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AUTOMORPHISMS AND DERIVATIONS OF LEIBNIZ ALGEBRAS
ABTOMOP®I3MHU TA MOXIJIHI AJITEEP JIEUBHIIA

We extend some general properties of automorphisms and derivations known for the Lie algebras to finite-dimensional
complex Leibniz algebras. The analogs of the Jordan—Chevalley decomposition for derivations and the multiplicative
decomposition for automorphisms of finite-dimensional complex Leibniz algebras are obtained.

Jlesiki 3araybHi BIaCTHBOCTI aBTOMOP(Qi3MiB Ta MOXiIHKX, 110 BigoMi ajst anre6p Jli, po3uIMpeHo Ha BUMAI0K KOMIUIEKCHUX
anreOp JleitOnina. BeranosineHo ananoru poskiany Jxopnana—lleBanbe 1uist MOXiTHUX Ta MYJTBTHILTIKATUBHOTO PO3KIATY
IUT aBTOMOP(i3MiB CKIHUCHHOBUMIPHUX KOMIUIEKCHHUX anreOp JleitOHima.

1. Introduction. Leibniz algebras were first introduced by A. Bloh [2] as D-algebras. Later they
were rediscovered and given another impulse of investigation due to works of Loday [11, 12] as a
nonantisymmetric version of Lie algebras. Many results of Lie algebras are also established in Leibniz
algebras. Since the study of the properties of derivations and automorphisms of Lie algebras play an
essential role in the theory of Lie algebras, the question naturally arises whether the corresponding
results can be extended to the more general framework of the Leibniz algebras.

In this work we consider some general properties of derivations and automorphisms of Leibniz
algebras. We extend some results obtained for derivations and automorphisms of Lie algebras in
[5, 8] to the case of Leibniz algebras. Among them we prove the analogue of the Jordan — Chevalley
decomposition, which expresses a derivation of a Leibniz algebra as the sum of its commuting
semisimple and nilpotent parts. Similar results were established in [S] and [7] for Lie algebras. If
the linear operator is invertible, then the Jordan — Chevalley decomposition expresses it as a product
of commuting semisimple and unipotent operators. Gantmacher [5] proved that any automorphism
of a Lie algebra decomposes into the product of commuting semisimple automorphism and exponent
of a nilpotent derivation. In this work we verify that the same results hold in Leibniz algebras.

In 1955, Jacobson [8] proved that every Lie algebra over a field of characteristic zero admitting
a nonsingular derivation is nilpotent. The problem whether the converse of this statement is correct
remained open until an example of a nilpotent Lie algebra in which every derivation is nilpotent
(and hence, singular) was constructed in [4]. Nilpotent Lie algebras with this property were named
characteristically nilpotent Lie algebras. In [10] it was proved that every irreducible component of
the variety of complex filiform Lie algebras of dimension greater than 7 contains a Zariski open
set consisting of characteristically nilpotent Lie algebras. Note that among nilpotent Lie algebras of
dimension less than 7, characteristically nilpotent Lie algebras do not occur due to the classification
given in [6].

In this paper we prove that a finite-dimensional complex Leibniz algebra admitting a nondege-
nerate derivation is nilpotent. Similar to the Lie case, the inverse of this statement does not hold.
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The notion of characteristically nilpotent Leibniz algebra is defined similarly as in the Lie case. It is
established in [14] that a characteristically nilpotent non-Lie filiform Leibniz algebra occurs starting
with dimension 5.

Some versions of Theorems 3.3 and 3.4 are presented in [15]. We also have found that some of
the presented results of our work are also proved with another techniques in [3].

In the present paper, all vector spaces and algebras are considered over the field of the complex

, k
numbers C. We will denote by Cj, the binomial coefficient |
i

2. Preliminaries. In this section we present some known notions and results concerning Leibniz
algebras that we use further in this work.

Definition 2.1. An algebra L over a field F is called a Leibniz algebra if for any x,y,z € L,
the Leibniz identity

[z, 9], 2] = [l 2], 9] + [, [y, ]

is satisfied, where |—, —| is the multiplication in L.

In other words, the right multiplication operator [—, z] by any element z is a derivation (see [11]).

Any Lie algebra is a Leibniz algebra, and conversely any Leibniz algebra L is a Lie algebra if
[z,z] = 0 for all z € L. Moreover, if L*"™ = ideal ([x,z] | x € L), then the factor algebra L/L*"®
is a Lie algebra.

For a Leibniz algebra L consider the following derived and lower central series:

G LW =L, L0+ = L0 L] n > 1;

(i) L' =L, L""' =[L" L], n > 1.

Definition 2.2. An algebra L is called solvable (nilpotent) if there exists s € N (k € N,
respectively) such that L'®) = 0 (LF = 0, respectively).

For a linear map A of a vector space V we denote by V) = {z € V | (A - A)F(x) =
= 0 for some k € N} the generalized eigenspace for eigenvalue A of A.

The following proposition provides an additive Jordan — Chevalley decomposition of an endomor-
phism.

Proposition 2.1 [7]. Let V be a finite-dimensional vector space over C, x € End(V).

(i) There exist unique x4, x,, € End(V) satisfying the conditions: x = xq+ Xy, x4 is diagonal-
izable, x,, is nilpotent, x4 and x, commute.

(ii) There exist polynomials p(t),q(t) € Clt], without constant term such that x4 = p(z) and
xn = q(x). In particular, x4 and x,, commute with any endomorphism commuting with x.

(iii) If A C B CV are subspaces and x maps B in A, then x4 and x,, also map B in A.

In Leibniz algebras a derivation is defined as usual [12].

Definition 2.3. A linear operator d: L — L is called a derivation of L if

d([z,y]) = [d(z),y] + [x,d(y)] forany wz,y€ L.

For an arbitrary element x € L, we consider the right multiplication operator R,: L — L
defined by R, (z) = [z, x]. Right multiplication operators are derivations of the algebra L. The set
R(L) = {R; | x € L} is a Lie algebra with respect to the commutator and the following identity
holds:

R:Ry — RyR; = Ry 4. (2.1)

Definition 2.4 [9]. A subset S of an associative algebra A over a field F is called weakly closed
if for every pair (a,b) € S x S there exists an element y(a,b) € F such that ab + v(a,b)ba € S.
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Further, we need a result concerning the weakly closed sets.

Theorem 2.1 [9]. Let S be a weakly closed subset of the associative algebra A of linear
transformations of a finite-dimensional vector space V over F. Assume every W € S is nilpotent,
that is, W* = 0 for some positive integer k. Then the enveloping associative algebra S* of S is
nilpotent.

The classical Engel’s theorem for Lie algebras has the following analogue in Leibniz algebras.

Theorem 2.2 ([1], Engel’s theorem). A Leibniz algebra L is nilpotent if and only if R, is nilpo-
tent for any x € L.

Definition 2.5. The set Ann, (L {x €eL|[Lz= 0} of a Leibniz algebra L is called the
right annihilator of L.

One can show that Ann, (L) is an ideal of L.

For a Leibniz algebra L, let H be a maximal solvable ideal in the sense that H contains any
solvable ideal of L. Since the sum of solvable ideals is again a solvable ideal (see [1]), this implies
the existence of the unique maximal solvable ideal, which is called the radical of L.

Similarly, let K be a maximal nilpotent ideal of Leibniz algebra L. Since the sum of nilpotent
ideals is a nilpotent ideal (see [1]), this implies the existence of a unique maximal nilpotent ideal,
which is the nilradical of L.

3. Main result. This section is devoted to the extension of known results for Lie algebras on
automorphisms and derivations to Leibniz algebras.

Lemma 3.1. Let L be a finite-dimensional Leibniz algebra with a derivation d. Then for any
a, € Spec(d) we have

Loy, if a+ [ isan eigenvalue of d,
[Lom Lﬂ] -
0, if a4+ B isnotan eigenvalue of d.

Proof. First observe that (d —(a+ B)I)([g;,y]) = [d(x),y} + [:p,d(y)] — (a+ B)z,y] =
= [(d —al)(z), 3/} + [36, (d— ﬁl)(y)] Now assume that

k
(d—(a+ B)D*([x,y]) =D Cil(d — al)'(z), (d — BI)F(y)] (3.1)

=0

for some k£ > 1. Then

k
(d—(a+ D) ([2,9]) = (d— (a +B)I (ZC [(d — aI) ><d—m>’”<y>1):
=0

Cil(d—al)™*(z), (d - 8D (y)] +

+)  Ci(d—al)(x), (d— B (y)]
=0
k—1
[(d— o) (z), (v)] + > Ci[(d — o)™ (z), (d - BDM1FD ()] +
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k
+) Cil(d = al)(z), (d - BN (y)] + [z, (d - BI)*(y)] =
=1
k: . .
= [(d—aD)*(@),y] + D (Ci + Ch)
=1

x[(d = al)i(z), (d — BDM i ()] + |2, (d— BDF(y)] =

k
= [(@=an)*(2),5] + > Ch[d = al)(@), (d = 8D (y)] + [3, (d = BD ()] =
=1
k+1 ' A |
=3 " Cl[(d—al)i(x), (d— BDM(y)].

=0

Hence (3.1) holds for any k£ € N.

Consider « € L, y € Lg. Then there exist natural numbers p, ¢ such that (d — al)?(z) = 0
and (d — BI)(y) = 0. In (3.1) taking k = p + q we have that (d — (a + 8)I)" ([z,]) = 0 which
completes the proof of the statement of the lemma.

Let d be a derivation of a Leibniz algebra L. From the definition of a derivation it is straightfor-
ward that ker d is a subalgebra. Moreover, by Lemma 3.1 we have [Lg, Lo] C Lo and hence Ly is
also a subalgebra of L.

The following theorem is a generalization of the analogous result in the theory of Lie algebras
established in [5].

Theorem 3.1. Let D be a derivation of a Leibniz algebra L. Then there exists a unique diagonal-
izable derivation Dy and a unique nilpotent derivation T such that D = Dy + T and DT = T Dy.

Proof. Let L =1L, &...® L, be adecomposition of L into characteristic spaces with respect
to d. Let us define a linear operator Dy : L — L as Dy(x) = p;x for € L,,. Then Dy is obviously
diagonalizable and DyD = DDy.

Now we show that Dy is a derivation of L.

By Lemma 3.1 if z € L,,,y € L,, we obtain [z,y] € Ly, +p; if pi + pj 1s an eigenvalue and
[z,y] = 0 otherwise. If p; + p; is an eigenvalue of D, then we have

DO([xay]) = (pi + Pj)[x,y],
[Do(2),y] + [=, Do(y)] = [piw,y] + @, pjy] = (pi + pj) [, y)-

So Do([,3]) = [Do(a), 9] + [z, Do(y)].

If p; + p; is not an eigenvalue, then [z, y] = 0 and again we get Dy ([z,y]) = 0 and [Dy(z),y] +
+ [z, Do(y)] = (pi + pj)[x,y] = 0. Hence, Dy is a derivation.

Now denote by 7' = D — Dy. Obviously, T is a derivation of L and T is nilpotent. Moreover,
T commutes with Dy.

The uniqueness of such decomposition follows from Proposition 2.1.

In order to obtain a similar result for automorphisms of Leibniz algebras we need the following
lemma.

Lemma 3.2. Let P be a nilpotent transformation of a Leibniz algebra L such that P + I is an
automorphism. Then

ISSN 1027-3190.  Ykp. mam. scypn., 2016, m. 68, Ne 7



AUTOMORPHISMS AND DERIVATIONS OF LEIBNIZ ALGEBRAS 937

k1

PH(z,y)) =) ) CLoi[PF (), PFH (y)] (3.2)

i=0 j=0
forall k € N.
Proof. Let us denote () = P + I. Since @) is an automorphism we obtain

P([l’,y]) = (Q - I)([l’,y]) = [Q(x),Q(y)] - [iL‘,y] =
= [Qx) —2,Qy) —y] + [Qx) —z,y] + [2,Qy) —y] =

= [P(x), P(y)] + [P(z), 9] + ZZC”C” P (z), P (y)].

=0 j=0
Now assume that (3.2) holds for some natural £ > 1. Then

PH Y[z ZZCkCJP ([P* (), P (y)]) =

k
=Sy ([P @), P )4
i=0 J=0
F[PEIH @), PR )] 4 [PRI (), PR ()],

Consider
CJ [Pk—j-i-l( Pk ’L+] +ch Pk ] Pk z+]+1(y)] _
1

7

:C’? [Pk:-i-l Pk z +Z (C Pk+l y Pk z+](y)]+

+ G PR (), PRt <y)]) +C[P* (), PF (y)] =

_ Cz(')+1 [Pk+1($), Pk—i—l—(i—l—l) (y)]+

+3° (O + G [PHHI (@), PR ()]

j=1

+ i [PR0 (), PR ().

Using the fact C’J + C] e i1 we have
i

ZC” [PEI* @), PR )] 4+ 3 OF [PM (), PR (y)] =
§=0

i+1
Z z+1 Pk+1 ] )’Pk—i—l—(z—i—l)—l—](y)]'
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Now
koo
PkJrl([ y ZZCZC] Pk- j+1( )’Pk7i+j+1(y)]_+_
1=0 j=0
Eoitl
+D D CLCL, [P (@), MDY ()] =
i=0 j=0
k—1 it1
_ [Pk-i-l( Pk—f—l + ZZCz+ICZ]+l Pk—j+1($)’Pk+1—(i+1)+j(y)]+
i=0 j=0
k—1i+1 k1
F20 D G [P @), PR )] 43 e [P ), P =
=0 j=0 7=0
k—1i+1
_ [Pk+l($),Pk+1 (y)] + Z Z (C]i-l-l + Ck)c+1x
i=0 j=0
k41
« [PkfjJrl(x)?Pk+17(i+1)+j(y)] + ZCIZH [PkJrl*j(x)’pj(y)] —
§=0
E—1i+1
_ [PkJrl( Pk+1 + chiﬁ z+1 pkfj+1(x)7pk+1f(i+l)+j(y)]+
=0 5=0
k41
+D Ol [P @), P(y)] =
=0

_ [Pk-‘rl( Pk—f—l +ZZCI€+10] Pk ]-‘rl( )’Pk-l—l—i-‘rj(y)}_‘_

i=1 j=0
k+1 ‘ ‘ A
+3 ¢, [PH (), P(y)] =
Jj=0
k+1 1 )
= Z Z C} 1O [PF 1 (z), PFH=1H ()]
i=0 j=0

Thus, (3.2) is proved.

The next lemma presents the similar result for automorphisms of Leibniz algebras as Lemma 3.1
does for derivations. Notice that, it also generalizes the result for Lie algebras given in [5].

Lemma 3.3. Let L be a finite-dimensional Leibniz algebra and A be an automorphism. Then
for any «, 3 € Spec(A) we have

Lag, if «af isan eigenvalue of A,

[Lcw Lﬁ] -
0, if «af isnotan eigenvalue of A.
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Proof. First observe that

(A —apl)([z,y]) = [A(2), A(y)] — aBlz,y] =
= [(A—al)(2), (A= BI)(y)] + [(A - al)(z), By] + [az, (A = BI)(y)].

Similarly to the proof of Lemma 3.2 one can establish by induction

k7
(A= apDf([z,y]) =D ) !B CLCH(A - aD)¥(x), (A — BD)FTT(y)]. (33)

7=0 =0

Now let « € L, and y € Lg. Then there exist natural numbers p, ¢ such that (A — af)P(z) =
and (A — BI)%(y) = 0. In (3.3) taking k = p + ¢ we have that (A — aBI)*([z, ]) 0w 1ch
completes the proof of the lemma.

Below, we establish a technical lemma and a corollary in order to obtain a similar result to
Theorem 3.1 for automorphisms of Leibniz algebra.

Lemma 3.4. For any polynomial P of degree less than n, where n € N, the following equality
holds:

n

> (-1)'CiP(i) =0.

i=0
Proof. Since deg P(x) < n, applying Lagrange interpolation formula to the points z; = k,
-1
0<k<n-—1weget P(z)= Z:—o qr(x)P(k), where

g (z) = (—1)n—1—:k!(n D = (k= D) (a4 D) (a0 )

n! 1

Now gx(n) = SO R(n — k) = = (=1)kC*F.
Thus,
n—1 n—1
n) = qn)Pk) = (-1)" > (-1)*CiP(k
k=0 k=0
Hence,
n—1 n
0="> (~DFCEP(k) + (—1)"CpP(n) = (~1)'CLP(i).
k=0 1=0

Corollary 3.1. Let n, m be nonnegative integers such that n < m. Then

1

i (_1)1'.02021_1': m’ if n=0,
i Tt 0, otherwise.
Proof. Let n > 1 and consider the polynomial
P(x) = ! 1 2 1 S cy,
(2) = —(m—1—a)(m—2-2)...(m— (n—1)—2) = ——Cp_,

of degree n — 1.
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By Lemma 3.4 we obtain

0=Yvarn=Y "Laa
=0 =0

3

For n = 0, 1, simple calculations verify the statement of the corollary.

The following result shows that the analogous one established for Lie algebras [5] is also valid
for Leibniz algebras.

Theorem 3.2. Let A be an automorphism of a Leibniz algebra. Then there exists a unique
diagonalizable automorphism Ay and a unique nilpotent derivation T such that A = Agexp(T) and
AgT =TA,.

Proof. Let L =1L, ©...® L,, be a decomposition of a Leibniz algebra L into generalized
eigenspaces with respect to A.

Define a linear map Ag: L — L as Ag(z) = p;x for x € L,,. Then Ay is obviously diagonal-
izable and AgA = AAg. Notice that if x € L,,, y € L,,, then [Ag(x), Ao(y)]) = pip;[z,y] and by
Lemma 3.3 we have [z,y] € L,,,,;. Therefore, Ao([x,y]) = pip;[x,y], which implies that Ay is an
automorphism.

Let us denote by Q) = AalA. Then A = ApQ and ApQ = QAyp. Also note that Spec(Q) = {1}.

Consider P = () — I. Obviously, P is nilpotent and hence

1
longlog(I+P):P—§P2+...+7

diverges.
Since P is nilpotent, log ) is also a nilpotent transformation. We will prove that log(I + P) is
a derivation, i.e.,

00 \k—1 X 1Vk—1
) 1,2 P ([z,y]) = 27( 1,2 P*(z),y
k=1 k=1

00 avk—1
+ x,z(llsz(y) .

k=1

(3.4)

By Lemma 3.2, terms on both sides of the formula (3.4) for £ = 1 vanish. Setting C’,i = C’,’j*i
. . k k k—r i ki i
and substituting r = k — i we get P*([z,y]) = ZT:O ijo CrCl_ [P*7(z), P"™ (y)]. Now

k—r "~ b - )
denote by By, = Zj:o CLC{_, [P* (), P?*"(y)] for all 0 < r < k. Then P*([z,y]) =
= Byo+ Bia + ...+ By . Therefore,

= 0 = (-1
Z TP ([z,9]) = Z T(Bk,o +Bga+ ...+ Br) =
k=1 k=1
(o)
1 1 (—1)m
= —— B - —B o B —
r;) <2m 1 P2mat0 T 5 Bam +...+ 1 m+1,m>
o0
1 1 —1)™
- Z —DBomo— ——Bom_11+...+ (=1 Bom | =
2m 2m —1 m
m=1
oo m x m
(-1’ (-1’
— _ 7 B )= By _
> (3 Baeree) = 32 (34
m=0 \ t=0 m=1 t=0
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oo m (_1)t 2m+1-2t ) ' 4
- Z Z Im+1—t Z C§m+1—tC§m+1—2t [PQmHitﬁ(CU)v PIH(y)]
t j=0

00 m(_t2m2t

_ Z Z 2m1_) ¢ Z_ Cém_thm_Qt [PQm_t_j(x), Pj+t(y)]

m=1 \ t=0 j=0

> 1 2m. i (_1)15
= <2m 1 [P2m+1($)a y] + Z (Z mcém—‘rl_t X Cgmt+12t> X

t=0

<[P, P ) + 5 [fv,PQm*%y)]) -2 <271n“° @) 9l +

m=1

2m—1 s t
+ z_; (tz_; 2(T;”t05mtcg,;t2t> [P2m75(z), P(y)] +2}n[az,P2m(y)]>.

5 t s—t — (s t s—t — (ts :
Now since C5,,, 1 ,C5 " o, = CC5,, 1 and C5,, Co " 5, = CC3,, , we obtain

S PR S |
S— — S
— 2m + 1 _ t02m+1—tc2m+l—2t - — 2m + 1 _ tC502m+1_t’

~ (-1 5 ~ (=1
Z 2 — tcémftCth—Qt = Z 2 — tC£Cmet‘

t=0 t=0

However, by Corollary 3.1 the last sums are zero for all 1 < s < 2m (1
respectively). Hence,

IN

s < 2m — 1,

_1)k—1 X _1\n—1
Z(llzpk([%y]) = Z¢<[P"(x),y] + [x,P"(y)]) =

n
1 n=1

X 1\yn—1
= Z ( 1) Pn(x),y

n

o]
k=

X _1\yn—1
53 S gy

n

_l’_

n=1 n=1

and (3.4) is proved.

Thus, T' = log (@ is a nilpotent derivation of L and A = Agexp(T), AoT = TAp. Now
since exp(7T) — I is nilpotent, we get the additive Jordan—Chevalley decomposition A = Ay +
+ Ao(exp(T') — I) of A. Therefore, by Proposition 2.1, Ay and as consequence 7', are determined
uniquely.

The following theorems generalize the results from the theory of Lie algebras [8] to Leibniz
algebras.

Theorem 3.3. Let L be a finite-dimensional complex Leibniz algebra which admits a derivation.
Then L is a nilpotent algebra.

Proof. Let d be a nonsingular derivation of a Leibniz algebra L and L =L, ®L,,®---® L,
be a decomposition of L into generalized eigenspace spaces with respect to d.
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Let o, € Spec(d). Then by Lemma 3.1 we obtain [...[[La,Lgl, Lgl,...,Lg] C Layig.

k times

Since for sufficiently large k¥ € N we have o + kS ¢ Spec(d), and by Lemma 3.1 we get
(... [[La,Lg), Lg], ..., Lg] = 0.

Thus, for € Lg any right multiplication operator Iz, is nilpotent, and due to the fact that o, 8
were taken arbitrarily, it follows that every operator from Ule R(L,,) is nilpotent.

Now from identity (2.1) and Lemma 3.1 it follows that Ule R(L,,) is a weakly closed set of
an associative algebra R(L). Hence, by Theorem 2.1 it follows that every operator from R(L) is
nilpotent.

Now by Theorem 2.2 we obtain the result, i.e., L is nilpotent.

Remark 3.1. The following family L(3) = (ei,...,ey) of characteristically nilpotent Leibniz
algebras, i.e., algebras with all derivations being nilpotent, with the following multiplication:

[co,e0] = €2,  [ei,e0] = e€ip1, 1<i<n—1,
leo, e1] = azes + ages + ... + ap_1e,-_1 + bey,

lei,e1] = ageipo + aueipz + .. Fapgi_ien, 1<i<n—2,

where (a3,..., o, 0 € C) and a0 # 0 for some 3 < i # j < n, was constructed in [14]. This
implies that the statement of Theorem 3.3 in the opposite direction does not hold.

Theorem 3.4. Let L be a finite-dimensional complex Leibniz such that it admits an automorphism
of a prime order with no fixed points. Then L is a nilpotent algebra.

Proof. Let A be an automorphism of a Leibniz algebra L with the properties given in the
statement of the theorem. Since A has no fixed points then 1 is not an eigenvalue of A.

Let L=L, ®L,,®...®L, beadecomposition of L into generalized eigenspaces with respect
to A. From the condition that A is an automorphism of prime order we obtain that the spectrum of
A consists of primitive pth roots of unity. Therefore, for any «, 3 € Spec(A) there exists £k € N
such that a3 = 1 ¢ Spec(A). Hence, by Lemma 3.3 we have

k times

Thus, for x € Lg any right multiplication operator 2, is nilpotent, and similarly as in the proof
of Theorem 3.3 we obtain that L is nilpotent.

Let D be a derivation of a Leibniz algebra L such that D commutes with any inner derivation.
Then D(L) C Ann,(L). Indeed, since D commutes with any right multiplication operator we
get [D(x),y] = (R, o D)(z) = (D o R,)(x) = D(z,y]) = [D(x),y] + [, D(y)] which implics
[z, D(y)] =0 for any z,y € L. Thus, [L, D(L)] =0 and D(L) C Ann,(L).

Lemma 3.5. Let J be an ideal of a Leibniz algebra L and D be a derivation given on L. Then
J + D(J) is also an ideal of L.

Proof. Since for any z € J, y € L we have

ly, D(x)] = D([»,9]) — [D(x),y] € D(J, L]) + [J,L] € D(J) + J,

and so [L,D(J)] C D(J) + J. Therefore, [L,J + D(J)] C J + D(J).
Similarly, since for any x € J, y € L we obtain
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[D(x),y] = D([z,y]) — [#,D(y)] € D([J,L]) + [J,L] € D(J) + J,

and so [D(J), L] C D(J) + J. Therefore, [J + D(J), L] C J + D(J). This implies that J + D(J)
is an ideal of L.

Theorem 3.5. Let J be the solvable radical of a Leibniz algebra L and D be a derivation.
Then D(J) C J.

Proof. By Lemma 3.5 it follows that J + D(.J) is an ideal of Leibniz algebra L. We get

(J+ D) = [+ D(J),J + D(J)) € J + [D(J), D(J)] C J + D*(JP).

Now assume that
(J+ D)W c T+ D¥ 7 (JW) (3.5)

for some natural £ > 1. Then
(7 + D) = [(J+ DN, (7 + DB
C [J+D* (W), 7+ D (W) g+ D (JW), D2 (J0)] €
C J+D¥ (W), W) = ] 4 D (T,

Hence, (3.5) is verified.

Let J™ = 0. Then (J + D(J))™ € J+ D2" 7' (J(M) = J. Now (J + D(J))*" " =
= ((J + D(J))m™) ™ ¢ gm) =,

Hence, J + D(.J) is a solvable ideal of Leibniz algebra L. Since .J is the solvable radical of L,
it follows that J + D(.J) C J and therefore, D(J) C J.

Remark 3.2. In Theorem 3.5 if J is the nilradical, analogous arguments establish the invariance
of J with respect to any derivation of L.

It is not difficult to verify that a derivation in a Leibniz algebra induces a derivation in the
corresponding Lie quotient algebra. However, the following example shows that the inverse is not
necessarily true, i.e., not every derivation in the Lie quotient algebra can be extended to a derivation
of the Leibniz algebra.

Example 3.1. Consider a Leibniz algebra L = (e1,...,em, f1,..., fm) with the following mul-
tiplication:

leiyeil = fi, 1<i<m, le1,eil = fi, 1<i<m, and O in other case.

Then L*™ = (fy,..., fm) and L/L*™ is an Abelian Lie algebra. Therefore, any linear operator in
L/L*™" is a derivation.

Now consider an arbitrary derivation d: L — L. Since [e,,e1] = 0 for p > 1, we have that
0=d([ep, e1]) = [d(ep),el] + [ep, d(er)].

If d(ep) = diper + ...+ dmpem + c1pf1 + . .. + Cmp fm, then [ ep ,e }
Now if d(e;) = die1+...+dmiem+ci1fi+. ..+ cmi fm, then [ep (e1 ]
Hence we obtain a condltlon dipfi +dpi1fp = 0 which implies dy, = dp; =
Therefore, not every derivation of L/L*"™ can be extended to L.

plet, el] = dipfi.
= dp1[ep, ep] = dp1 fp-
Oforall2<p<m
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