UDC 517.9
I. Y. Karaca (Ege Univ., Izmir, Turkey),
F. T. Fen (Gazi Univ., Ankara, Turkey)

EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR THIRD-ORDER
m-POINT IMPULSIVE BOUNDARY VALUE PROBLEMS ON TIME SCALES

ICHYBAHHSA JIOJJATHUX PO3B’AI3KIB HEJITHIMHUX m-TOYKOBHUX
IMIIYJIbBCUBHUX ' PAHUYHUX 3AJAY TPETHOI'O TOPAAKY HA YACOBHUX
MACHITABAX

In the paper, the four functionals fixed-point theorem is used to study the existence of positive solutions for nonlinear third-
order m-point impulsive boundary-value problems on time scales. As an application, we give an example demonstrating
our results.

Teopema PO HEPYXOMY TOYUKY ISl YOTHPHOX (PYHKINOHATIB 3aCTOCOBAHO IS TOCITIKCHHS 3a/1a4i iCHYBaHHS JOMATHUX
PO3B’SI3KiB HENMIHIMHUX 1M-TOYKOBHX IMITYIbCHBHHX T'PAaHMYHUX 3a[a4 TPETHOrO MOPSAKY Ha YacoBHX MaciTabax. Sk
3aCTOCYBaHHS, HABEACHO NMPUKIIAJ, KU LIIOCTPYE pe3yabTaTH, O OTPUMaHi B poOOTi.

1. Introduction. Impulsive differential equations, which arise in physics, chemical technology,
population dynamics, biotechnology, economics and so on (see [3] and references therein), have
become more important in recent years in some mathematical models of real processes. There has
been a significant development in impulsive theory especially in the area of impulsive differential
equations with fixed moments; see the monographs of Bainov and Simeonov [2], Lakshmikantham
et al. [12], Samoilenko and Perestyuk [19] and the references therein.

The theory of time scales was introduced by Stefan Hilger [10] in his PhD thesis in 1988 in order
to unify continuous and discrete analysis. We refer to the books by Bohner and Peterson [5, 6] and
Lakshmikantham et al. [13].

Recently, the existence and multiplicity of positive solutions for linear and nonlinear second-order
impulsive differential equations have been studied extensively. To identify a few, we refer to the
reader to see [8, 9, 11, 16, 20]. However, there is not work on third-order with m-point impulsive
boundary-value problems except that in [17] by Liang and Zhang. On the other hand, there is not
much reported concerning the boundary-value problems for impulsive dynamic equations on time
scales, see [4, 7, 14, 15]. Especially the existence of positive solutions for third-order with m-point
impulsive boundary-value problems on time scales still remains unknown.

In [9], Guo studied the following two-point boundary-value problem:

—a2" = f(t,z,2'), t#t,

Axli—y, = Ik(x(tk)),

A |y, = I (z(te)2' (ty)), k=1,2,...,m,
ax(0) — bz’ (0) = zg, cx(1)+d2'(1) = x.

By using the Darbo fixed point theorem, Guo obtained the existence criteria of at least one solution.
In [11], Hu, Liu and Wu studied second-order two-point impulsive boundary-value problem

—u" = ht)f(t,u), teJ,
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— AU |1y, = Ik(u(tk)),

Auly—y, = I (u(ty)), k=1,2,....m,
au(0) — Bu/(0) =0

yu(1) 4+ du'(1) = 0.

By using the fixed point theorem in cone, they obtained the existence criteria of one or two positive
solutions.

In [18], Ma considered the existence and multiplicity of positive solutions for the m-boundary-
value problems

(p(t)u’)/ —qu+ f(t,u) =0, 0<t<l1,

m—2
au(0) — bp(0)u'(0) = > aju(&),
=1

m—2
cu(1) +dp(L)' (1) = 3 Bul&y).
i=1

The main tool is Guo —Krasnoselskii fixed point theorem.
In [17], Liang and Zhang studied the following third-order impulsive boundary-value problem

(p(—u"@®)) +a) f(ult)) =0, t#ty, 0<t<I,

Auly—y, = I (u(ty)), k=1,2,...,N,

m—2
u(0) = Z aiu(&;),
i=1

' (1) =0, u"(0)=0,

where ¢ : R — R is the increasing homeomorphism and positive homomorphism with ¢(0) = 0. By
using the five functionals fixed point theorem, they provided sufficient conditions for the existence
of three positive solutions.

In [15], Li and Li studied the following boundary-value problem for the nonlinear third-order
impulsive dynamic system on time scales

—u® () = f(t,ult), u? ), u®

2

(t)), tel[0,T)r\Q,
Au(ty) = I, AUA(tk) = J, AUA2(tk) =Ly, k=12,...,m,

w(0) = Mu(a(T)), u®(0) = Ml (o(T)), u>(0) = M2 (a(T)).

They obtained some sufficient conditions for the existence of solutions by using Schauder’s fixed
point theorem.

Motivated by the above results, in this study, we consider the following third-order impulsive
boundary-value problem (BVP) on time scales:
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(%(uAA(t)))A + q(t) £ (t,u(t), u>(t)) =0, teJ: =[0,1]p, t#ty, k=1,2,...,n,

(1.1)

u>2(0) =0,
where T is a time scale, 0,1 € T, [0,1]r = [0,1] N T, ¢p(s) is a p-Laplacian operator, i.e.,
bp(s) = [s[P~2s for p > 1, (¢,)71(s) = ¢y(s), where ]1? + ; =1,t,€(0,1)r, k=1,2,...,n with
0<ty <ty<... <t,<1,Au(ty) and Au”(t;) denote the jump of u(t) and u”(t) at t = ty, i.e.,

Au(ty) = u(t]) — u(ty), AuP (ty) = u (tF) — w2 (ty),

where u(t)), u(t{) and u(t; ), u”(t;) represent the right-hand limit and left-hand limit of wu(t)
and u®(t) att = ty, k = 1,2,...,n, respectively.

Throughout this paper we assume that following conditions hold:

(Cy) a,b,c,d € [0,00) with ac+ad+bc > 0; a;, B; € [0,00), & € (0,1) fori € {1,2,...,m—
— 2}

(C) fe C([O, 1]']1‘ x RT x R,R+),

(C3) q € (0, 1]z, RY),

(Cy) Iy € C(RT,R™") is a bounded function, J; € C(RT x R,R") such that (c(1 — tx) +
+ d)Jk(u(tk), uA(tk)) > cIk(u(tk)), k= 1, 2, ooy n.

By using the four functional fixed point theorem [1], we get the existence of at least one positive
solution for the impulsive BVP (1.1). In fact, our result is also new when T = R (the differential
case) and T = Z (the discrete case). Therefore, the result can be considered as a contribution to this
field.

This paper is organized as follows. In Section 2, we provide some definitions and preliminary
lemmas which are key tools for our main result. We give and prove our main result in Section 3.
Finally, in Section 4, we give an example to demonstrate our result.

2. Preliminaries. In this section, we present auxiliary lemmas which will be used later.

Throughout the rest of this paper, we assume that the points of impulse ¢; are right dense for
eachk=1,2,...,n. Let J =[0,1]p, J' = J\ {t1,t2,...,tn}.

Set

PC(J) = {u: [0,1]r — Ryu € C(J'), u(t) and u(t; ) exist, andu(ty ) = u(ty),1 < k < n},
PCY(J) = {u e PC(J): u® € C(J'),u?(t)) andu” (t; ) exist, andu® (t;) = u®(t), 1 < k <n}.
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Obviously, PC(.J) and PC*'(.J) are Banach spaces with the norms

lulpe = max |u(t)],  |ullper = max {|ulpc, [u®pc}
tel0,1]

respectively. A function u € PC*(J)NC?%(J') is called a solution to (1.1) if it satisfies all equations
of (1.1).
Define the cone P C PCY(J) b

P = {u € PC'(J): u(t) is nonnegative,

nondecreasing on [0, 1]y andu”(t) is nonincreasing on [0, 1],

au(0) —bu Zal &}

Denote by 6 and ¢, the solutions of the corresponding homogeneous equation

A
(¢p (#%))) =0, teJ: =01 t#ty k=12,...n, .1)
under the initial conditions
0(0)=b,  02(0) =a,
(2.2)
() =d,  ¢™(1)=—c

Using the initial conditions (2.2), we can deduce from equation (2.1) for 6 and ¢ the following
equations:

0(t) = b+ at, o(t) =d+c(l—1t). (2.3)
Set
m—2 m—2
=D ailb+ag)  p— ) aild+c(l-&)
A= | =L = , (2.4)
p—>> Bilb+a&) =D Bild+c(l-§))
i=1 i=1
and
p = ad + ac + be. (2.5)

Lemma 2.1. Let (C1)—(Cy) hold. Assume that
(Cs) A#£0.
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Ifu € PCY(J)NC?%(J') is a solution of the equation

1 s
= /G(t, s) ¢q (/ q(1)f (T,u(r),uA(T)>AT) As+
0

0

+ Y Wilt, 1) + A(f) (b + at) + B(f)(d + ¢(1 — 1)),

k=1
where
1 {(b + at) (—ka(u(tk)) +(d+c(1 —tg))Jx (u(tk),uA(tk))) , t<Ttg,
Wk(t,tk) = -
Pld+ el =) (alp(uty)) + (b+ atp) Iy, (uty), u®(t))) s te <t
1 {(b+aa(s))(d+c(1 —1), ols) <t
G(t,s) = -
Pl (b+at)(d+c(l —a(s), t<s,
m—2 m—2
, Y aiki p= Y ai(d+e(l—&))
A(f) = A = s ;
Biki = Bild+c(1-&))
i=1 =1
m—2 m—2
Z az b + a§1 Z aiK;
B(f) = o s ;
Z Bi(b+ a&;) BikC;
=1 =1
and

1 S n
- / G, 5) g ( / () (7 ur) u%))m> Dot Wi (i),
0 0

k=1

then wu is a solution of the impulsive BVP (1.1).

(2.6)

(2.8)

2.9)

(2.10)

2.11)

Proof. Let u satisfies the integral equation (2.6), then u is a solution of the impulsive BVP (1.1).

Then we have

1 S
i /G(t’ e </ ar)f (T’“(T)’“A(T)>AT)A3+
0

0

+ D Walt tr) + A(f) (b + at) + B(f)(d + (1 — 1)),
k=1

1.e.,
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ut) = [ b+ a(s))(d + (1~ )0, (/q(f)f (T,u(f),uﬁ(f))m) Ast

0 0

+//1)(b +at)(d+ c(1 — ()P, (/ q(r)f <T7U(T);UA(T)>AT) Ast

t 0

+ 3 (el =) (ali(ulti) + b+ ate) ik (u(te), u (k) ) +

0<tp<t

+ > e+ at) (—eTu(u(ta) + (d+ (1 = 1))k (ulte) u (1)) ) +

t<tp<l

+A(f)(b+at) + B(f)(d+c(1—1)),

t

ut(t) = — / g(b—{— ao(s))dq (/ q(7)f <T,u(7-’ UA(7)>AT) As+

0

+ > a(—elult) + @+ e(1 = t)Jk (ute), u® (1) ) ) + A(fla — B(f)e.

t<tp<l

1 t
uBA 1) = (e (bt ao(t) — a(d +c(1 — (1)) &, ( a1 (nu(rmA(r))AT) -

0

~4, ( a1 (nu(T),uA(T))Ar) ,
0

u”2(0) = 0.

So that
¢ A
(6 (w20)))" = ( e (num,uA(T))Ar) = —q(t)f(t,u(t),u (1)),
0

(% (“M(U))A +q(t) f(t,u(t), u™(t)) = 0.
Since

ISSN 1027-3190.  Ykp. mam. ocypn., 2016, m. 68, Ne 3



414 I. Y. KARACA, F. T. FEN

1 s
u(0) = / Z(d+ ¢(1—a(s))dq (/ a(r)f (T,u(T),uA(T))AT) As+

0 0

n

+ 300 (—elulutti)) + @+ el = ) Jp (u(te), u® (00))) + A(F)b+ B)(d + ),

u™(0) = /Z(d+ e(1—o(s))dq (/ a(r)f (T,U(T),UA(T))AT) Ds+

0

+ 3 a (—elult) + @+ e(1 = ) (u(te), u® (1)) + A(fla — B(f)e,

k=1

we have that

au(0) — bu”(0) =

m— 1 S
= B(f)(ad 4+ ac+ bc) = iai [/ G(&, 5)oq (/ q(1)f <T,u(7),uﬂ(7)>A7)As+
=1 0 0

+ 3 Wi (&, te) + A(S) (b + a&s) + B(f)(d + (1 — §i))] : (2.12)

k=1

Since

u(l):/ (b+ ao(s ¢q(/q (T, il )AT)Aer

0 0

n

+ 3 d (ali(u(ti) + (b -+ ate) Ty (u(te), u (1)) ) + A)G + a) + B,

1 s
uB(1) = — / g(b + ao(s))o, (/ q(7)f (T,U(T, ’LLA(T)>AT) As+

0 0

+ 3" —c (ali(ute)) + (b + ati) Jy (u(ti), u(t) )) + A(f)a = B(fe,

k=1

we have that

cu(1) + du®(1) = A(f)(ad + ac + be) =

1 s
/G(Ei,s) bq (/ q(n)f (T,U(T),’U,A(T))AT>AS—{—
0 0
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D Wi(Girtn) + A(F)(b+ a&) + B(f)(d+c(1 - &))|. (2.13)

k=1

From (2.5), (2.12) and (2.13), we get that

" m—2 m—2 T m—2
=Y b+ a&) | A+ |p— D aild+c(1=&))|B(f) = aiki,
L =1 i=1 . i=1
i m—2 m—2 7 m—2
p—>> Bilb+a&) | AN+ |- D Bild+c(1=&)|B(f) =) Bk,
L i=1 i=1 J i=1

which implies that A(f) and B(f) satisfy (2.9) and (2.10), respectively.
Lemma 2.1 is proved.
Lemma 2.2. Let (Cy)—(Cy) hold. Assume

m—2 m—2
(Co) A<0,p—z,_1 Bib+a&)>0,a—Y "o >0.

Then for v € PCY(J) N C?(J') with f, q > 0, the solution u of the problem (1.1) satisfies
u(t) >0 for te|0,1]r.

Proof. 1t is an immediate subsequence of the facts that G > 0 on [0, 1|1 x [0, 1]7 and A(f) > 0,
B(f) = 0.

Lemma 2.3. Lth (C1)—(Cy) and (Cg) hold. Assume

©) e=>" "Bi<0.
Then the solution u € PC'(J) N C%(J")of the problem (1.1) satisfies u™(t) > 0 for t € [0, 1]r.

Proof. Assume that the inequality u”(t) < 0 holds. Since u*(t) is nonincreasing on [0, 1]r,
one can verify that

u®(1) < u?(t), telo,1]r.

From the boundary conditions of the problem (1.1), we have

m—2
~Su)+ 5 Y Brul) < (1) <0
=1

The last inequality yields
m—2
—cu(l) + Z Biu(&) < 0.
i=1
Therefore, we obtain that
m—2 m—2
> Biu(1) < Y Biu(&) < cu(1),
i=1 i=1

1.e.,
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m—2
(c - Z BZ) u(1) > 0.
i=1

-2
According to Lemma (2.2), we have that (1) > 0. So, ¢ — g m ) B; > 0. However, this contradicts
i

to condition (C7). Consequently, u®(t) > 0 for ¢ € [0, 1]r.
Lemma 2.3 is proved.
Lemma 2.4. [f (C1)~(Cy) hold, then maxyc(p 1), u(t) < M maxgjo 1y, u?(t) for u € P, where

m—2
b+ 4 a;&;
=1+ lenl o

—
a — (67
Zi:1 '

Proof. For u € P, since u” (t) is nonincreasing on [0, 1] one arrives at

M (2.14)

&i
ie., u(&) —u(0) < &u”(0). Hence,
m—2 m—2 m—2
Z aju(&) — Z a;u(0) < Z ai&u”(0).
=1 =1 i=1

By au(0) — bu®(0) = 22:2 a;ju(§;), we get

m—2
b+ E a;&;
i=1 AN
< ——s—u~(0

u(0) (0).
a — Zi:l (67
Hence
t
u(t) = / W2 ()5 + u(0) < tul(0) + u(0) <
0
b m—2 b m—2
< P (0) + Ziml_fl& u 10 Ziml_f’& u™(0) = Mu”(0),
a — lel (a7} a — lel (67}
1e.,

= t) < Mu®(0) < M Aepy.
e = g, (0 < MO S M g w20

Lemma 2.4 is proved.
From Lemma (2.4), we obtain

A A
_ — t t <
|ul| pcr = HlaX{HUHPCH [|w HPC} = max{ten[loa’ﬁ lu(t)|, ten[loflﬁT [u™( )’} <
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Smax{M max u”(t), max uA(t)} = M max u”(t).
t€[0,1)r t€[0,1]r t€[0,1)r

Now define an operator 7': P — PC1(.J) by

s

1 n
Tu(t):/G(t,s)quq /q(T)f (T,U(T),UA(T))AT Ds+ Y Wi (1) +
0

+A(f)(b+at) + B(f)(d+c(1—1)), (2.15)

where Wy, G, A(f), B(f) and 0, ¢ are defined as in (2.7), (2.8), (2.9), (2.10) and (2.3) respectively.
Lemma 2.5. Let (C1)—(Cy) hold. Then T : P — P is completely continuous.

Proof. By Arzela-— Ascoli theorem, we can easily prove that operator 7" is completely continuous.

3. Main Results. We are now ready to apply the four functionals fixed point theorem [1] to the
operator 7" in order to get sufficient conditions for the existence of at least one positive solution to
the problem (1.1).

Let o and ¥ be nonnegative continuous concave functionals on P, and let 5 and ® be nonnegative
continuous convex functionals on P, then for positive numbers r, j, [ and R, we define the sets:

Qa, B,m, R) ={ueP:r < a(u), Bu) < R},
U(Y,j) ={ueQa,B,rR): j <V(u)}, (3.1)
V(®,1) ={ueQ(a,B,m,R): ®(u) <}
Lemma 3.1 [1]. IfP is a cone in a real Banach space B, o and V are nonnegative continuous

concave functionals on P, 8 and ® are nonnegative continuous convex functionals on P and there
exist positive numbers r, j, | and R, such that

T:Q(a,B,7,R) = P

is a completely continuous operator, and Q(«, 3,7, R) is a bounded set. If
(1) {ueU(¥,)): fu) < R}N{uecV(P,0): r <alu)} #;
(ii) a(Tu) >, for all u € Q(a, B,7, R), with a(u) = r and | < ®(Tu);
(i) o(T'w) > r, for all w € V(®,1), with o(u) = r;
(iv) B(Tu) < R, for all u € Q(a, B, 1, R), with B(u) = R and V(Tu) < j;
(v) B(Tw) < R, for all w € U(Y, j), with B(u) = R.

Then T has a fixed point u in Q(«, 3,7, R).

Suppose w, z € T with 0 < w < z < 1. For the convenience, we take the notations
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m—2 1
(673 (/G 527
; m—2
0

=1

( q AT | As+ Z(e + d)(2a + b)
0

(

B =

G gl?

O\H
3
N

q T)AT |As + ﬁ(ch d)(2a+b)
p

:/zG(w,s)qbq /Zq(T)AT As,

w

1 1
1
Azo/p(c(l—a(s))+d) be O/q(T)AT As +na(c+ d) + Aa,
a3 e

L= m—2
b+ Zi:l a;&;

)

and define the maps

- t ®(u) = t = U(u) = At). 3.2
o(w) = min u(t). 9= max u(). ) =¥ = max (D). (2
and let Q(«, 8,7, R), U(V,5) and V(®,[) be defined by (3.1).
Theorem 3.1. Assume (C1)—(C7) hold. If there exist constants r, j, I, R with max {g, R} <l,
L+1. L+1
max{ ——j, ———
L Lw+1
(Co) Flt,u,u”) = 0 () Jor (tu,u) € [w,2r x [, 1] x [0, R

(Co) f(tvuv UA) < pr <f) aIk(U(tk)) < %

x [0, MR] x [0, R].
Then the BVP (1.1) has at least one positive solution u € P such that

7“} < R and suppose that f satisfies the following conditions:

, i (u(tk), uA(tk)) < Efor (t,u,uA) € [0, 1] x

=

min u(t) >, max u(t) < R.
t€[w,z]r te[0,1]r

Proof. The impulsive BVP (1.1) has a solution v = u(t) if and only if u solves the operator
equation v = T'u. Thus we set out to verify that the operator 7" satisfies four functionals fixed point
theorem which will prove the existence of a fixed point of 7.
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We first show that Q(a, 3,7, R) is bounded and T": Q(«, 8,7, R) — P is completely continuous.
For all u € Q(«, 8,7, R) with Lemma 2.4, we have

lull por < M max u®(t) = MB(u) < MR,

[0,1]7

which means that Q(«, 8,7, R) is a bounded set. According to Lemma (2.5), it is clear that 7:
Q(a, 8,7, R) — P is completely continuous.
Let

R
= — 1).
uo L+1(Lt+ )

Clearly, ug € P. By direct calculation,

a(ug) =uw(w) = ——Lw+1) > r,

Blu) = "L <R,

T L+1
V(o) = Bluo) = 7L 2 )
R
P(ug) = uo(1) = TH(L +1)=R<L.

So, up € {u € U(¥,j): Bu) < R}N{u € V(®,1):r < a(u)}, which means that (i) in
Lemma (3.1) is satisfied.

For all u € Q(a, 8,7, R), with a(u) = r and | < ®(T'u), since u* is nonincreasing on [0, 1]t
we have

a(Tu) = Tu(w) > wTu(l) = w®(Tu) > wl > r.

So, a(Tw) > r. Hence (ii) in Lemma 3.1 is fulfilled.
For all u € V(®,1), with a(u) =,

a(Tu) = ten[?uighr Tu(t) = (Tu)(w) =
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>

2=

/ZG(%S) Pq /Sq(T)AT Ns=r,

and for all uw € U(¥, j), with S(u) = R,

B(Tu) = tgl[oa}ﬁT(TU)A(t) = (Tu)?(0) <

1 1
< 0/ La (el = a(s)) + d) 6, ( oo (T,um,uA(T))AT) st

p
0

# 37 (—eliu(t) + (1 = ) + d) Je(uti), u® (0))) + A(f)a <

1 1
< f/;a(C(l—a(s))er) g /q(T)AT A8+na(c+d)%+a%A:
0

0

1

1
R 1
:X D/pa(c(l—a(s))+d)¢q O/Q(T)AT As+na(c+d)+aA = R.

Thus (iii) and (v) in Lemma 3.1 hold. We finally prove that (iv) in Lemma 3.1 holds.
For all u € Q(«, 8,7, R), with S(u) = R and ¥(T'u) < j, we have

. L

Thus, all conditions of Lemma 3.1 are satisfied. 7" has a fixed point v in Q(«, 3,7, R). Therefore,
the BVP (1.1) has at least one positive solution v € P such that

min u(t) > r, max u(t) < R.
te€|w,z|T te[0,1]

Theorem 3.1 is proved.
4. An example.
Example 4.1. In BVP (1.1), suppose that T = [0,1], p = 2, m = 3, n = 1, ¢q(t) = 1,

1
a=b=c=d=lLa=,m=0=20=le,

(uM(t))A Fftut),ult) =0,  tel0,1], t# %

>o(3) =0 (+(2))

(4.1)
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10 4
A 1
u(l) +u=(1) =2u 1)
u™®(0) =0,
where
0,09 € [0 L ]
u —
A B ) ) ) 100 )
fhuu™) =93 1 L8091
1799 " 8995" "= 100’
1
Il(u):£ , u>0,
A 3 A
T u) = o, (w0 € [0,00) X [0,0).
180
1 1 . .
Set w = R z= 3’ by simple calculation we get

A = 14,64957265, Q = 0,03375593836, A = 17,14957265, L 56

41’
and

1 (A +0(s)2-1), ols) <t

G(t,s) ==
(1+1t)(2—0(s)), t<s.

1 1
Choose r = 100’ I =10, 7 = 2 and R = 8, it is easy to check that max{QO, 8}

max E l <8
36 4820 °°
Ftu(t), v (1) = 0,09 > ¢, (6) — 0,08776060928
117 1
for (tu(t). ) € | 3.3 | 1510 0.1
R

) 0) <02 < 0, (4

> = 0,2176072544,

1
L <u <2>> = 0,3802469136 < 0,4532687651 = %,

1(+(3) - (2)) -

R 154
= 0,2851851852 < 0,4532687651 = - for(t, uf(t) u?(t)) € 0,1] x [0, ] x [2,8].
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So, all conditions of Theorem 3.1 hold. Thus by Theorem 3.1, the BVP (4.1) has at least one positive
solution u such that

in u(t) > — (#) <8
min u — max u ~ O.
te[L,1] — 100 t€[0,1]
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