}},>1 — a} € X as n — oo. For each n > 1, we denote

fn = (fL, %) € Hol(A, X \ S) x Hol(A,C™)

and
gn = (g},9%) € Hol(A, X) x Hol(A, C™).

By the property (i), we have f} (0) = z} € X \ S. Then, since the tautness modulo S of X,
we may choose a subsequence { f,ik} C {f}} such that
1L fl e Hol(A, X),

ie., { fnlk} is converging uniformly on every compact subset of A to f3 € Hol(A, X). It is clear
to see that f3(0) = 2 € X \ S. Since f! € Hol(A, X \ 9), applying Lemma 2.1, we have
fo € Hol(A, X \ S). Then the properties (iii) and (v) yield that

lim gy, (0) we(an) = fo(ao) € X\ S.

= lim
k—o0 k—o0

Hence, there exists a subsequence of {g;, }, without loss of generality, we assume that g, K gl e
€ Hol(A, X). Then we have

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 1



REMARK ON THE TAUTNESS MODULO AN ANALYTIC HYPERSURFACE OF HARTOGS-TYPE DOMAINS 123

90(0) = fo(a0) € X\ 8. (1)
In particular,
1 BTN | SRR T |
90(Bo) = lim g, (Bp,) = lim z, =ap€ X. 2)
k—o0 k—o0
Assume that lim,, . [|22]| = co. Put 22 = rpw, with ||w,|| =1 and r, € R, n > 1. It implies

that lim,,_,oo 7, = 0o and limg_,oo wy, = wo # 0 with some subsequence {wy, } of {w,}. By
H(z}, rpwyn) = rpnH (2L, wy,) < 1 and since continuity of H on X x C™, we have

lim H(Z}ank) = H(aé,wo) =0.
k—ro0
Thus, H(a},L) = 0 < 1 with a complex line L = twg in C™ (¢ € C). It implies that the fiber

Q H(a(l]) = L. But L is not taut, so we have a contradiction to the assumption. Therefore, since the
property (iv), we obtain

lim z, = (ap,al) = ap € O (x)- 3)

n—o0

Step 1: Choose ¢z € (0,1) such that 3, € c3A, n > 1. Since (1), we have (g§)(A) ¢ S. It
implies that (g})~1(S) is an analytic subset in the open unit disc A, so it is a discrete set. Then
(g8)71(S) does not have any accumulation point in A. Therefore, we can assume that

AN (g9)71(S) = 2. “4)
We put Ey := co 'A. For each n > 1, we define a map g, : F» — X x C™ by
9n(N) = (Gn(N), G2 (V) = gn(Ba).
Clearly,
{gn}n=1 C Hol(E, Q2 (X)). )

Put Fy := (J,5,(BnE2). Using (v), it is easy to check that F; € A. Let M := g5 (F). Since
Bn € 3A, n > 1, we have 3, < c3. It implies that

ﬁnE2 = BnCQ_lA C CQA, n > 1.

Then g (F2) C gi(c2A). This and (4) imply that M & X \ S. Notice that X is hyperbolic modulo
S and d = dx is the Kobayashi pseudodistance, then & := dist(M,d(X \ S))/3 > 0. Since {g;,, }
converges uniformly on F3, we may take ng € N such that d(gs (A),g5(\)) < 0, A € Fa and
ng > ng. Hence, for vy € (X \ S), A\ € Fa, we obtain

d(gn, (N),v0) > d(g5(N), v0) = d(gn, (A), g9(N)) > dist(M,0X) — & > 26.

Then we get d(g;, (F2),0(X \ S)) > 26 > 0, which implies that

K:=gF)u| J g (F2) | € X\S (6)

ng>no
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Particularly,
K" = {gp, (Bu,A), 96(BoN) : A € Ea,my; > g} C K. (7

We now assume that the family {2} is not uniformly bounded in E5. Then there exist a subse-
quence {g2 } and a sequence {\;} C E» such that

. ~2
Jim 72, ()| = .

Put g2 (Ax) = rpwy with [|wgl| = 1 and 7, € R. Similar to the above argument, we have
limg_00 7% = 00 and limy_, o, wi, = wq # 0. Since (6) and (7), we deduce that

lim g, (A\) =bo € K C X\ S.
k—00
Since (5), we obtain

riH (Gn, (Ae)swi) = H(Gn, (Ar), G, (Ae)) < 1.

By continuity of H, we have
lim H (g, (M), wy) = H(bo, wo) = 0.
k—o0

Repeat the same argument in the above, we will get a contradiction to the tautness of the fiber Qz(2)
again. Therefore, fq%k is uniformly bounded in E». Applying to Montel’s theorem, without loss of
generality, we can assume

72, 5 G € Hol(E», C™)

as k — oo. In particular,

g6(1) = lim g7, (1) = lim g7, (By,) = lim 27, = a. (8)

Put ¢, := H o gy, on Ey. Since ¢,, <1 on Ej for any nj > ng, we have o := H ogyp <1 on
E,, where go := (g5, 93) and g(A) := g§(Bo), A € Es. It follows from (2) that
90(1) = 90(bo) = ag. ©)

Since (3), (8) and (9), we get (1) = H(ag) = 1. By H is plurisubharmonic on (X \ S) x C™, ¢q
is subharmonic on F5. Thus, the maximum principle for subharmonic functions implies that ¢y = 1
on F5, and hence

90(0) = (95(0),93(0)) € 92 (X). (10)

Step 2: We are going to apply the same argument as in Step 1 to {f, }n>1 and {ay, }n>0. Choose
c1 € (0,1) such that o, € E; := ¢; 'A for n > 1. We define a holomorphic function fn:
El — QH(X) by _ _

FaQ) = (Fa(N)s fa(N) = falan)), A€ Er.
Then we also have
72,5 2 € Hol(Ey, C™)

as k — oo. Since condition (iii), we observe that
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go(0) = lim gnk(o) = lim gnk(o) = lim fnk(ank) = lim fnk(l) = fo(1), (11)
k—o00 k—o00 k—o0 k—o0
where fo = (ﬁ},fg} and fg()\) = fi(ao)), A € Ey. Put

Yo(\) =Ho (fo)(\) <1, A€ Eu.

Obviously, since (10) and (11), we obtain (1) = H(fo(1)) = 1. It follows from the maximum
principle for g that ¢)g = 1 on Ej. This implies that

fo(0) = Jlim Fo, (0) = Jim £, (0) = 20 € 9Qu(X),

which contradicts the condition (ii).

Theorem 3.1 is proved.

We know that the tautness of X \ S does not imply the tautness modulo S of X in general.
But, using Theorem 1.2 in [14], we have the following assertion in special situations of Hartogs-type
domains.

Corollary3.1. Let X be a complex space being taut modulo an analytic hypersurface S. Assume
that H is continuous on S := S x C™ and the fiber Qp(2) is taut for each z € S. If Qu(X)\ S is
taut, then Qp(X) is taut modulo S.

Due to Barth [1], €2, is taut if and only if 2; € C™ and h is continuous plurisubharmonic on
C™. In addition, if u is plurisubharmonic then e* is. We immediately have the following corollary.

Corollary3.2. Let X be a complex space and S be an analytic hypersurface in X. If X is taut
modulo S, the fiber Qy, is taut, u is continuous on X and u is plurisubharmonic on X \ S, then
Qun(X) is taut modulo S:=8xCm

We recall the Example 2.4 in [13]. Let X = {(21,22) € C%: 2122 = 0} and S = {(21, 22) € C?:
zo = 0}. We can check that X is taut modulo S. We put u(z) = u(z1, 22) := log |22| and h(w) = |w|
with w € C. Obviously, u is plurisubharmonic on X \ S and continuous on X. It is easy to see that
the fiber Q, is taut, H(z,w) := h(w)e“*) is continuous on X x C and log H is plurisubharmonic
on (X \ S) x C. Applying Corollary 3.2, we deduce that €2, 5, is taut modulo S:=9xC.

Notice that we also obtain this conclusion by direct proof as in [13]. However, we can not get
one from Theorem 2.3 (iii) in [13]. Because log H is not plurisubharmonic on X x C, since u is not
plurisubharmonic on X.

Now, we give a necessary condition for the tautness modulo of Hartogs — Laurent-type domains.

Proposition 3.1. [f'3, ,(X) is taut modulo S := SxC, then u and v are continuous on X \ S,
where S is an analytic subset of X.

Proof. Suppose the contrary. Without loss of generality, we can assume that « is not continuous
at zp € X \ S. By upper semicontinuity of u, we can choose a number R € R and a sequence
{zn} C X \ S such that 2z, — zp as n — oo and —u(zp) < —R < —u(z,) for any n € N. Since
u(zp) # —oo and u(zp) + v(20) < 0, we may take an o € R such that v(z9) < —a < —u(zp).
Since upper semicontinuity of v, we can assume that v(z,) < —« for n > 1. Put

C:= %min{ —u(z0) + o, —R+u(z0)} >0

and

ﬁ::u—u(zo)—%, @::v—i—u(zo)—i—%.
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Obviously, the mapping
(z,w) € Ly p(X) — (z, we“<z0)+%> € Xus(X)

is biholomorphic, so ¥ ;(X) is taut modulo S. We put

R:= —u(zo)+R—%, Q= —u(zo)+a—§.
It is easy to show that v(z,) < —& for any n € N. Hence, for any n > 1,
max{(z0), 5(z,)} < =& < —=C < 0 < —ii(z9) < C < —R < —ii(zy). (12)
We define f,,(A) := (2,,e“Y), A € A for n > 1. Observe that
e?Cn) < 70 < e < e < emMUEn), n>1, MeA.

It implies that {f,,} C Hol(A, %445\ S) by z, € X\ S, n > 1. Because, ¢?(0) < ¢ C < ¢0 <
< e~=0) and zy € X \ S, we have

Fa(0) = (20, 1) = (20,1) € Zq \ S
By the tautness modulo S of Ya,5, We get
FaN) B FO0) = (20,67Y) € Hol(A, Sa)

as n — oo. It implies that e?(20) < CReA < ¢=u(20) for any X\ € A. By letting A — 1, we have a
contradiction to (12).

Hence, Proposition 3.1 is proved.

The following proposition gives a sufficient condition for the tautness modulo of Hartogs—
Laurent-type domains.

Proposition 3.2. If X is taut modulo an analytic hypersurface S, w is continuous on X,
plurisubharmonic on X \ S and v is continuous plurisubharmonic on X, then %, ,(X) is taut
modulo S := S x C.

Proof.  Let a sequence {¢,} C Hol(A, ¥, ,(X)). We have ¥, ,(X) C Q,,(X), where ||
is the norm on C. By Corollary 3.2, Q,(X) is taut modulo S. It implies that there exists a sub-
sequence {¢p, } C {yn} which is either normally convergent or compactly divergent modulo S in
Hol(A, €2,,1./(X)). In the latter case, the sequence {¢n, } as a subfamily of Hol(A, ¥, (X)), di-
verges compactly modulo S. Then, we only suppose that {¢,,} is normally convergent in
Hol(A, (X)) Put @, = (fu,,9n,), Where {fy, } C Hol(A, X) and {gn, } C Hol(A,C).
We denote

= (f,9) € HOI(Avﬂu,H(X))a

where f € Hol(A, X)) and g € Hol(A, C), such that f;,, X f and gy, X g as k — oo. We have
evofn ) < 1g. (N < e~ (@l )N

and
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lg(\)| < e” NN N e A

Since (gn,)~1(0) = @ for any k > 1, it follows from Hurwitz’s theorem that either g = 0 or g
never vanishes. If g = 0 then ¢(A) C 0%, ,(X), which implies that {¢,, } as a subfamily of
Hol(A, ¥, (X)) diverges compactly. Now, we suppose that g # 0 and define

b= L NN A e A,
l9(A)

It implies that ¢ is continuous subharmonic on A. By continuity of v, we have 0(\) < 1 for any
A € A. It follows from the maximum principle for subharmonic that either ¥ = 1 on A or v < 1
on A. Therefore, it is either ¢(A) C 9%X,,(X) or p(A) C Xy (X). Then {¢,} is either normally
convergent in Hol(A, X, (X)) or compactly divergent. Thus, since the above arguments, {f,} is
cither compactly divergent modulo S or normally convergent in Hol(A, X, ,(X)). It implies that
Yuw(X) is taut modulo S.

4. Eastwood’s theorem for the tautness modulo. Similar to Eastwood’s theorem for the
hyperbolicity and tautness of a complex space (see [4, 9, 11]), we give a version of Eastwood’s
theorem for the tautness modulo an analytic hypersurface of a complex space.

Theorem 4.1. Let X and X be two complex spaces. Let : X > X be a holomorphic
mapping and let S be an analytic hypersurface in X. Suppose that for each p € X, there exists an
open neighborhood U := U(p) in X such that w= (U) is taut modulo S = 7=(S). If X is taut
modulo S, then X is also taut modulo S.

Proof- As in the proof of Theorem 3.1, we can consider X as an irreducible complex space.
Suppose that X is not taut modulo S. Then by Corollary 2.1, we can take sequences {2, }n>0 C
C Qu(X), {fn} € Hol(A, X\ S),{gn} C Hol(A, X) and sequences {an }n>1,{Bntn>1 C [0;1)
satisfying the properties (ii) to (v). We put

fo=mo fn €Hol(A, X\ S) (13)

and
gn =mog, € Hol(A,X), n>1.

By the property (ii), limy, o0 fn(O) = lim;, 0o m(29) € X \ S. Since X is taut modulo S, there
exists a sequence { fy, } C {f.} such that

fnk §> 1 € Hol(A, X)

as k — oo. By (13) and applying Lemma 2.1, it implies that ¢; € Hol(A, X \ S). By the property
(iii), we get N

lim gp,(0) = lim fy, (on,) = @1(ap) € X\ S.

k—o0 k—oo

Then {g,} contains a subsequence {g,, } converging uniformly on compact subsets to a map ¢y €
€ Hol(A, X) as k — oo. Therefore, for any A € A, there exists an open neighborhood V), € A of
A, Ugy(ny and ky € N, such that 771 (U, (y)) is taut modulo S and gy, (Vy) € 77 (Up,n) C X,
for any k > k.

Now, we take a point 0 < s < 1. By the compactness of [—s, Sp] C A, we can choose a finite
set {x,: p=1,...,q} C[~s, 0] such that [~s, Bo] C U/\=y Vz, and forall p € {1,...,q} exists
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ve{l,...,q} \ {p} such that V;, NV, # &. After a rearrangement, we can assume that 5y € V
and Vz, N\Vy,,, # @, p€{1,...,q—1}. For A = fy, we consider gy, € Hol(Vz,, 7 *(Up,(s,)))-

Assume that there exists a subsequence {gy, } C {gn,} converging uniformly on compact subset
to map gg, € Hol(V3,, ﬂ_l(Um(ﬁo))) as k1 — oo. By the property (iv), we have

k}l—r>noo “ng, = k}l—r>noo Iny, (ﬂnkl) =980 (60) € X.
That is a contradiction to the condition (iv). Hence, by the tautness modulo S of ﬂ_l(UW(ﬁo)), it
implies that g,, diverges compactly modulo on Vg,. But, since 5y € V;, NVj, # &, we can choose
a sequence {gnk2} C {anl} which diverges compactly modulo on V. . Because V,, NV, 1 # 9,
we also choose a subsequence {gn, } C {gn,,} which diverges compactly modulo on V;,_,. And,
we can proceed to ¢ — 2, in this manner, we can choose ug € {1,...,q} with 0 € V,, and a
subsequence {gn,, } C {gn,,} diverges compactly modulo on V;, . Thus, in view of (iii), we have
either

lim fnk (any,) = lim g,, (0)=ap € 8)?, (14)
k4—00 k4—00 4
or
Jim o, () € 5. (15)

Applying the above argument for the sequence f,, C Hol(A, X \ S), we can choose a sub-

sequence { Joigy of {fn,} that diverges compactly modulo on V,,. Because if fy, £ fao €
€ Hol(Va,, 7 (U,
that

Jn fo (om,) = fao(00) € 77 Uy a) \ S € X\ 8.

(ap)))> by Lemma 2.1, we have fo, € Hol(Vag, 7 (Up,(ag)) \ S)- It implies

This is a contradiction to (14) and (15). So, we can take a subsequence {fn, } C {fn,. } such that
{fnx, (0)} converges to a point in dX orin S. Obviously, this is a contradiction to the property (ii).

Therefore, X is taut modulo S.

Immediately, we get the following corollary.

Corollary4.1. If : X > Xisa holomorphic covering between complex spaces, then X is taut
modulo S if and only if X is taut modulo an analytic hypersurface S in X, where S = 1(9).

Acknowledgements. The author would like to thank Professor Do Duc Thai for suggesting the
problem and helpful advices during the preparation of this work.

References

1. T.J. Barth, The Kobayashi indicatrix at the center of a circular domain, Proc. Amer. Math. Soc., 88, 527-530
(1983).

2. N. Q. Dieu, D. D. Thai, Complete hyperbolicity of Hartogs domain, Manuscripta Math., 112, 171 -181 (2003).

3. P.V.Duc, P.N. T. Trang, M. A. Duc, On tautness modulo an analytic subset of complex spaces, Acta Math. Vietnam,
42, 717-726 (2017).
A. Eastwood, A propos des variétés hyperboliques complétes, C. R. Acad. Sci. Paris, 280, 1071 —1075 (1975).

5. M. Jarnicki, P. Pflug, Invariant distances and metrics in complex analysis, Walter de Gruyter, Berlin, New York
(1993).

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 1



REMARK ON THE TAUTNESS MODULO AN ANALYTIC HYPERSURFACE OF HARTOGS-TYPE DOMAINS 129

6.
7.

10.
11.

12.

13.

14.

S. Kobayashi, Hyperbolic complex spaces, Springer-Verlag, Berlin (1998).
S. H. Park, On hyperbolicity and tautness of certain Hartogs-type domains, Rocky Mountain J. Math., 37, 959 -985
(2007).
H. L. Royden, Remark on the Kobayashi metric, in: Several complex variables, II, Lect. Notes Math., 189, 125-137
(1971).
D. D. Thai, P. V. Duc, On the complete hyperbolicity and the tautness of the Hartogs domains, Int. J. Math., 11,
103-111 (2000).
D. D. Thai, M. A. Duc, N. V. Thu, On limit brody curves in C?, Kyushu J. Math., 69, Ne 1, 111-123 (2015).
D. D. Thai, N. L. Huong, A4 note on the Kobayashi pseudodistance and the tautness of holomorphic fiber bundles,
Ann. Polon. Math., 58, 1-5 (1980).
D. D. Thai, P. J. Thomas, D™-extension property without hyperbolicity, Indiana Univ. Math. J., 47, 1125-1130
(1980).
D. D. Thai, P. J. Thomas, N. V. Trao, M. A. Duc, On hyperbolicity and tautness modulo an analytic subset of Hartogs
domains, Proc. Amer. Math. Soc., 141, 3623 -3631 (2013).
N. V. Trao, T. H. Minh, Remarks on the Kobayashi hyperbolicity of complex spaces, Acta Math. Vietnam, 34,
375-387 (2009).
Received 24.12.15,
after revision — 08.01.19

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 1



