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DIFFERENCES OF THE WEIGHTED DIFFERENTIATION COMPOSITION
OPERATORS FROM MIXED-NORM SPACES TO WEIGHTED-TYPE SPACES*

PISHUIII 3BA)KEHUX JU®EPEHIIAJIBHUX OIEPATOPIB KOMITO3UIIIT
3 IPOCTOPIB I3 MIIIAHOIO HOPMOIO Y ITPOCTOPAX 3BAKEHOI'O TUILY

We characterize the boundedness and compactness of the differences of weighted differentiation composition operators
D} — D, where n € Ny, ui,us € H(D), and 1,92 € S(D), from mixed-norm spaces H(p,q, ¢), where

¥p1,u1 P2,u2
0 < p,q < oo and ¢ is normal, to weighted-type spaces H,°.

ITpoaHai3oBaHO 0OMEXKEHICTh | KOMIAKTHICTD Pi3HHIb 3BaXKEHMX AupepeHnianbHuX omeparopis kommosumii Dy, ., —

D3, uys Ae n € No, u1,uz € H(D) ta @1, @2 € S(D), i3 mpocropis i3 Mimanoto Hopmoro H (p, q, ¢), ne 0 < p,q < oo,
a ¢ € HOPMAJBbHHUM, Y IPOCTOpPAx 3BaXKEHOro Tuiy Hy°.

1. Introduction. Let Ny denote the set of all nonnegative integers, H(D) and S(D) represent the
class of analytic functions and analytic self-maps on the unit disk D of the complex plane of C,
respectively.

A positive continuous function ¢ is called normal [13] if there exist § € [0,1) and s,¢ (0 < s < t)
such that

(1¢_(T2)s is decreasing on [3,1) and  lim (1¢—(r2)3 o
(1¢£T7)’)t is increasing on  [4,1) and Jimy (1¢£T7)” )

For 0 < p,q < oo and a normal weight ¢, the mixed-norm space denoted by H (p, q, ¢) is the
space of all functions f € H (D) satisfying

1

Wy = [ 30005 < o,
0
where
o 1/q
M,(f,r) = /yf(re”)wde , 0<r<l1.
0

For 1 < p < oo, H(p,q,¢) is a Banach space equipped with the norm || - ||z, q.4)- But when
0<p<1, [ [#@pqge) isjusta quasinorm on H(p,q, ¢), and then H(p,q, ¢) is a Fréchet space but

not a Banach space. If 0 < p = ¢ < oo, H(p, q,¢) becomes a Bergman-type space, and moreover
a+1

if¢(r)=(1—r) P fora>—1, H(p,q,¢) is equivalent to the classical weighted Bergman space
AP, defined by
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AL = fe HD): [If]0 = (a+1)/!f(2)|p(1 = |21*)%dm(z) < oo ¢,
D

and the norms || f| 4» and || f|| g (p,q,¢) are equivalent in this case. Recently there has been a great
interest in studying mixed norm spaces and operators on them on various domains in the complex plane
or in the n-dimensional complex vector space C" (see, for example, [4,7,9, 14-16, 18, 19, 21, 23, 24]
and the related references therein).

Let v be a strictly positive continuous and bounded function (weight) on ID. The weighted-type
space H:° is defined to be the collection of all functions f € H (D) that satisfy

[fllo :=supv(z)[f(2)] < oo.
zeD
With this norm the weighted-type space becomes a Banach space.
Let ¢ be a holomorphic self-map of D, the composition operator C, induced by ¢ is defined by

(Cof)(2) = fe(2)), feHD), zeD.

Let D = D! be the differentiation operator, i.e., Df = f’. If n € Ny then the operator D" is
definedby D°f = f, D"f = f("), fe H (D). Some of the first product-type operators studied in the
literature were products of the composition and differentiation operators (see, e.g., [3,5-7, 17, 20, 25]
and the related references therein).

The weighted differentiation composition operator, denoted by D7} ,,, is defined by (D7, f)(2) =

= u(2) £ (p(2)), which was studied in some recent papers such as [8, 10, 22—24].

Recently, there have been an increasing interest in studying the compact difference of operators
acting on different spaces of holomorphic functions. Motivated by some recent papers such as
[1, 7, 21, 23, 25, 26], here we characterize the boundedness and compactness of the operators
Dy = DLyt Hip,q,d) — HE.

Our results involve the pseudohyperbolic metric. For a € D, let ¢, be the automorphism of D

exchanging 0 and a, that is, ¢, (z) = ®” % For z,w € D, the pseudohyperbolic distance between

—az
z and w is given by p(z,w) = |p.(w)].

Throughout this paper, we will use the symbol C' to denote a finite positive number, and it may
differ from one occurrence to the other. The notation A < B means that there is a positive constant
C such that B/C < A< CB.

2. Background and some lemmas. Now let us state a couple of lemmas, which are used in the
proofs of the main results in the next sections. The first lemma is taken from [15] and [23].

Lemma 2.1. Assume that 0 < p,q < oo, ¢ is normal and f € H(p,q,$). Then for every
n € Ny, there is a constant C independent of [ such that

) <o Wean g @.1)
$(|2))(1 — |z2)a ™

The next lemma can be found in [13].
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Lemma 2.2. For 8> —1 and m > 1+ 3, one has

1
(1—
/ )’ T—odr < c(1- p)Hﬁ_m, 0<p<l. (2.2)
1—pr)m
0
Lemma 2.3. Assume that 0 < p,q < 00, ¢ is normal and n € Ny. Then for each f € H(p,q, ¢),
there is a constant C' independent of f such that

6(12D(1 ~ |22 7O () = g1 — [wf?) e ) <

< C||f”H(p,q,¢)p(Z7w)' (23)

1
Proof. For f € H(p,q, ), let u(z) = ¢(|z])(1 — |z|2)q+n, by Lemma 2.1, we obtain f(®) ¢
€ H>°, so from Lemma 3.2 in [2] and Lemma 2.1, there is a constant C' > 0 such that

[u(2)f™ (2) = w(@) f P (W) < CIFPlup(z,w) < Ol fll(pq.0)0 (25 )

for all z,w € D.
Remark. From the proof of Lemma 2.3, it is not difficult to see that for any z,w € rD = {z € D:
|z| < r < 1}, then

B2 (1 — [2P) T FW (=) — ()1 — o)1 7 w)] <

1 n
< Cp(z,w) sup ¢(|C))(1 — [¢[1)a [ F () 2.4)

¢erD

forany f € H(p,q,¢).

The next Schwartz-type lemma can be proved in a standard way [12].
Lemma 2.4. Suppose n € Ny, 0 < p,q < 00, uj,us € H(D), ¢1,p2 € S(D) and ¢ is normal.
Then the operator Dy . — D¢, .. H(p,q,¢) — H° is compact if and only if D}, . — D, . -
H(p, q,¢) — HS® is bounded and for any bounded sequence (fx)ken in H(p, q,p) which converges
to zero uniformly on compact subsets of D, we have ||(Dg, .., — D3, .,,) fillv — 0, as k — oo.
The following result is well-known. It can be proved by a slight modification of the proof of
Theorem 2 in [4].

Lemma 2.5. Assume that 0 < p,q < oo, ¢ is normal and n € Ny. Then for each f € H(p,q, ¢),

1 1

-1
PP(r) . N : ¢P(r)
Japn T ar = 31001+ [ 0T 0. @)
0 J=0 0
3. Boundedness of D7 — D7 : H(p,q,®) — H°. In this section we will charac-
terize the boundedness of the operator D7, ., — D, ., : H (p,q,¢) — HZ°. For the purpose, we list

the following three conditions which we will use below:

My = sup GGl o

P 5(lor(2)) A — [pr(2)|2)a
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v(2)|u2(2)lp(p1(2), p2(2)) (3.2)

My = sup T <%
P (2 (2)) (1 — |ga(2)P)a "

v z) o(:)ua(2) 63

M3 = sup T — T < 00.

*Llo(le1()NA = ler(2)2) 0 ole2(2)) (1 — lpa(2)|2)a "

Theorem 3.1. Suppose n € Ny, 0 < p,q < 00, ui,us € H(D), p1,p2 € S(D) and ¢ is
normal. Then the following statements are equivalent:

i) D} .. —D. .. :H(p,q ¢) — HX is bounded.

©1,u1 V2,u2
(i1) The conditions (3.1) and (3.3) hold.
(ii1) The conditions (3.2) and (3.3) hold.
Proof. First, we prove the implication (i) = (ii). Assume that D7 , — D7, @ H (p,q,0) —
— HZ° is bounded. Fix w € D, we consider the function f,, defined by

z tn to B ont41
fw(z) = // o C ’(pl(w” ) 1 prg(w)(tl)dtldh <o dty,. 3.4
50 o dlerw))(1 —pr(wyt)a T

Next we show that f,, € H(p, ¢, ¢). Notice that
(1 — Jou (w)[*)!

o(|e1(w)])(1 — ¢1(w)z)%+t+l+n

according to Lemma 1.4.10 in [11],

Poa(w) (2),

7 2yq(t+1) p/a
_ q |
VA = / el - [Poatun (re) |70 | <
q 0 $9(Jo1(w)))|1 — @1 (w)red|1+at+14n) 772

p/q

(1~ s (w) 4D a0 .
= / o) =

o (|1 (w)]) o1 (w)rei?|L+alt+14n)

(1 = Jgr (w)[H)Pt+Y) .
¢ (Jo1(w)]) (1 =l (w)[)ptH1+n)

(3.5)

By using Lemma 2.5, (3.5), the fact that fg)(O) =0, j=1,...,n— 1, the normality of ¢, Lemma
1.4.10 in [11] and Lemma 2.2, we have

1
(1~ Jgr (w) )P+ PP (r) n
wa”%(p,q@) = C/ PP (o1 (w)) (1 = 7y (w)])PiH1+n) 1 — ¢ (1=r)™dr <
0
<C dr <

1
[ il )
J ST @ T
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l1 (w)]

(1 — |1 (w)]?)Pt+D) ()
<C 0/ ¢p(’()01(w)|)(1 — ""\<,01(w)\)17(t+1) 1— rdH_
(1= m( 2P ()
‘ / oP( !cm (1 = 7|q (w)] )P+ 1 — 7Adr <
p1(w)

Pl e

(1= rlepr (w) AT

< O~ [pr(w)?)? dr+

(1— r)ps—l
(1 = rlp1(w)[)pts+D)

L0~ [r(w) P / dr < C.

1 (w)]

Therefore f,, € H(p,q, ), and moreover sup,,cp || fuwll i (p,q,¢) < C- Note that

£ (o1 (w)) = ——LPr(0) 2(w)) and £ (pa(w)) = 0.

1

1,
P(lpr(w)))(1 = Jpr(w)[?)
So by the boundedness of D}, ,, — D3, . : H(p,q,$) — H°, we obtain

00 > [(Dg, .y = Dgy ) fuollo =
= supv(z)|u1(2) £ (p1(2)) —u2(2) f§ (2(2))] 2

zeD
> v(w)|ur (w) £ (p1(w)) = ua(w) f5 (p2(w))| =

_ )l wlper(w). ) 56
d(le1(w)) (X — [er(w)[?)4

Since w € D is an arbitrary element, (3.1) comes from (3.6).
Next we prove (3.3). Fix w € D, let

z tn

9o [ f o Bl
0 o(lp2(w \)(1—¢2(w)t1)5+t+1+"

Similarly as for the test functions in (3.4), we obtained that g,, € H(p, ¢, ¢) with gfun)(cpg(w)) =
1

= - Then

(| p2(w)]) (1 — |2 (w)[2)a "™

00 > [[(Dgy uy = D uz)guwllo >

$1,U1 Pp2,U2

> v(w)|ur (w)gl? (p1(w)) — uz(w)gly? (pa(w))] = |1 (w) + J(w)], (3.7)

where
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v(w)uy (w)

I{w) = ¢(|pa(w)])(1 = Iwz(w)\Q)%Mgﬁu")(m(w)) {
¢(lpr(w)[)(1 = [epr(w)[?)

) v(w)uz(w) ]

1

(| p2(w)]) (1 — |2 (w)[2)a "™
and

v(w)u (w)

Iw) = — [6e1@D 0 ~ o1 (@)1 o100 -
Bl W) (1= ler (w)P)

1,
~0lle2()) (1~ lpa(w) )7+ g5 (2(w))].

By Lemma 2.3 and (3.1), we conclude that |J(w)| < co. From this along with (3.7) we get

o(w)us (w) ) o(w)us(w)

|[I(w)| = T < 00

l n n
d(Jo1(w))(1 = @1 (w)[2) ™ d(|p2(w) (1 — |pa(w)[2)a "
for all w € D, thus (3.3) holds.

(i) =-(iii). Assume that (3.1) and (3.3) hold, we only need to show that (3.2) holds. In fact,

v(2)u2(2)|p(p1(2), p2(2)) o v(2)|ui(2)|p(p1(2), pa(2))

= I
O(lp2(2))(1 = [pa(2)?) @ d(le1(2))) (A = [er(2)?) 2

N v(z)u1(2) B v(z)ua(2)

i, I

o(le1(z) )1 = [e1(2)[?) $(|o2(2)) (1 = [a(2)|2) 4
From which, using (3.1) and (3.3), the desired condition (3.2) holds.

p(#1(2), p2(2)).

“+n

T,

847

(ii1) =(i). Assume that (3.2) and (3.3) hold. By Lemma 2.1 and Lemma 2.3, for any f €

€ H(p,q,¢), we have
v(2)|ur(2) F ™ (01(2)) — u2(2) ) (p2(2))| =

$er N~ o1 PT O (2) { . s
Bl ()1 = ler(2) e

-l ] +[oler (@D - (D) T O 1 (2)-
S(le2(2)(1 ~ ()Y 1"
v(2)uz(2)

1
S(p2(2)) (L — [pa(z)2)a ™"
< Ol + RN Dy,
3(lp2(2)) (1 = |pa(2)[2)a ™"
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< CHfHH(p,q,(b)
for each z € D. From which it follows that D7, — D¢, .. H(p,q,$) — Hp° is bounded.
Theorem 3.1 is proved.
4. Compactness of D7 . — D7 H(p,q,¢) — H°. In this section, we turn

our attention to the problem of the compactness of the operator. Here we consider the following
conditions:

M, = Eu2)e(er(2), p2(2))

oo~ ler(2)2ya™™

) —0 as |pi(2)|—1, 4.1)
(

v(2)uz(2)p(p1(2), pa(2))
(

M5 = l-i,-n —0 as |<,02(Z)| — 1, (4.2)
P(lp2(2))(1 = [pa(2)[?) @
Mg — v(z)uq(2) _ v(z)uz(z) 0
~+n ~4+n

o(le1(2))) (1 = [er(2)[?) 2 P(l2(2) (L = [w2(2)[?) 7
as |e1(2)| =1 and |pa(2)] — 1. (4.3)
Theorem 4.1. Suppose n € Ny, 0 < p,q < 00, uy,us € H(D), p1,p02 € S(D) and ¢ is

normal. Then Dy, . — D3, ... H(p,q,¢) — H° is compact if and only if D}, . — Dy, .. "

H(p,q,¢) — H° is bounded and the conditions (4.1)—(4.3) hold.

Proof. First we suppose that D}, , — D¢, . : H(p,q,¢) — H° is bounded and the conditions
(4.1)—(4.3) hold. It is clear that the conditions (3.1)—(3.3) hold by Theorem 3.1. From (4.1)—(4.3),
it follows that for any € > 0, there exists 0 < r < 1 such that

o)l (2)lp(er (Z)’@Q(fl) <e for |p1(2)] >, (4.4)
$(lp1(2))(L — |1 (2)2) 0"

v(2)|us(2)|p(1 (Z),s02(i)) <e for [pa(s) > r “5)
S(lp2(2))(1 — |pa(2)2)a "

v(2)uq(2) v(2)ua(2) <e

T i
o(le1(2))(1 = |1 (2)[?) 4 o(lp2(2))(1 — |p2(2)[*) @
(4.6)

for |e1(2)| >, |pa(z)] >
Now, let (fi)ken be a bounded sequence in H(p,q,¢) with ||fxllg@pge < 1 and fr —

— 0 uniformly on compact subsets of D. By Lemma 2.4 we need only to show that ||(D].
— D, ) fellv — 0 as k — oo. A direct calculation shows that

w1,ur

v(2)ur(2) £ (01(2)) = ua(2) £ (2(2))] = [L(2) + Ju(2)], 4.7
where
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1 v(2)u (2
() = 610221 - ea(ADT £ (0a() { E
P(lp1(2)N (1 = p1(2)[?) @

v(z)ug(2) ]
i,
d(lp2(2))(1 = |p2(2)[?) 9

and

$(ler ()N~ [pr(2)2)a ™"
o\ S4n 4(n)
~6(p2(2)) (1 = la(2)2) 77 £ (p2(2))]

We divide the argument into four cases:

Case 1: |p1(z)| < rand |p2(2)] <.

By the assumption, note that fj converges to zero uniformly on F = {w: |w| < r} as k — oo,
and using (3.3), it is easy to check that I;(z) — 0, k — oo uniformly for all z with |pa(z)| < 7.

On the other hand, from (2.4), (3.1) and since fj, converges to zero uniformly on £, we have that

1
(2)| < o ENUEIAACR 2D gy, 11y 1 — 1oy 17 0) < e
dler ()1 = ler(2)2) a7 0=

Case 2: |p1(z)| > r and |p2(2)| < 7.

As in the proof of Case 1, I(z) — 0 uniformly as k& — oo. On the other hand, using Lemma
2.3 and (4.4) we obtain |J(z)| < Ce.

Case 3: |p1(z)| > r and |pa(2)| > 7.

For k sufficiently large, by Lemma 2.1 and (4.6) we obtain that |I;(z)| < Ce. Meanwhile,
|Jk(2)] < Ce by Lemma 2.3 and (4.4).

Case 4: |p1(z)] < r and |p2(2)| > r. We rewrite

v(2)ur(2) £ (01(2)) = ua(2) £ (02(2))] = | Pil2) + Qu(2)],

where
Pe(z) = dller(2D (1 = a1 (01(2) { HmE
SN~ ()P
B v(z)ug(2) ]
I
Hpa(2N (1~ [pa()P)
and
() - Bl o@D - @) () -

(lp2()(1 = lpa(2)[2)7 "
T (n)
~6(p2(2)) (1 = la(2)2) 7 £ (p2(2))]
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The desired result follows by an argument analogous to that in the proof of Case 2. Thus, together
with the above cases, we conclude that

||( ©1,U1 _DZZ,UQ)ka’U =

= supu(z)|un ()" (91(2) — wa ()" (p2(2)| < Ce (4.8)
ze
for sufficiently large k. Employing Lemma 2.4 combining with the arbitrariness of €, we obtain the
compactness of D3, — D¢, .. H(p,q,¢) — H°.
For the converse direction, we suppose that D7, — D, .. @ H (p, q,%) — HZ° is compact.
From which we can easily obtain the boundedness of D, ,,, — D3, . H(p,q,$) — H°. Next we

only need to show that (4.1)—(4.3) hold.
Let (2 )ren be a sequence of points in D such that |¢1(2)| — 1 as k — oo. Define the functions

z tn

(1 = o1 () [2)L
// / . le1(21)]?) . P (t1)dtrdls . .. dty. (4.9)
o1(z1)

1 -1 (Zk)tl)q+t+l+n

Clearly, fi. € H(p, q, ¢) with supycy || fill 5 (p,q,6) < C, and fi converges to 0 uniformly on compact
subsets of D as k — oo. Moreover,

n 2k ), z n
1 (o1 (20)) = ——LLEr(Ek) o) o [0 a() =0 @10)
d(Jo1(zr) ) (1 = [p1(2x)[?) 9
Then
(D2, . — D u) fillo = sgﬂgv(Z)\m(Z)fé”)(sm(z)) —up(2) £ (2(2))] =
> v(zi) [ur (z1) f (91.(20)) — wa(z) £ (02 (2)) | =
_ U(Zk)\ul(zk)lp(@l(zk%902(fk)). @.11)
S(le1 (21 — |1 (z)2)a ™
On the other hand since D35, — D, - H(p,q,¢) — H° is compact, by Lemma 2.4, it follows
that ||(Dg, u, — Dgyuy) fillv = 0, k — oo. Letting & — oo in (4.11), it follows that (4.1) holds.

The condition (4 2) holds for the similar arguments.
Now it remains to show that condition (4.3) holds. Assume that (zj)ren is a sequence in D such
that |p1(zx)| — 1 and |<p2(zk)| — 1 as k — oo. Define the function

z tn

. 2\t+1
// (1 —|p2(z)|%) dt1dty . .. dt,

1
0 Spa(z)) (1 — palzp)t)e "

It is easy to check that g; converges to 0 uniformly on compact subsets of D as k& — oo and
gk € H(p,q, ) with [|gr|[(p,q,e) < C forall k& € N. It follows from Lemma 2.4 that |(D7, ,,, —
— D, u)9k|lv — 0, k — oc. On the other hand, we have

(D2, wr = D2 u)gkllo = v(z) [ur (2)9y" (01(28)) — uz(z1) 9™ (02 (1)) =
= |I(z) + (=), (4.12)

where
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126) = 62z D1~ o)) o (ea(1) )
o(l1 (z)) (1 — o1 (24)[2) @
B v(zg)u2(zk)
|
o(la(z0) ) (1 pa(zk)[2)@
() = vlern) o0 D - e ()T (o (o)

$(le1(z)) (L — |1 (z)2)a ™
~ (| p2(zi)) (1 — pa(z)[2) 4 g (pa(z)) | -

By Lemma 2.3 and the condition (4.1) that has been proved, we get J(zx) — 0, k — oo.

This along with (4.12) shows that I(z;) — 0,k — oo. Hence (4.3) is true since g,gn)(wg(zk)) =
1

I,
P (lpa(2r) ) (1 = la(zr)[?) @

Theorem 4.1 is proved.
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