Cui Chen (Tianjin Univ. Finance and Economics, China), **Ze-Hua Zhou** (Tianjin Univ., China)

DIFFERENCES OF THE WEIGHTED DIFFERENTIATION COMPOSITION OPERATORS FROM MIXED-NORM SPACES TO WEIGHTED-TYPE SPACES* РІЗНИЦІ ЗВАЖЕНИХ ДИФЕРЕНЦІАЛЬНИХ ОПЕРАТОРІВ КОМПОЗИЦІЇ З ПРОСТОРІВ ІЗ МІШАНОЮ НОРМОЮ У ПРОСТОРАХ ЗВАЖЕНОГО ТИПУ

We characterize the boundedness and compactness of the differences of weighted differentiation composition operators $D^n_{\varphi_1,u_1}-D^n_{\varphi_2,u_2}$, where $n\in\mathbb{N}_0,\ u_1,u_2\in H(\mathbb{D})$, and $\varphi_1,\varphi_2\in S(\mathbb{D})$, from mixed-norm spaces $H(p,q,\phi)$, where $0< p,q<\infty$ and ϕ is normal, to weighted-type spaces H^∞_v .

Проаналізовано обмеженість і компактність різниць зважених диференціальних операторів композиції $D^n_{\varphi_1,u_1}-D^n_{\varphi_2,u_2}$, де $n\in\mathbb{N}_0,\ u_1,u_2\in H(\mathbb{D})$ та $\varphi_1,\varphi_2\in S(\mathbb{D})$, із просторів із мішаною нормою $H(p,q,\phi)$, де $0< p,q<\infty,$ а ϕ ϵ нормальним, у просторах зваженого типу H^∞_v .

1. Introduction. Let \mathbb{N}_0 denote the set of all nonnegative integers, $H(\mathbb{D})$ and $S(\mathbb{D})$ represent the class of analytic functions and analytic self-maps on the unit disk \mathbb{D} of the complex plane of \mathbb{C} , respectively.

A positive continuous function ϕ is called normal [13] if there exist $\delta \in [0,1)$ and $s,t \ (0 < s < t)$ such that

$$\begin{split} \frac{\phi(r)}{(1-r)^s} & \text{ is decreasing on } & [\delta,1) & \text{ and } & \lim_{r\to 1} \frac{\phi(r)}{(1-r)^s} = 0, \\ \frac{\phi(r)}{(1-r)^t} & \text{ is increasing on } & [\delta,1) & \text{ and } & \lim_{r\to 1} \frac{\phi(r)}{(1-r)^t} = \infty. \end{split}$$

For $0 < p, q < \infty$ and a normal weight ϕ , the mixed-norm space denoted by $H(p, q, \phi)$ is the space of all functions $f \in H(\mathbb{D})$ satisfying

$$||f||_{H(p,q,\phi)}^p := \int_0^1 M_q^p(f,r) \frac{\phi^p(r)}{1-r} dr < \infty,$$

where

$$M_q(f,r) = \left(\int_0^{2\pi} |f(re^{i\theta})|^q d\theta\right)^{1/q}, \quad 0 \le r < 1.$$

For $1 \leq p < \infty$, $H(p,q,\phi)$ is a Banach space equipped with the norm $\|\cdot\|_{H(p,q,\phi)}$. But when $0 , <math>\|\cdot\|_{H(p,q,\phi)}$ is just a quasinorm on $H(p,q,\phi)$, and then $H(p,q,\phi)$ is a Fréchet space but not a Banach space. If $0 , <math>H(p,q,\phi)$ becomes a Bergman-type space, and moreover if $\phi(r) = (1-r)^{\frac{\alpha+1}{p}}$ for $\alpha > -1$, $H(p,q,\phi)$ is equivalent to the classical weighted Bergman space A^p_α defined by

^{*}The paper was supported in part by the National Natural Science Foundation of China (Grant Nos. 11371276; 11301373; 11201331).

$$A^p_\alpha = \left\{ f \in H(\mathbb{D}) \colon \|f\|^p_{A^p_\alpha} = (\alpha+1) \int\limits_{\mathbb{D}} |f(z)|^p (1-|z|^2)^\alpha dm(z) < \infty \right\},$$

and the norms $||f||_{A^p_\alpha}$ and $||f||_{H(p,q,\phi)}$ are equivalent in this case. Recently there has been a great interest in studying mixed norm spaces and operators on them on various domains in the complex plane or in the n-dimensional complex vector space \mathbb{C}^n (see, for example, [4, 7, 9, 14–16, 18, 19, 21, 23, 24] and the related references therein).

Let v be a strictly positive continuous and bounded function (weight) on \mathbb{D} . The weighted-type space H_v^{∞} is defined to be the collection of all functions $f \in H(\mathbb{D})$ that satisfy

$$||f||_v := \sup_{z \in \mathbb{D}} v(z)|f(z)| < \infty.$$

With this norm the weighted-type space becomes a Banach space.

Let φ be a holomorphic self-map of \mathbb{D} , the composition operator C_{φ} induced by φ is defined by

$$(C_{\varphi}f)(z) = f(\varphi(z)), \quad f \in H(\mathbb{D}), \quad z \in \mathbb{D}.$$

Let $D=D^1$ be the differentiation operator, i.e., Df=f'. If $n \in \mathbb{N}_0$ then the operator D^n is defined by $D^0f=f$, $D^nf=f^{(n)}$, $f \in H(\mathbb{D})$. Some of the first product-type operators studied in the literature were products of the composition and differentiation operators (see, e.g., [3, 5–7, 17, 20, 25] and the related references therein).

The weighted differentiation composition operator, denoted by $D_{\varphi,u}^n$, is defined by $(D_{\varphi,u}^n f)(z) = u(z)f^{(n)}(\varphi(z))$, which was studied in some recent papers such as [8, 10, 22–24].

Recently, there have been an increasing interest in studying the compact difference of operators acting on different spaces of holomorphic functions. Motivated by some recent papers such as [1, 7, 21, 23, 25, 26], here we characterize the boundedness and compactness of the operators $D^n_{\varphi_1,u_1}-D^n_{\varphi_2,u_2}\colon H(p,q,\phi)\to H^\infty_v$.

Our results involve the pseudohyperbolic metric. For $a \in \mathbb{D}$, let φ_a be the automorphism of \mathbb{D} exchanging 0 and a, that is, $\varphi_a(z) = \frac{a-z}{1-\overline{a}z}$. For $z,w \in \mathbb{D}$, the pseudohyperbolic distance between z and w is given by $\rho(z,w) = |\varphi_z(w)|$.

Throughout this paper, we will use the symbol C to denote a finite positive number, and it may differ from one occurrence to the other. The notation $A \times B$ means that there is a positive constant C such that $B/C \le A \le CB$.

2. Background and some lemmas. Now let us state a couple of lemmas, which are used in the proofs of the main results in the next sections. The first lemma is taken from [15] and [23].

Lemma 2.1. Assume that $0 < p, q < \infty$, ϕ is normal and $f \in H(p, q, \phi)$. Then for every $n \in \mathbb{N}_0$, there is a constant C independent of f such that

$$|f^{(n)}(z)| \le C \frac{\|f\|_{H(p,q,\phi)}}{\phi(|z|)(1-|z|^2)^{\frac{1}{q}+n}}, \quad z \in \mathbb{D}.$$
 (2.1)

The next lemma can be found in [13].

Lemma 2.2. For $\beta > -1$ and $m > 1 + \beta$, one has

$$\int_{0}^{1} \frac{(1-r)^{\beta}}{(1-\rho r)^{m}} dr \le C(1-\rho)^{1+\beta-m}, \quad 0 < \rho < 1.$$
 (2.2)

Lemma 2.3. Assume that $0 < p, q < \infty, \phi$ is normal and $n \in \mathbb{N}_0$. Then for each $f \in H(p, q, \phi)$, there is a constant C independent of f such that

$$\left| \phi(|z|)(1-|z|^2)^{\frac{1}{q}+n} f^{(n)}(z) - \phi(|\omega|)(1-|\omega|^2)^{\frac{1}{q}+n} f^{(n)}(\omega) \right| \le$$

$$\le C \|f\|_{H(p,q,\phi)} \rho(z,\omega).$$
(2.3)

Proof. For $f \in H(p,q,\phi)$, let $u(z) = \phi(|z|)(1-|z|^2)^{\frac{1}{q}+n}$, by Lemma 2.1, we obtain $f^{(n)} \in H_\infty^n$, so from Lemma 3.2 in [2] and Lemma 2.1, there is a constant C > 0 such that

$$|u(z)f^{(n)}(z) - u(\omega)f^{(n)}(\omega)| \le C||f^{(n)}||_{u}\rho(z,\omega) \le C||f||_{H(p,q,\phi)}\rho(z,\omega)$$

for all $z, \omega \in \mathbb{D}$.

Remark. From the proof of Lemma 2.3, it is not difficult to see that for any $z, \omega \in r\mathbb{D} = \{z \in \mathbb{D} : |z| < r < 1\}$, then

$$\left| \phi(|z|)(1 - |z|^2)^{\frac{1}{q} + n} f^{(n)}(z) - \phi(|\omega|)(1 - |\omega|^2)^{\frac{1}{q} + n} f^{(n)}(\omega) \right| \le$$

$$\le C\rho(z, \omega) \sup_{\zeta \in r\mathbb{D}} \phi(|\zeta|)(1 - |\zeta|^2)^{\frac{1}{q} + n} |f^{(n)}(\zeta)|$$
(2.4)

for any $f \in H(p, q, \phi)$.

The next Schwartz-type lemma can be proved in a standard way [12].

Lemma 2.4. Suppose $n \in \mathbb{N}_0$, $0 < p,q < \infty$, $u_1,u_2 \in H(\mathbb{D})$, $\varphi_1,\varphi_2 \in S(\mathbb{D})$ and φ is normal. Then the operator $D^n_{\varphi_1,u_1} - D^n_{\varphi_2,u_2} \colon H(p,q,\phi) \to H^\infty_v$ is compact if and only if $D^n_{\varphi_1,u_1} - D^n_{\varphi_2,u_2} \colon H(p,q,\phi) \to H^\infty_v$ is bounded and for any bounded sequence $(f_k)_{k \in \mathbb{N}}$ in $H(p,q,\phi)$ which converges to zero uniformly on compact subsets of \mathbb{D} , we have $\|(D^n_{\varphi_1,u_1} - D^n_{\varphi_2,u_2})f_k\|_v \to 0$, as $k \to \infty$. The following result is well-known. It can be proved by a slight modification of the proof of

The following result is well-known. It can be proved by a slight modification of the proof of Theorem 2 in [4].

Lemma 2.5. Assume that $0 < p, q < \infty$, ϕ is normal and $n \in \mathbb{N}_0$. Then for each $f \in H(p, q, \phi)$,

$$\int_{0}^{1} M_{q}^{p}(f,r) \frac{\phi^{p}(r)}{1-r} dr \approx \sum_{j=0}^{n-1} |f^{(j)}(0)| + \int_{0}^{1} M_{q}^{p}(f^{(n)},r) \frac{\phi^{p}(r)}{1-r} (1-r)^{np} dr.$$
 (2.5)

3. Boundedness of $D^n_{\varphi_1,u_1}-D^n_{\varphi_2,u_2}\colon H(p,q,\phi)\to H^\infty_v$. In this section we will characterize the boundedness of the operator $D^n_{\varphi_1,u_1}-D^n_{\varphi_2,u_2}\colon H(p,q,\phi)\to H^\infty_v$. For the purpose, we list the following three conditions which we will use below:

$$M_{1} = \sup_{z \in \mathbb{D}} \frac{v(z)|u_{1}(z)|\rho(\varphi_{1}(z), \varphi_{2}(z))}{\phi(|\varphi_{1}(z)|)(1 - |\varphi_{1}(z)|^{2})^{\frac{1}{q} + n}} < \infty, \tag{3.1}$$

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 6

$$M_2 = \sup_{z \in \mathbb{D}} \frac{v(z)|u_2(z)|\rho(\varphi_1(z), \varphi_2(z))}{\phi(|\varphi_2(z)|)(1 - |\varphi_2(z)|^2)^{\frac{1}{q} + n}} < \infty, \tag{3.2}$$

$$M_{3} = \sup_{z \in \mathbb{D}} \left| \frac{v(z)u_{1}(z)}{\phi(|\varphi_{1}(z)|)(1 - |\varphi_{1}(z)|^{2})^{\frac{1}{q} + n}} - \frac{v(z)u_{2}(z)}{\phi(|\varphi_{2}(z)|)(1 - |\varphi_{2}(z)|^{2})^{\frac{1}{q} + n}} \right| < \infty.$$
(3.3)

Theorem 3.1. Suppose $n \in \mathbb{N}_0$, $0 < p, q < \infty$, $u_1, u_2 \in H(\mathbb{D})$, $\varphi_1, \varphi_2 \in S(\mathbb{D})$ and ϕ is normal. Then the following statements are equivalent:

- (i) $D_{\varphi_1,u_1}^n D_{\varphi_2,u_2}^n \colon H(p,q,\phi) \to H_v^{\infty}$ is bounded.
- (ii) The conditions (3.1) and (3.3) hold.
- (iii) The conditions (3.2) and (3.3) hold.

Proof. First, we prove the implication (i) \Rightarrow (ii). Assume that $D^n_{\varphi_1,u_1} - D^n_{\varphi_2,u_2} : H(p,q,\phi) \rightarrow H^\infty_v$ is bounded. Fix $w \in \mathbb{D}$, we consider the function f_w defined by

$$f_w(z) = \int_0^z \int_0^{t_n} \cdots \int_0^{t_2} \frac{(1 - |\varphi_1(w)|^2)^{t+1}}{\phi(|\varphi_1(w)|)(1 - \overline{\varphi_1(w)}t_1)^{\frac{1}{q} + t + 1 + n}} \varphi_{\varphi_2(w)}(t_1) dt_1 dt_2 \cdots dt_n.$$
 (3.4)

Next we show that $f_w \in H(p, q, \phi)$. Notice that

$$f_w^{(n)}(z) = \frac{(1 - |\varphi_1(w)|^2)^{t+1}}{\phi(|\varphi_1(w)|)(1 - \overline{\varphi_1(w)}z)^{\frac{1}{q} + t + 1 + n}} \varphi_{\varphi_2(w)}(z),$$

according to Lemma 1.4.10 in [11],

$$M_{q}^{p}(f_{w}^{(n)}, r) = \left(\int_{0}^{2\pi} \frac{(1 - |\varphi_{1}(w)|^{2})^{q(t+1)}}{\phi^{q}(|\varphi_{1}(w)|)|1 - \overline{\varphi_{1}(w)}re^{i\theta}|^{1+q(t+1+n)}} |\varphi_{\varphi_{2}(w)}(re^{i\theta})|^{q}d\theta\right)^{p/q} \leq$$

$$\leq \frac{(1 - |\varphi_{1}(w)|^{2})^{p(t+1)}}{\phi^{p}(|\varphi_{1}(w)|)} \left(\int_{0}^{2\pi} \frac{d\theta}{|1 - \overline{\varphi_{1}(w)}re^{i\theta}|^{1+q(t+1+n)}}\right)^{p/q} \approx$$

$$\approx \frac{(1 - |\varphi_{1}(w)|^{2})^{p(t+1)}}{\phi^{p}(|\varphi_{1}(w)|)(1 - r|\varphi_{1}(w)|)^{p(t+1+n)}}. \tag{3.5}$$

By using Lemma 2.5, (3.5), the fact that $f_w^{(j)}(0) = 0$, $j = 1, \ldots, n-1$, the normality of ϕ , Lemma 1.4.10 in [11] and Lemma 2.2, we have

$$||f_w||_{H(p,q,\phi)}^p \le C \int_0^1 \frac{(1-|\varphi_1(w)|^2)^{p(t+1)}}{\phi^p(|\varphi_1(w)|)(1-r|\varphi_1(w)|)^{p(t+1+n)}} \frac{\phi^p(r)}{1-r} (1-r)^{np} dr \le C \int_0^1 \frac{(1-|\varphi_1(w)|^2)^{p(t+1)}}{\phi^p(|\varphi_1(w)|)(1-r|\varphi_1(w)|)^{p(t+1)}} \frac{\phi^p(r)}{1-r} dr \le C \int_0^1 \frac{(1-|\varphi_1(w)|^2)^{p(t+1)}}{\phi^p(|\varphi_1(w)|)} \frac{\phi^p(r)}{1-r} dr \le C \int_0^$$

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 6

$$\leq C \left(\int_{0}^{|\varphi_{1}(w)|} \frac{(1 - |\varphi_{1}(w)|^{2})^{p(t+1)}}{\phi^{p}(|\varphi_{1}(w)|)(1 - r|\varphi_{1}(w)|)^{p(t+1)}} \frac{\phi^{p}(r)}{1 - r} dr + \int_{|\varphi_{1}(w)|}^{1} \frac{(1 - |\varphi_{1}(w)|^{2})^{p(t+1)}}{\phi^{p}(|\varphi_{1}(w)|)(1 - r|\varphi_{1}(w)|)^{p(t+1)}} \frac{\phi^{p}(r)}{1 - r} dr \right) \leq \\
\leq C (1 - |\varphi_{1}(w)|^{2})^{p} \int_{0}^{|\varphi_{1}(w)|} \frac{(1 - r)^{pt-1}}{(1 - r|\varphi_{1}(w)|)^{p(t+1)}} dr + \\
+ C (1 - |\varphi_{1}(w)|^{2})^{p} \int_{|\varphi_{1}(w)|}^{1} \frac{(1 - r)^{ps-1}}{(1 - r|\varphi_{1}(w)|)^{p(s+1)}} dr \leq C.$$

Therefore $f_w \in H(p,q,\phi)$, and moreover $\sup_{w \in \mathbb{D}} \|f_w\|_{H(p,q,\phi)} \leq C$. Note that

$$f_w^{(n)}(\varphi_1(w)) = \frac{\rho(\varphi_1(w), \varphi_2(w))}{\phi(|\varphi_1(w)|)(1 - |\varphi_1(w)|^2)^{\frac{1}{q} + n}} \quad \text{and} \quad f_w^{(n)}(\varphi_2(w)) = 0.$$

So by the boundedness of $D_{\varphi_1,u_1}^n - D_{\varphi_2,u_2}^n : H(p,q,\phi) \to H_v^{\infty}$, we obtain

$$\infty > \|(D_{\varphi_{1},u_{1}}^{n} - D_{\varphi_{2},u_{2}}^{n})f_{w}\|_{v} =
= \sup_{z \in \mathbb{D}} v(z)|u_{1}(z)f_{w}^{(n)}(\varphi_{1}(z)) - u_{2}(z)f_{w}^{(n)}(\varphi_{2}(z))| \ge
\ge v(w)|u_{1}(w)f_{w}^{(n)}(\varphi_{1}(w)) - u_{2}(w)f_{w}^{(n)}(\varphi_{2}(w))| =
= \frac{v(w)|u_{1}(w)|\rho(\varphi_{1}(w),\varphi_{2}(w))}{\phi(|\varphi_{1}(w)|)(1 - |\varphi_{1}(w)|^{2})^{\frac{1}{q}+n}}.$$
(3.6)

Since $w \in \mathbb{D}$ is an arbitrary element, (3.1) comes from (3.6).

Next we prove (3.3). Fix $w \in \mathbb{D}$, let

$$g_w(z) = \int_0^z \int_0^{t_n} \dots \int_0^{t_2} \frac{(1 - |\varphi_2(w)|^2)^{t+1}}{\phi(|\varphi_2(w)|)(1 - \overline{\varphi_2(w)}t_1)^{\frac{1}{q} + t + 1 + n}} dt_1 dt_2 \dots dt_n.$$

Similarly as for the test functions in (3.4), we obtained that $g_w \in H(p,q,\phi)$ with $g_w^{(n)}(\varphi_2(w)) = \frac{1}{\phi(|\varphi_2(w)|)(1-|\varphi_2(w)|^2)^{\frac{1}{q}+n}}$. Then

$$\infty > \|(D_{\varphi_1,u_1}^n - D_{\varphi_2,u_2}^n)g_w\|_v \ge$$

$$\ge v(w)|u_1(w)g_w^{(n)}(\varphi_1(w)) - u_2(w)g_w^{(n)}(\varphi_2(w))| = |I(w) + J(w)|, \tag{3.7}$$

where

$$I(w) = \phi(|\varphi_2(w)|)(1 - |\varphi_2(w)|^2)^{\frac{1}{q} + n} g_w^{(n)}(\varphi_2(w)) \left[\frac{v(w)u_1(w)}{\phi(|\varphi_1(w)|)(1 - |\varphi_1(w)|^2)^{\frac{1}{q} + n}} - \frac{v(w)u_2(w)}{\phi(|\varphi_2(w)|)(1 - |\varphi_2(w)|^2)^{\frac{1}{q} + n}} \right]$$

and

$$J(w) = \frac{v(w)u_1(w)}{\phi(|\varphi_1(w)|)(1 - |\varphi_1(w)|^2)^{\frac{1}{q} + n}} \Big[\phi(|\varphi_1(w)|)(1 - |\varphi_1(w)|^2)^{\frac{1}{q} + n}g_w^{(n)}(\varphi_1(w)) - \phi(|\varphi_2(w)|)(1 - |\varphi_2(w)|^2)^{\frac{1}{q} + n}g_w^{(n)}(\varphi_2(w))\Big].$$

By Lemma 2.3 and (3.1), we conclude that $|J(w)| < \infty$. From this along with (3.7) we get

$$|I(w)| = \left| \frac{v(w)u_1(w)}{\phi(|\varphi_1(w)|)(1 - |\varphi_1(w)|^2)^{\frac{1}{q} + n}} - \frac{v(w)u_2(w)}{\phi(|\varphi_2(w)|)(1 - |\varphi_2(w)|^2)^{\frac{1}{q} + n}} \right| < \infty$$

for all $w \in \mathbb{D}$, thus (3.3) holds.

(ii) \Rightarrow (iii). Assume that (3.1) and (3.3) hold, we only need to show that (3.2) holds. In fact,

$$\begin{split} \frac{v(z)|u_2(z)|\rho(\varphi_1(z),\varphi_2(z))}{\phi(|\varphi_2(z)|)(1-|\varphi_2(z)|^2)^{\frac{1}{q}+n}} &\leq \frac{v(z)|u_1(z)|\rho(\varphi_1(z),\varphi_2(z))}{\phi(|\varphi_1(z)|)(1-|\varphi_1(z)|^2)^{\frac{1}{q}+n}} + \\ &+ \left| \frac{v(z)u_1(z)}{\phi(|\varphi_1(z)|)(1-|\varphi_1(z)|^2)^{\frac{1}{q}+n}} - \frac{v(z)u_2(z)}{\phi(|\varphi_2(z)|)(1-|\varphi_2(z)|^2)^{\frac{1}{q}+n}} \right| \rho(\varphi_1(z),\varphi_2(z)). \end{split}$$

From which, using (3.1) and (3.3), the desired condition (3.2) holds.

(iii) \Rightarrow (i). Assume that (3.2) and (3.3) hold. By Lemma 2.1 and Lemma 2.3, for any $f \in H(p,q,\phi)$, we have

$$v(z)|u_{1}(z)f^{(n)}(\varphi_{1}(z)) - u_{2}(z)f^{(n)}(\varphi_{2}(z))| =$$

$$= \left| \phi(|\varphi_{1}(z)|)(1 - |\varphi_{1}(z)|^{2})^{\frac{1}{q}+n}f^{(n)}(\varphi_{1}(z)) \left[\frac{v(z)u_{1}(z)}{\phi(|\varphi_{1}(z)|)(1 - |\varphi_{1}(z)|^{2})^{\frac{1}{q}+n}} - \frac{v(z)u_{2}(z)}{\phi(|\varphi_{2}(z)|)(1 - |\varphi_{2}(z)|^{2})^{\frac{1}{q}+n}} \right] + \left[\phi(|\varphi_{1}(z)|)(1 - |\varphi_{1}(z)|^{2})^{\frac{1}{q}+n}f^{(n)}(\varphi_{1}(z)) - \frac{v(z)u_{2}(z)}{\phi(|\varphi_{2}(z)|)(1 - |\varphi_{2}(z)|^{2})^{\frac{1}{q}+n}} \right] \leq$$

$$-\phi(|\varphi_{2}(z)|)(1 - |\varphi_{2}(z)|^{2})^{\frac{1}{q}+n}f^{(n)}(\varphi_{2}(z)) \left[\frac{v(z)u_{2}(z)}{\phi(|\varphi_{2}(z)|)(1 - |\varphi_{2}(z)|^{2})^{\frac{1}{q}+n}} \right] \leq$$

$$\leq C||f||_{H(p,q,\phi)} + C \frac{v(z)|u_{2}(z)|\rho(\varphi_{1}(z),\varphi_{2}(z))}{\phi(|\varphi_{2}(z)|)(1 - |\varphi_{2}(z)|^{2})^{\frac{1}{q}+n}} ||f||_{H(p,q,\phi)} \leq$$

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 6

$$\leq C \|f\|_{H(p,q,\phi)}$$

for each $z\in\mathbb{D}$. From which it follows that $D^n_{\varphi_1,u_1}-D^n_{\varphi_2,u_2}\colon H(p,q,\phi)\to H^\infty_v$ is bounded. Theorem 3.1 is proved.

4. Compactness of $D^n_{\varphi_1,u_1}-D^n_{\varphi_2,u_2}\colon H(p,q,\phi)\to H^\infty_v$. In this section, we turn our attention to the problem of the compactness of the operator. Here we consider the following conditions:

$$M_4 = \frac{v(z)u_1(z)\rho(\varphi_1(z), \varphi_2(z))}{\phi(|\varphi_1(z)|)(1 - |\varphi_1(z)|^2)^{\frac{1}{q} + n}} \to 0 \quad \text{as} \quad |\varphi_1(z)| \to 1, \tag{4.1}$$

$$M_5 = \frac{v(z)u_2(z)\rho(\varphi_1(z), \varphi_2(z))}{\phi(|\varphi_2(z)|)(1 - |\varphi_2(z)|^2)^{\frac{1}{q} + n}} \to 0 \quad \text{as} \quad |\varphi_2(z)| \to 1, \tag{4.2}$$

$$M_{6} = \frac{v(z)u_{1}(z)}{\phi(|\varphi_{1}(z)|)(1 - |\varphi_{1}(z)|^{2})^{\frac{1}{q} + n}} - \frac{v(z)u_{2}(z)}{\phi(|\varphi_{2}(z)|)(1 - |\varphi_{2}(z)|^{2})^{\frac{1}{q} + n}} \to 0$$
as $|\varphi_{1}(z)| \to 1$ and $|\varphi_{2}(z)| \to 1$. (4.3)

Theorem 4.1. Suppose $n \in \mathbb{N}_0$, $0 < p,q < \infty$, $u_1,u_2 \in H(\mathbb{D})$, $\varphi_1,\varphi_2 \in S(\mathbb{D})$ and ϕ is normal. Then $D^n_{\varphi_1,u_1} - D^n_{\varphi_2,u_2} \colon H(p,q,\phi) \to H^\infty_v$ is compact if and only if $D^n_{\varphi_1,u_1} - D^n_{\varphi_2,u_2} \colon H(p,q,\phi) \to H^\infty_v$ is bounded and the conditions (4.1)–(4.3) hold.

Proof. First we suppose that $D^n_{\varphi_1,u_1} - D^n_{\varphi_2,u_2} : H(p,q,\phi) \to H^\infty_v$ is bounded and the conditions (4.1)-(4.3) hold. It is clear that the conditions (3.1)-(3.3) hold by Theorem 3.1. From (4.1)-(4.3), it follows that for any $\varepsilon > 0$, there exists 0 < r < 1 such that

$$\frac{v(z)|u_1(z)|\rho(\varphi_1(z),\varphi_2(z))}{\phi(|\varphi_1(z)|)(1-|\varphi_1(z)|^2)^{\frac{1}{q}+n}} \le \varepsilon \quad \text{for} \quad |\varphi_1(z)| > r, \tag{4.4}$$

$$\frac{v(z)|u_2(z)|\rho(\varphi_1(z),\varphi_2(z))}{\phi(|\varphi_2(z)|)(1-|\varphi_2(z)|^2)^{\frac{1}{q}+n}} \le \varepsilon \quad \text{for} \quad |\varphi_2(z)| > r, \tag{4.5}$$

$$\left| \frac{v(z)u_{1}(z)}{\phi(|\varphi_{1}(z)|)(1 - |\varphi_{1}(z)|^{2})^{\frac{1}{q}+n}} - \frac{v(z)u_{2}(z)}{\phi(|\varphi_{2}(z)|)(1 - |\varphi_{2}(z)|^{2})^{\frac{1}{q}+n}} \right| \leq \varepsilon$$
for $|\varphi_{1}(z)| > r$, $|\varphi_{2}(z)| > r$. (4.6)

Now, let $(f_k)_{k\in\mathbb{N}}$ be a bounded sequence in $H(p,q,\phi)$ with $\|f_k\|_{H(p,q,\phi)}\leq 1$ and $f_k\to 0$ uniformly on compact subsets of \mathbb{D} . By Lemma 2.4 we need only to show that $\|(D^n_{\varphi_1,u_1}-D^n_{\varphi_2,u_2})f_k\|_v\to 0$ as $k\to\infty$. A direct calculation shows that

$$v(z)|u_1(z)f_k^{(n)}(\varphi_1(z)) - u_2(z)f_k^{(n)}(\varphi_2(z))| = |I_k(z) + J_k(z)|, \tag{4.7}$$

where

$$I_k(z) = \phi(|\varphi_2(z)|)(1 - |\varphi_2(z)|^2)^{\frac{1}{q} + n} f_k^{(n)}(\varphi_2(z)) \left[\frac{v(z)u_1(z)}{\phi(|\varphi_1(z)|)(1 - |\varphi_1(z)|^2)^{\frac{1}{q} + n}} - \frac{v(z)u_2(z)}{\phi(|\varphi_2(z)|)(1 - |\varphi_2(z)|^2)^{\frac{1}{q} + n}} \right]$$

and

$$J_k(z) = \frac{v(z)u_1(z)}{\phi(|\varphi_1(z)|)(1 - |\varphi_1(z)|^2)^{\frac{1}{q} + n}} \Big[\phi(|\varphi_1(z)|)(1 - |\varphi_1(z)|^2)^{\frac{1}{q} + n} f_k^{(n)}(\varphi_1(z)) - \phi(|\varphi_2(z)|)(1 - |\varphi_2(z)|^2)^{\frac{1}{q} + n} f_k^{(n)}(\varphi_2(z))\Big].$$

We divide the argument into four cases:

Case 1: $|\varphi_1(z)| \le r$ and $|\varphi_2(z)| \le r$.

By the assumption, note that f_k converges to zero uniformly on $E = \{w : |w| \le r\}$ as $k \to \infty$, and using (3.3), it is easy to check that $I_k(z) \to 0, \ k \to \infty$ uniformly for all z with $|\varphi_2(z)| \le r$.

On the other hand, from (2.4), (3.1) and since f_k converges to zero uniformly on E, we have that

$$|J_k(z)| \le C \frac{v(z)|u_1(z)|\rho(\varphi_1(z),\varphi_2(z))}{\phi(|\varphi_1(z)|)(1-|\varphi_1(z)|^2)^{\frac{1}{q}+n}} \sup_{|\zeta| \le r} \phi(|\zeta|)(1-|\zeta|^2)^{\frac{1}{q}+n} |f^{(n)}(\zeta)| \le C\varepsilon.$$

Case 2: $|\varphi_1(z)| > r$ and $|\varphi_2(z)| \le r$.

As in the proof of Case 1, $I_k(z) \to 0$ uniformly as $k \to \infty$. On the other hand, using Lemma 2.3 and (4.4) we obtain $|J_k(z)| \le C\varepsilon$.

Case 3: $|\varphi_1(z)| > r$ and $|\varphi_2(z)| > r$.

For k sufficiently large, by Lemma 2.1 and (4.6) we obtain that $|I_k(z)| \leq C\varepsilon$. Meanwhile, $|J_k(z)| \leq C\varepsilon$ by Lemma 2.3 and (4.4).

Case 4: $|\varphi_1(z)| \le r$ and $|\varphi_2(z)| > r$. We rewrite

$$v(z)|u_1(z)f_k^{(n)}(\varphi_1(z)) - u_2(z)f_k^{(n)}(\varphi_2(z))| = |P_k(z) + Q_k(z)|,$$

where

$$P_k(z) = \phi(|\varphi_1(z)|)(1 - |\varphi_1(z)|^2)^{\frac{1}{q} + n} f_k^{(n)}(\varphi_1(z)) \left[\frac{v(z)u_1(z)}{\phi(|\varphi_1(z)|)(1 - |\varphi_1(z)|^2)^{\frac{1}{q} + n}} - \frac{v(z)u_2(z)}{\phi(|\varphi_2(z)|)(1 - |\varphi_2(z)|^2)^{\frac{1}{q} + n}} \right]$$

and

$$Q_k(z) = \frac{v(z)u_2(z)}{\phi(|\varphi_2(z)|)(1 - |\varphi_2(z)|^2)^{\frac{1}{q} + n}} \Big[\phi(|\varphi_1(z)|)(1 - |\varphi_1(z)|^2)^{\frac{1}{q} + n} f_k^{(n)}(\varphi_1(z)) - \phi(|\varphi_2(z)|)(1 - |\varphi_2(z)|^2)^{\frac{1}{q} + n} f_k^{(n)}(\varphi_2(z))\Big].$$

The desired result follows by an argument analogous to that in the proof of Case 2. Thus, together with the above cases, we conclude that

$$\|(D_{\varphi_1,u_1}^n - D_{\varphi_2,u_2}^n)f_k\|_v =$$

$$= \sup_{z \in \mathbb{D}} v(z)|u_1(z)f_k^{(n)}(\varphi_1(z)) - u_2(z)f_k^{(n)}(\varphi_2(z))| \le C\varepsilon$$
(4.8)

for sufficiently large k. Employing Lemma 2.4 combining with the arbitrariness of ε , we obtain the compactness of $D^n_{\varphi_1,u_1}-D^n_{\varphi_2,u_2}\colon H(p,q,\phi)\to H^\infty_v$.

For the converse direction, we suppose that $D^n_{\varphi_1,u_1}-D^n_{\varphi_2,u_2}:H(p,q,\phi)\to H^\infty_v$ is compact. From which we can easily obtain the boundedness of $D^n_{\varphi_1,u_1}-D^n_{\varphi_2,u_2}:H(p,q,\phi)\to H^\infty_v$. Next we only need to show that (4.1)-(4.3) hold.

Let $(z_k)_{k\in\mathbb{N}}$ be a sequence of points in \mathbb{D} such that $|\varphi_1(z_k)|\to 1$ as $k\to\infty$. Define the functions

$$f_k(z) = \int_0^z \int_0^{t_n} \dots \int_0^{t_2} \frac{(1 - |\varphi_1(z_k)|^2)^{t+1}}{\phi(|\varphi_1(z_k)|)(1 - \overline{\varphi_1(z_k)}t_1)^{\frac{1}{q} + t + 1 + n}} \varphi_{\varphi_2(z_k)}(t_1) dt_1 dt_2 \dots dt_n. \tag{4.9}$$

Clearly, $f_k \in H(p, q, \phi)$ with $\sup_{k \in \mathbb{N}} \|f_k\|_{H(p, q, \phi)} \le C$, and f_k converges to 0 uniformly on compact subsets of \mathbb{D} as $k \to \infty$. Moreover,

$$f_k^{(n)}(\varphi_1(z_k)) = \frac{\rho(\varphi_1(z_k), \varphi_2(z_k))}{\phi(|\varphi_1(z_k)|)(1 - |\varphi_1(z_k)|^2)^{\frac{1}{q} + n}} \quad \text{and} \quad f_k^{(n)}(\varphi_2(z_k)) = 0.$$
 (4.10)

Then

$$||(D_{\varphi_{1},u_{1}}^{n} - D_{\varphi_{2},u_{2}}^{n})f_{k}||_{v} = \sup_{z \in \mathbb{D}} v(z)|u_{1}(z)f_{k}^{(n)}(\varphi_{1}(z)) - u_{2}(z)f_{k}^{(n)}(\varphi_{2}(z))| \geq$$

$$\geq v(z_{k})|u_{1}(z_{k})f_{k}^{(n)}(\varphi_{1}(z_{k})) - u_{2}(z_{k})f_{k}^{(n)}(\varphi_{2}(z_{k}))| =$$

$$= \frac{v(z_{k})|u_{1}(z_{k})|\rho(\varphi_{1}(z_{k}),\varphi_{2}(z_{k}))}{\phi(|\varphi_{1}(z_{k})|)(1 - |\varphi_{1}(z_{k})|^{2})^{\frac{1}{q}+n}}.$$
(4.11)

On the other hand, since $D_{\varphi_1,u_1}^n - D_{\varphi_2,u_2}^n$: $H(p,q,\phi) \to H_v^\infty$ is compact, by Lemma 2.4, it follows that $\|(D_{\varphi_1,u_1}^n - D_{\varphi_2,u_2}^n)f_k\|_v \to 0, \ k \to \infty$. Letting $k \to \infty$ in (4.11), it follows that (4.1) holds. The condition (4.2) holds for the similar arguments.

Now it remains to show that condition (4.3) holds. Assume that $(z_k)_{k\in\mathbb{N}}$ is a sequence in \mathbb{D} such that $|\varphi_1(z_k)| \to 1$ and $|\varphi_2(z_k)| \to 1$ as $k \to \infty$. Define the function

$$g_k(z) = \int_0^z \int_0^{t_n} \dots \int_0^{t_2} \frac{(1 - |\varphi_2(z_k)|^2)^{t+1}}{\phi(|\varphi_2(z_k)|)(1 - \overline{\varphi_2(z_k)}t_1)^{\frac{1}{q} + t + 1 + n}} dt_1 dt_2 \dots dt_n.$$

It is easy to check that g_k converges to 0 uniformly on compact subsets of $\mathbb D$ as $k\to\infty$ and $g_k\in H(p,q,\phi)$ with $\|g_k\|_{H(p,q,\phi)}\le C$ for all $k\in\mathbb N$. It follows from Lemma 2.4 that $\|(D^n_{\varphi_1,u_1}-D^n_{\varphi_2,u_2})g_k\|_v\to 0,\ k\to\infty$. On the other hand, we have

$$||(D_{\varphi_1,u_1}^n - D_{\varphi_2,u_2}^n)g_k||_v \ge v(z_k)|u_1(z_k)g_k^{(n)}(\varphi_1(z_k)) - u_2(z_k)g_k^{(n)}(\varphi_2(z_k))| =$$

$$= |I(z_k) + J(z_k)|, \tag{4.12}$$

where

$$\begin{split} I(z_k) &= \phi(|\varphi_2(z_k)|)(1-|\varphi_2(z_k)|^2)^{\frac{1}{q}+n}g_k^{(n)}(\varphi_2(z_k))\left[\frac{v(z_k)u_1(z_k)}{\phi(|\varphi_1(z_k)|)(1-|\varphi_1(z_k)|^2)^{\frac{1}{q}+n}} - \frac{v(z_k)u_2(z_k)}{\phi(|\varphi_2(z_k)|)(1-|\varphi_2(z_k)|^2)^{\frac{1}{q}+n}}\right],\\ J(z_k) &= \frac{v(z_k)u_1(z_k)}{\phi(|\varphi_1(z_k)|)(1-|\varphi_1(z_k)|^2)^{\frac{1}{q}+n}}\left[\phi(|\varphi_1(z_k)|)(1-|\varphi_1(z_k)|^2)^{\frac{1}{q}+n}g_k^{(n)}(\varphi_1(z_k)) - \frac{v(z_k)u_1(z_k)}{\phi(|\varphi_2(z_k)|)(1-|\varphi_2(z_k)|^2)^{\frac{1}{q}+n}g_k^{(n)}(\varphi_2(z_k))}\right]. \end{split}$$

By Lemma 2.3 and the condition (4.1) that has been proved, we get $J(z_k) \to 0, \ k \to \infty$. This along with (4.12) shows that $I(z_k) \to 0, k \to \infty$. Hence (4.3) is true since $g_k^{(n)}(\varphi_2(z_k)) = \frac{1}{1+n}$.

$$= \frac{\phi(|\varphi_2(z_k)|)(1 - |\varphi_2(z_k)|^2)^{\frac{1}{q} + n}}{\text{Theorem 4.1 is proved.}}$$

References

- 1. *Bonet J., Lindström M., Wolf E.* Differences of composition operators between weighted Banach spaces of holomorphic functions // J. Austral. Math. Soc. 2008. **84**. P. 9 20.
- 2. Dai J. N., Ouyang C. H. Difference of weighted composition operators on $H_{\alpha}^{\infty}(B_N)$ // J. Inequal. Appl. 2009. Article ID 127431. 19 p.
- 3. *Hibschweiler R. A., Portnoy N.* Composition followed by differentiation between Bergman and Hardy spaces // Rocky Mountain J. Math. 2005. 35, № 3. P. 843 855.
- 4. *Hu Z.* Extended Cesàro opterators on mixed-norm spaces // Proc. Amer. Math. Soc. 2003. **131**, № 7. P. 2171 2179.
- 5. *Li S., Stević S.* Composition followed by differentiation between Bloch type spaces // J. Comput. Anal. and Appl. 2007. 9, № 2. P. 195 206.
- 6. Li S., Stević S. Composition followed by differentiation between H^{∞} and α -Bloch spaces // Houston J. Math. 2009. 35, No 1. P. 327 340.
- 7. Li S., Stević S. Composition followed by differentiation from mixed-norm spaces to α-Bloch spaces // Sb. Math. 2008. 199, № 12. P. 1847 1857.
- Li S., Stević S. Generalized weighted composition operators from α-Bloch spaces into weighted-type spaces // J. Inequal. Appl. – 2015. – Article No. 265. – 12 p.
- 9. *Li S., Stević S.* Integral type operators from mixed-norm spaces to α-Bloch spaces // Integr. Trans. Spec. Funct. 2007. 18, № 7. P. 485–493.
- 10. *Liu Y., Yu Y. Y.* Weighted differentiation composition operators from mixed-norm to Zygmund spaces // Numer. Funct. Anal. Optim. 2010. 31, № 8. P. 936–954.
- 11. Rudin W. Function theory in the unit ball of \mathbb{C}^n // Fund. Princ. Math. Sci. Berlin: Springer, 1980. 241.
- 12. Schwartz H. J. Composition operators on H^p: Thesis. Univ. Toledo, 1969.
- 13. *Shields A. L., Williams D. L.* Bounded projections, duality, and multipliers in spaces of analytic functions // Trans. Amer. Math. Soc. 1971. **162.** P. 287–302.
- 14. *Stević S.* Boundedness and compactness of an integral operator on mixed norm spaces on the polydisc // Sib. Math. J. 2007. 48, № 3. P. 559 569.
- 15. *Stević S.* Generalized composition operators between mixed-norm spaces and some weighted spaces // Numer. Funct. Anal. Optim. 2008. 29, № 7-8. P. 959–978.

- 16. Stević S. Integral-type operators from a mixed norm space to a Bloch-type space on the unit ball // Sib. Math. J. 2009. 50, № 6. P. 1098 1105.
- 17. Stević S. Norm and essential norm of composition followed by differentiation from α -Bloch spaces to H_{μ}^{∞} // Appl. Math. and Comput. 2009. 207. P. 225 229.
- 18. *Stević S.* On an integral-type operator from logarithmic Bloch-type and mixed-norm spaces to Bloch-type spaces // Nonlinear Anal. 2009. **71**. P. 6323 6342.
- 19. Stević S. On operator P_{φ}^g from the logarithmic Bloch-type space to the mixed-norm space on unit ball // Appl. Math. and Comput. -2010. -215. -P.4248-4255.
- 20. *Stević S.* Products of composition and differentiation operators on the weighted Bergman space // Bull. Belg. Math. Soc. Simon Stevin. 2009. **16**. P. 623 635.
- 21. Stević S. Weighted composition operators between mixed norm spaces and H_{α}^{∞} spaces in the unit ball // J. Inequal. Appl. 2007. 9. Article ID 28629.
- 22. Stević S. Weighted differentiation composition operators from H[∞] and Bloch spaces to nth weighted-type spaces on the unit disk // Appl. Math. and Comput. 2010. 216, № 12. P. 3634–3641.
- 23. *Stević S.* Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces // Appl. Math. and Comput. 2009. 211. P. 222 233.
- 24. *Stević S.* Weighted differentiation composition operators from the mixed-norm space to the *n*th weighted-type space on the unit disk // Abstrs Appl. Anal. 2010. 15. Article ID 246287.
- 25. Wolf E. Composition followed by differentiation between weighted Banach spaces of holomorphic functions // Racsam. 2011. 105. P. 315–322.
- 26. Wolf E. Essential norm of the difference of weighted composition operators // Monatsh. Math. 2008. 153. P. 133–143.

Received 15.07.13, after revision -12.01.16