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APPROXIMATION BY NORLUND MEANS OF QUADRATICAL
PARTIAL SUMS OF DOUBLE WALSH - KACZMARZ-FOURIER SERIES *

HABJIW/XEHHSA CEPEJHIMUA HOPTYHJA KBAAPATUYHUX
YACTKOBHUX CYM NOJBIMHUX PSIIB YOJIIIIA - KAYMAPKA - ®YP’€

We discuss the Norlund means of quadratic partial sums of the Walsh — Kaczmarz — Fourier series of a function in L”. We
investigate the rate of approximation by this means, in particular, in Lip(c, p), where @ > 0 and 1 < p < 0. For p = oo,
by LP, we mean C| i.e., the collection of continuous functions.

Our main theorem states that the approximation behavior of this two-dimensional Walsh - Kaczmarz - Norlund means
is as good as the approximation behavior of the one-dimensional Walsh— and Walsh — Kaczmarz - Nérlund means.

Earlier results for one-dimensional Norlund means of the Walsh—Fourier series was given by Moricz and Siddiqi [J.
Approxim. Theory. — 1992. — 70, Ne 3. — P. 375-389] and Fridli, Manchanda and Siddiqi [Acta Sci. Math. (Szeged). —
2008. — 74. — P. 593-608], for one-dimensional Walsh — Kaczmarz—Noérlund means by the author [Georg. Math. J. —
2011. - 18. — P. 147-162] and for two-dimensional trigonometric system by Moricz and Rhoades [J. Approxim. Theory. —
1987. - 50. — P. 341 -358].

Posrsnatotecs cepenni HopiyHna amst KBagpaTHUHHMX 4acTKOBHX cyM psziB Yomma— Kaumapxka— ®@yp’e dyHKuil 3 npo-
cropy LP. BUBY4EHO IIBUIKICTH HAOMIKEHHSI LHMH CepeiHiMu, 30kpeMa, B Lip(a,p), me a > 0 1a 1 < p < oo. st
p = oo mix LP mu posymiemo C, To6TO Habip BCiX HemepepBHUX (QYHKIIIH.

OcCHOBHa TeopeMa y Il CTaTTi CTBEpIXKYeE, IO anpoKCHMaIliliHa MOBEIiHKa TaKHX JBOBHMIPHHX cepenHix Youma-—
Kaumaprka— HopnyHzma Tak camo rapHa, sIK i anpoKcHUMalliiiHa IOBEAiHKAa OJHOBHMIpHHX cepelHix Younma Ta Youma—
Kaumaprka — Hopnynna.

Panime pe3ynsratu 1u1s oqHoBUMIipHUX cepenHix Hopiynna psaais Yomma — @yp’e 6ynu orpumani Mopiuem ta Cinaiki
[J. Approxim. Theory. — 1992. — 70, Ne 3. — P. 375—-389] ta ®pimri, Manuanna i Cigniki [Acta Sci. Math. (Szeged). —
2008. — 74. — P. 593-608]. [lns omHoBUMIipHHX cepennix Yomma— Kaumapika—HopnyHaa BianoBimHi pesyasratd Oyin
orpumani aBropoM [Georg. Math. J. — 2011. — 18. — P. 147-162]. Bumagox ABOBUMIPHUX TPHTOHOMETPHUYHHX CHCTEM
Oyso po3nsiHyTo Mopidem i Poagcom [J. Approxim Theory. — 1987. — 50. — P. 341 -358].

1. Norlund means. Let {g;: k > 1} be a sequence of nonnegative numbers. The Norlund means
and kernels of the Walsh — (Kaczmarz) — Fourier series are defined by

n—1 n—1

() = o S akSEfa), L) = oo 3 aurDi(e)
" k=1 " k=1

n—1
where @, := Zkil qr, n > 1, and « is the Walsh system in the Paley or Kaczmarz enumeration.
We always assume that ¢; > 0 and

lim @, = oo.
n—oo

In this case, the summability method generated by {qgx} is regular (see [17]) if and only if

lim 2= — o,
n—oo

n

* This paper supported by project TAMOP-4.2.2.A-11/1/KONV-2012-0051.

© K. NAGY, 2016
ISSN 1027-3190.  Yxp. mam. srcypn., 2016, m. 68, Ne 1 87



88 K. NAGY

In particular case t& are the Fejér means (for all k& set ¢ = 1) and ¢$ are the (C, 3)-means
(q;,C ::Ag = (6—1:k> for k > 1andﬂ7é—1,—2,...)

In the paper [17] the rate of the approximation by Norlund means for Walsh —Fourier series of
a function in L? (in particular, in Lip (c, p), where &« > 0 and 1 < p < oo) was studied. In case
p = 00, by LP we mean C, the collection of the continuous functions. As special cases Moricz and
Siddiqi obtained the earlier results by Yano [32], Jastrebova [14] and Skvortsov [27] on the rate of
the approximation by Cesaro means. The approximation properties of the Cesaro means of negative
order was studied by Goginava in 2002 [10]. In 2008 Fridli, Manchanda and Siddiqi generalized the
result of Moricz and Siddiqgi for homogeneous Banach spaces and dyadic Hardy spaces [3]. Recently,
Tephnadze discussed some new aspect of the Norlund means [29, 30].

The case when gy = 1/k is not discussed in the paper of Moricz and Siddiqi, in this case t&
are called the Norlund logarithmic means. It was studied for Walsh system by Gat, Goginava and
Tkebuchava earlier [5, 9], for unbounded Vilenkin system by Blahota and Gat [2].

The Norlund means and kernels of cubical partial sums of the two-dimensional Walsh — (Kaczmarz) -
Fourier series are defined by

n—1 n—1
60 %) = 5o S g kST ), £t a?) = oo S g kDR DEG?).

@n k=1 7 @n k=1
t> is called the nth Norlund mean of quadratical partial sums or the nth Norlund mean of
Marcinkiewicz type. The approximation behaviour of this Norlund means of Marcinkiewicz type
of Walsh—Fourier series was treated by the author [19] in 2010. We mention that the case that
qr := 1/k was not included in that paper. For Walsh system this case is discussed by Gat and
Goginava in [6], they investigated the uniform and L-convergence of the Norlund logarithmic means

k
of Marcinkiewicz type. If we choose ¢ := AP = <BZ (for k> 1and 8 # —1,-2,...), then

we get the (C, 3)-means of Marcinkiewicz type which was discussed by Goginava [11, 13] with
respect to double Walsh — Fourier series, for 5 = 1 we get the Marcinkiewicz means [20].
In 1948 Sneider [28] introduced the Walsh — Kaczmarz system and showed that the inequality

lim sup % >C>0
n—ooo logn

holds a.e. In 1974 Schipp [24] and Young [33] proved that the Walsh—Kaczmarz system is a
convergence system. Skvortsov in 1981 [26] showed that the Fejér means with respect to the Walsh —
Kaczmarz system converge uniformly to f for any continuous functions f. Gat [4] proved, for any
integrable functions, that the Fejér means with respect to the Walsh—Kaczmarz system converge
almost everywhere to the function. Gat’s result was generalized by Simon [25] in 2004. Recently, the
approximation behavior of the Walsh—Kaczmarz—No6rlund means in LP, 1 < p < o0, [18] and the
rate of the approximation of the Cesaro means of negative order in LP was discussed by the author
[21, 22].

In 2003 the uniform and L-convergence of double Walsh—Kaczmarz—Fourier series was dis-
cussed by Goginava [12]. In 2006 the almost everywhere convergence of the Walsh — Kaczmarz -
Marcinkiewicz means of integrable functions was proved by the author [20] (see also [7]).
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2. Walsh system. Now, we give a brief introduction to the Walsh—Fourier analysis [1, 23].
Let us denote by Z, the discrete cyclic group of order 2, the group operation is the modulo 2 addition
and the topology is the discrete topology. The normalized Haar measure on Zs is given in the way

that u({0}) = u({1}) = 1/2. Let G := X Zs, which is called the Walsh group. The elements of G
k=0
are sequences = = (xg,x1, ..., Tk, ...) with coordinates =3, € {0,1}, k € N.
The group operation on G is the coordinate-wise addition (denoted by +), the normalized Haar

measure (denoted by ) is the product measure, the topology is the product topology. A base for the
neighbourhoods are given by

Iy(z) =G, Li(x) ={yeG:y= (20, s Tn-1,YnsYn+1,---)}

forz € G,n € P (P := N\{0}), they are called dyadic intervals. Let 0 = (0: i € N) € G denote the
null element of G and I,, := I,,(0) for n € N. Set e; := (0,...,0,1,0,...), where the ith coordinate
is 1 the rest are 0.

Let L, denote the usual Lebesgue spaces on G (with the corresponding norm ||.||,). For the
sake of brevity in notation, we agree to write L™ instead of C' and set ||f||o := sup{|f(z)|:
x € G}.

For x € G we define |z| by |z| := Zio 2,277 forx = (z!,22) € G?by |z|? := |2 [>+|2? 2.

Next, we define the modulus of contiiluity of a function f € LP, 1 < p < o0, by

wp(0, f) := sup [[f(. +1) = f()llp, 0>0.

[t]<d

We define the mixed modulus of continuity as follows:
P —
w1,2(517 527 f) T

= Sup{”f(' +‘T1a . —|—$2) - f( +‘T1a ) - f(a . +x2) + f(’ )Hp |$1‘ < 517 |£C2| < 52}7

where 61,09 > 0.
The Lipschitz classes in L? for each a > 0 are defined by

Lip(a,p) :=={f € LP: wp(6, f) = O(6%) as § — 0}.
The Rademacher functions are defined as
re(z) = (-1)", xzedG, kel

Each natural number n can be uniquely expressed as n = Z?OO n;i2t, n; € {0,1}, 7 € N, where only
1=

a finite number of n;’s different from zero. Let us define the order |n| of n > 0 by |n| := max {j € N:

nj # 0}. The Walsh functions can be enumerated in Paley enumeration as follows, wy = 1 and for

n>1

00
[n]—1

wn(w) = [ ru(@))"™ = i () (~D = e,

k=0
(Simply we say Walsh —Paley functions, Walsh—Paley system.) The Walsh functions can be given
in other enumerations, the most investigated is the Kaczmarz rearrengement. The Walsh —Kaczmarz
functions are defined by k9 = 1 and forn > 1
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In|-1
In|

(@) = 14af (@) [T (agoa-p (@)™ = 71y () (—1) 2050 M0t

k=0

The set of Walsh — Kaczmarz functions (denoted by ) and the set of Walsh — Paley functions (denoted
by w) are equal in each dyadic block. Skvortsov [26] gave a relation between the Walsh — Kaczmarz
functions and the Walsh—Paley functions by the transformation 74 : G — G defined by

TA(:E) = (l'A—b LTA-2y-+3T1, L0y LA, A1, - - )
for A € N. By the definition of 74, we have
bin (@) = 1) (T)W,_omi (Tjn)(2)), n€EN, z€G.

Moreover, it is showed that the transformation 74 is measure-preserving. The Dirichlet kernels are
defined by

n—1
=D,
k=0

where ay, = wy(n € P) or ky, (n € P), D§ := 0. The 2" th Dirichlet kernels have a closed form
(see, e. g., [23])

2", x €Iy,
0,  otherwise (n € N).

The nth Fejér mean and the nth Fejér kernel of the Fourier series of a function f is defined by

v = SOSp(fa), KR
k=0

where o := w or k and K§ =

On G? we consider the two-dimensional system as {a,,1 (z!) X a2(2?): n := (n!,n?) € N2}.
The two-dimensional Fourier coefficients, the rectangular partial sums of the Fourier series and
Dirichlet kernels are defined in the usual way. Let us define the nth Marcinkiewicz kernel K¢ by

n

S S B

k=0

:\}—‘

Ko (xt, 2 ZDk ) (r=(z',2?) € G? a=w or k).

Recently, the almost everywhere convergence of the Walsh — Kaczmarz—Marcinkiewicz means of
integrable functions was discussed by the author [20] and later by Géat, Goginava and the author [7].

3. The rate of the approximation. Now, we decompose the Walsh—Kaczmarz—Norlund
kernels L. The following lemma is the two-dimensional analogue of the decomposition lemmas in
[17, 18].

Lemma 1. Let |n| = A > 1, then

Qnﬁg(xlvfﬂz) = anzA—lﬂDzA (CUI)DQA (952)_
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24-11
—DQA(iUl)w%—l(l’Q) Z (qn—2A+j - qn—2A+j+1)jK;U(TA—1($2))_
j=1
—D2A( Jwaa_q( Z qn—2A+j —Qn_2A+j+1)jK}U(TA—1(3Cl))—
7=1

—qn—2A712A_1D2A (xl)sz—l ($2)K§UA71 (TA—1($2))—
—qn—2A712A_1D2A (952)102A—1 (xl)KéﬂAfl (TA—I(xl)H‘

Fwya_y (2 )wya_( Z qn—2A+j—Qn—2A+j+1)j/C;p(TA71($l)aTAfl(fUQ))‘F
1

+qn72A—12A_1w2A71(xl)w%fl(ﬂg)lc;ﬁ—l(TAfl(ml)vTA71(552)))+
24-1-2
+ ) (Guj = Gn-j-1)iK (2" %)+
j=1
+qn_2A—1+1(2A71 — 1) §A71_1($1, x2)+

+Qp—_24Dja (:vl)rA(xQ)LZ_gA (Ta(z®)+

+Qn94Doa(2?)ra(at) Ly _pa(ra(a))+

w

+Qn_gara(@)ra(@®) Ly ya(raz'), Ta(2?)).
Proof. During the proof of Lemma 1 we use the following equations:

Dfai(x) = Daa(@) +7a(x)Df (7a(x)), j=0,1,...,24 1,

5a_;(@) = Dya(2) = wpa_1(2) D (ta-1(2)), j=0,1,...,247%

Let |n| = A, then we write

QnLy, an kDf (2 ) + Z Gn_i D (z)) D (2?) =: I + I1.

k=24+1

By the help of (2), we decompose I1:

n—24-1

D GnoaDiay (@) D5a,(a?) =
j=1

n—24-1 n—24-1
= Dya(2") Dya(x Z Gn—o4_j + Doa( Dra(a Z Gn-24_; D} (Ta(z )+
7j=1
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92 K. NAGY

n—24-1

+Doa (2 )ra(@') D g DY (ra(ah) +ra(a)ra@®)Qu_oa LY _ya(ta(a'), a(@?)) =
j=1

::C?n—2A1)2A<$1)l)2A(x2)‘F1)2A(xl)TA(x2>CQn—2Alﬁf_zA(TA($2)>+

+Doa(2*)ra(z) @ 0a LY oa(Ta(@")) + rala')ra(z®)Qp 0a LY ya(ra(z'), 7a(z?)).
We write for I that

241
I=3 Gn-244;D5a (") D3a_(a?) =
j=0

2A—1 241

1 2 1 2
=3 Gnon i Dha_ (@)D, + Y a0 Dia_(a")Dha_(2%) = I + L.
J=0 j=24"141

We use (3) and Abel’s transformation for the term I;:
I = Doa(2") Doa(2®)(Qpna-141 — Qpna)—

24-1-1
—Dya (Jfl)w%—l(xz) Z (Qn—2A+j - Qn—2A+j+1)jK}U(TA—1(x2))+
j=1

+q,_oa-1 2A71K;UA,1 (TA_1 (a:Q))> —

24-1_7

—Dja (x2>w2A—1(xl) Z (qn—2A+j - Qn—2A+j+1)jK;)(TA—1(xl))+
=1

+qn_2A—1 2A71K§UA_1 (TAfl (.Tl))> +

24-11

Fwya_y (2" )wya_y (2?) j{: (@n—244; _’Qn—2A+j+J)jk;?(TAfl(xl)7TA41($2)>+
=1

+q,_94-1 241 ;UA—l (TA71($1)a TA-1 (552))) :

To discuss the expression Io, we set s = 24 — j and use Abel’s transformation:
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24-1_92
= Z (Gn—s — qﬂ—s—l)SKg(xla 5’52) + qn—2A*1+1(2Ai1 -1) SA—1_1(3317372)'

s=1

Lemma 1 is proved.

By the help of this lemma we have our main theorem, which states that the approximation
behavior of the two-dimensional Walsh—Kaczmarz—Norlund means of Marcinkiewicz type is as
good as the approximation behavior of the one-dimensional Walsh—Norlund means. The last one
was investigated by Moricz and Siddiqi [17] and recently by Fridli, Manchanda and Siddiqi [3].
Moreover, the rate of the approximation of Norlund means of Marcinkiewicz type are close to each
other for both rearrengement of the Walsh system (see also [19]).

Theorem 1. Let f € LP, 1 < p < oo (with the notation L> = C), |n| = A > 1 and {q:
k > 1} be a sequence of nonnegative numbers.

If {qx} is nondecreasing, in sign 1, then

A-1

165(f) = fllp < é 3 up2wp(27 f) + O(wp(274, 1))

=0

If {q.} is nonincreasing, in sign |, such that

23 g =00, @)

then

A-1

[t5(f) = fllp < Qi D 02wy (27 ) + O(wp(274, ).
" 1=0

To prove our theorem we need the following lemmas proved by Schipp, Moricz [16], Yano [31],
Simon [25], Glukhov [8] and Gat, Goginava, Nagy [7].

Lemma 2 [16]. If the condition (4) is satisfied, then there exists a constant C' such that ||L¥ || <
<C,n>1

Lemma 3 [31]. Letn > 1, then | K¥|1 < 2.

Lemma 4 [25]. There is a constant C such that || K1 < C,n > 1.

Lemma 5 [8]. Let ay,...,qa, be real numbers. Then

c n 1/2
< — a2
< (z ) ,
1 k=1
where ¢ is an absolute constant.

As corollary of the lemma of Glukhov, we get that there exists a constant C' such that || [|; < C,
n > 1, and the fact that condition (4) implies ||L¥||; < C, n > 1), where C is an absolute constant.
Lemma 6 [7]. There exists a constant C such that

1

n
> apDy @ Dy
k=1

IKE L <O, n>1.
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94 K. NAGY

Proof of Theorem 1. Clearly, condition (4) implies the regularity of the summability method.
We make the proof for 1 < p < oo, for p = oo the proof is analogous (where L>° = C'), thus we

omit to write it.
Let n € N be fixed and set [n| = A. By Lemma 1 and Minkowski inequality we may write that

Qnlltr(f) = fllp <

< Quosiip /(f(-+af)—f(-))D2A(w1)D2A(9:2)du(x) +

G? p

24-1-1

+ Z Gn—241j = Gn—244j4117%
J=1

x /(f(- +a) = f(.))Dya(@ Y wya_y (@)K} (Ta—r (2))dp(z) || +
G2 »

24-1_1

+ Z n—241j = Gn244j41]7%
i=1

x /(f(-+37)—f(-))DzA(wz)w2A_1($1)K}"(TA—1(wl))du(ﬂc) +

G? p

a1 277 /(f(- +2) = f())Daalx ywya_y (2% Kgiaos (Ta-1(2?))du(z) || +
G2 »

a1 2471 / (F(+2) — F()) Do (2 (2 ) K (4 () dpa() || +
G2 P

24-1_1

+ Z Gn—241j = G244 j41]5%
j=1

X /(f(- +a) = f()wya_y (2 )wpay (2°)KY (Ta-1(2"), a1 (2®))dp(@) | +

G? P

+ gy a1 277! /(f(-+ 1’)—f(-))w2A—1(ﬁl)sz—l(xz)’ngAfl(TA—I(xl)yTA—1($2))d,UJ($) +
lez »
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24-1_9
+ S g Gngald /<f<.+m>—f<.>>icy<x>du<x> +
j=1 o2 )
T pgaor (247 1) / 4 2) = FONar_y @)dp(z) || +
G2 p

+ Qnaa /(f(- +@) = f()Daala )ra(a?) Ly _pa(ra(e?®))dp(e) | +

G? p

+ Qp2a /(f(- +2) = f()Daa(@®)ra(z') Ly _pa(rale!))dp(e) | +

G? p

+an2‘4

/(f(- +a) = f)ral@)ra@®)Ly_sa(ra(z'), Ta(2?))du(z)

G2

p

Now, we discuss the expression A,, 1. By (1) and generalized Minkowski inequality we find

<

/ (F(.+2) — £() Dy (%) Dy (22)dps(z)

G2

p

1/p
= /Dw(xl)DzA(fUQ) ( /|f(y + ) — f(y)pdu(y)) dp(z) < cwp(274, f).
12 G2

Thus, we immediately have

Apg < ch_gA_1+1wp(2_A, f).

To discuss Ay, 2, Ap 3, Ana, Ans, foranye € G,y € G? and A € P we write the following:

/ (F(y + ) — F@)ra@d)du(z) | = / F(y+ 2)ra()dp(z) | =

Ta(e)xIa Ta(e)xIy

- / F(+ x)ra(@du(z) + /f(y+x)m(x1)du(x) -

IA+1(E)><IA IA+1(E+€A)><IA
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—| [ o furaehdu)| <

IA+1(€)><IA

< / fly+z) = fly + 2+ ex)|dp(z), Q)

IA+1(6)><IA

where el := (ea,0) (and €% := (0,e4) we will use it later). Now, for any j < 247! we write that

B! = / (f(-+2) = F(.)) Daa(a®)wpa_y (21 K (Ta-1(2"))dp(z) | =

G2

p

1

= >, 2 / (f(-+2) = fF)ra (@ wpa 1 (¢ K (Ta—1 (2'))dpu(@)
g;=0

ie{o,1,..,A—2} Ta—1(e)xla ,

The function wya-1_ (¢') K’ (Ta-1(2")) is constant on the sets I4_1(¢) (¢ € G, [j| < A—1). Thus,
the method of (5) and Lemma 3 imply

A-1 _
By =

1

= Yo 2wy (@)K (Tasa(e)) / (f(.+a) = f(Draa(ahdu(e) || <
;=0

i€{0,1,...,A—2} Ta_1(e)xIa ,

x / / (Fly+2) — F@))ras(@Vdp(@)| du) | <

G2 |Ta_1(e)xIa

1

< ) 2K (rana(e)lx
62':0
i€{0,1,...,A—2}

D 1/p

. / / [y +2) = fly+a+ ey )ldu(z) | duy) | <

G? IA(E)XIA
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1

< ) 2K (rana(e)lx
62':0
i€{0,1,...,A—2}

1/p

- / G[’f(y+fc)—f(y+w+ef41)Ipdu(y) du(z) <

IA(e)XIA

1

<e Y 2MEP (a2 ) / du(x) <
iE{Oj?f,OA—Q} T4(e)xIa

< awp (27 IS 0 Ta ]l <
< w27 NIKP L < ap(274F ). (6)
This yields that
An,47 ATL,E) S qn—QA*12A71B54A_—11 S an—QA*12A71wp(27A+l7 f)’

2A-1_1

- pA-1
=1

24-1_

- —-A
<c Z Gn—244j — Gn—2apji1liwp(277, f).
j=1

If g 1, we get that

24-1_1 24-1_1

L oA-1 A1
E [Gn—241; — Gn—244j411J <277 qp_ga-1 — E Un244j <27 ¢, 941 (7)
i=1 =1

and
An,3 < C2A_1Qn72A_1wp(2_A+17 f)a

while in the case when ¢ |

24-11 24-1-1
. A1
Z Gn—2445 = n24 141l = Z Gn—2ayj — (2 —1)gp0a-1 <
j=1 j=1
< Qpoa1 — Qp_oaqy 3

and
Anz < c(Qp_ga—1 — Qn72A+1)Wp(f7 2_A)-
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98 K. NAGY

Now, we introduce the notation BJA (see inequality (6)) to discuss A, 10, Ay, 11. First, let gz |

BA = / (F(+2) — F()Daa(e)ra@) L¥ (ra(a)dpu(z) |

G? p

for |j| < A. The method presented for inequality (6) (we note that [n — 24| < A — 1) and Lemma 2
imply

Byl ga < w27 DI g4 0 Tallt < w27 HILY pallt < cwp(27, )

and
An,lOa An,ll < ch—QAwp(27A7 f)

Now, let g, T . We use Abel’s transformation for the expression Q,,_oa L}’ ,4:

n—24-2
Qn_oal) 54 = Z (Gn—oa_j — Gn_oa_;—1)i K} + q(n — 24 — )K" 4,
j=1
and define éf by
Bt = /(f(- +3) = f(.))Daa(@®)rala) K (ra(a"))du(z) || , [j] < A,
G2 »

The method of the discussion BJA (see inequality (6)), Lemma 3 and the fact that the transformation
TA 1s measure-preserving [26] immediately give that

< ewp(27 NIKS o all < ewp(27 NIER I < cwp(27, )

and
n—24-2
A0, Annt NN | YD lgn0asj = Guosajalita(n—2"=1) | <
j=1
n—24-2
<@ NN D) dhsajtam—2"-1)| <
j=1

< cawp(27 ) @Qnoga +ar(n =27 —1)).

We note that Q),, > (n — 1)q; for increasing sequence {qy}.

Now, we discuss the terms A, g and A, 9. Let us set j < . We use Lemma 6 of Gat,
Goginava and the author and the fact that the functions K are constant on the sets 1};(e) x I};(p)
for any €, p € G:

2A—1
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Byi=|| [+ a) = SO )duta) | =

G? p

1 1
-l XX [ utn-iomk@ae| <

(0 g1} te(0 g1yl X T 0)

p
< Z Z K5(e, p)] %
16{0, ,j l}le{O7 ,] 1}
P 1/p
[l e - @i | i | <
G% \ 1) (e)x1)5(p)
1/p
< Z Z K5l [ /Ify+a: W)Pduly) | du(z) <

iefo,. ,J 1}16{0, ,] 1} 1j51(e) %115 ()

<o z Z Ko@) [ dulo) <

zE{O, ,J 1}1@{0, ,] 1} 1151(e)x 151 (p)
< || K5 lhewp(27V, £) < cwp(27V1, ).
This yields that
Ano < Gpoa-11 (247 = 1) Eyasi_q < cgy_pa—1,1247 w,(27A7D 1),

If g, 1, then
Apg < an72A—22A_2UJp(2_(A_2), f).

If ¢;. |, then
Ang < cgy_ga127 w0y (274FL 1),

Moreover, we get

2A-1_o A—22i+1 1
Ans<e Y gnoj = Gnja1liE; <D0 D tnat — Gnoi—allE; <
J=1 Jj=0 =27
A-2 2711
<ed w7 ) D w1 — gnorall
j=0 1=27
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If g, T, then
2i+1_1 27 -1
Z |Qn—l - Qn—l—1|l < Z Qn—2i—1 < 2J(]n—2j,
1=27 =0
A-2
An,S <c Z qn—9i 2jwp(2_]> f)
7=0
If ¢;. |, then
27+ 1
Z ‘anl - anlflu S 2j+1qn72j+17
=27
A-2
An,S <c Z Gn—2i+1 2J+1wp(2ijilv f)
=0

K. NAGY

At last, we discuss the expressions A, ¢, Ay 7, Ap12. Now, we investigate A, 12 and the other

two term can be treated analogously. But, we will write some words about it later.

First, let g | . We note that £ ,,(7a(x"),74(x?)) is constant on the sets I4(¢) x I4(p) for

any ¢, p € (. This and the generalized Minkowski inequality give

FA .= / (F(+3) = FOIra@)ra@)Le g (ra(e)), 7a(@?)du(z)
G2 p

S DD Y BN E TR

(0 A1} (e a1y A )X Ta (o)
< rA(@ ) ra@®) LY a(Talad), Ta(@?))dp(z) | <

1 1

< ¥ > LY a(rale), Talp))|

;=0 pJZO
i€{0,...,A—1} je{0,...,A—1}

x / (F(+2) = FO)rale)ra@)du(z) || <

Ta(e)x1a(p) P
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1

1
< XX ammbl

p;=0
16{0, ,A 1}]6{0, LA-1}

P 1/p
< / / (P +2) — f@)rat)ra@)du(z)| du(y)
G? | Ia(e)xIa(p)

In the way of estimation (5) we easily get

/ (Fly+ ) — F@)rae)ra@?)du(z)| < / Anf (e y)du(z),  ©)

Ta(e)x1a(p) Tat1(e)xTat1(p)

where

Aaf(z,y) =1f(z+y) = fle+y+ed) — fla+y+en) + flaty+en+ed)l
Inequality (9), condition (4) and Lemma 5 imply that
1 1
Fla< ) Do LY pa(rale),Talp))]x
;=0 pj:()
i€{0,...,A-1} je{0,...A—1}
P 1/p
|/ [ A | a | <
G?2 \Iat1(e)xIat1(p)

1 1

< Y > LY a(rale), Talp))|x

5L— Pi= =0
i€{0,...,A-1} je{o,...,A-1}

1/p

x / / (Aaf(e,)Pdu(y) | dule) <

Tay1(e)xTat1(p) \G?

—

1
< XX [ @t <

i€{0,. :19‘ 1}]6{0 LA 1}IA+1(5)><1A+1(P)

<Ly g4 0 (T4 % TA)‘|1W11),2(27A727A,]C) <

<Y paliw? (274,274 F) < e y(274, 274, ). (10)

We note that we used that the transformation 74 is measure-preserving [26]. From the above written
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An,12 < CanQAw§,2(2_A7 2_A7 f) < CQn72Awp(2_A7 f)
Now, we discuss the expression A, 12 for sequence g;, T . By Abel’s transformation we write

n—24-2
Qn_2aL)) ya = Z (Gn—24_j = Gn_2a_;j_1)iK; + q1(n — 24 — 1KY .
=1

Let us set for [j| < A
Fi = /(f(- +a) = f()ra(at)ra@)Cf (Ta(z'), a(a?))du()
G2 P
The method of the discussion of FjA (see inequality (10)) and Lemma 5 give immediately
Fff < ey (274274 PIKY o (ta x Ta) 1 < ewfp (274,274 HIKT [ < cwp(274, 1)
and
Apaa < cwp(274 f) (Quga +aq1(n— 24 — 1)).

(For more details see Ap 10, An11.)
Let us define Ff‘fl (for any |j| < A—1) by

A-1._
F; =

= /(f(- +a) = f()raci(z’ + 2% wpa g (@t + 2Ky (taca(ah), mac1(a?))dp(z)
G2 p
The method presented for discussion F' jA (see inequality (10)) and Lemma 5 give
FATV < | KY o (tam1 x Tacn)[iwf (274 2741 ) <

< || Y awh o274 274 f) < el p(27 A 274 ),

Thus,
An1 < egupa 287Ny (27 27 f) < eg_pana2 TN (274 )
and
2411
i —A+1 o—A+1
An,ﬁ S (& Z ’qn—QA—‘,-j — qn_2A+j+1‘szl)72(2 + ,2 + 7f)
j=1

If g T, then by (7)
Apg < CQA_lqn72A_1wp(2_A+1, f).

If g |, then by (8)
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Anp < c(Qp_ga-1 — Qn72A+1)wp(2_A+la f) < e(@Qp0a-1 — an2A+1)wp(2_Av f)

Summarising our results on A,,;, ¢ = 1,...,12, we complete the proof of our main theorem.
Now, we discuss the following cases:
(A) The nondecreasing {qy}, in sign gi T, satisfies the condition

Ndn—1
=0(1). 11
0. (1) QY
In particular (11) is true if
qr = k? or (log k)? for some 3 > 0.

(B) The nonincreasing {qy}, in sign g |, satisfies

(By) qx < k=P for some 0 < § < 1, or

(Bi:) qr < (log k)~ for some 0 < 3.

(We note that the condition (4) is satisfied in these cases.) For more details see [17, 19].

The one-dimensional analogue of the following theorem was proven for Walsh — Paley system by
Moricz and Siddiqi in [17] for Walsh —Kaczmarz system by the author [18]. We mention that as
special case (set g := 1 for all k) we get Marcinkiewicz means of Walsh — Kaczmarz — Fourier series.
More generally, when g := Ag = (’sz) for k > 1, 5 # —1,—2,..., we have the (C, 5) mean of
Marcinkiewicz type discussed by Goginava [13] with respect to the double Walsh —Paley system and
by the author [22] with respect to double Walsh— Kaczmarz system.

Theorem 2. Let f € Lip (o, p) for some a > 0 and 1 < p < oo.

Let {qi: k > 1} be a sequence of nonnegative numbers such that in case qi, 1 the condition (11)
is satisfied, while in case qy; | the condition (B;) or (By;) is satisfied, then

O(n™?), if 0<a<l,
182(f) = fllp = { O(n~logn), if a=1,
O(n™1), if a>1.

Proof. Let f € Lip(a,p) for some o > 0 and 1 < p < oo.

First, let g, T, which satisfies the condition (11). From Theorem 1 by the method of Mdricz and
Siddiqi [17] Theorem 2 can be proven.

Second, let g |, which satisfies the condition (B;), that is,

g =k™? forsome 0<B<1, then Q,x=n'"".

From Theorem 1 it follows that

[n|-1

[65(f) = fllp < Qi 3 g 227y o2,
" =0

For 0 <1< |n| — 1 we have 2"=1 <n — 2! and ¢,,_o < 27 A=), Thus,

In|-1 \n\ 1

|n\2l(1 a) + O \n|a Z 21 (1—a) + O |n\o<) _

16507) = Fllp < —
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Ol —— ], if 0<a<l,

= O(’)7 if a=1,
n
O(l), if o > 1.
n

Let the condition (B;;) be satisfied, that is,

qr = (log k:)*’B for some 0 < 3, then @,, < n(log n)*ﬁ.

From now the proof goes along the same lines as that of case (B;).
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