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INTERFERENCE OF THE WEIGHT AND BOUNDARY CONTOUR
FOR ALGEBRAIC POLYNOMIALS IN THE WEIGHTED LEBESGUE SPACES. I

INEPEIIKOAM, ITOB’A3AHI 3 BAI'OIO TA TPAHUYHUM KOHTYPOM,
JIJISI AJITEBPATYHUX ITOJITHOMIB Y 3BAXKEHHUX ITPOCTOPAX JIEBETA

We study the order of the height of the modulus of arbitrary algebraic polynomials with respect to the weighted Lebesgue
space, where the contour and the weight functions have some singularities.

BHBYaETHCS MOPSAOK BUCOTH MOAYIS JOBUIBHUX anreOpaidHuX IOJIHOMIB BiTHOCHO 3BaXKeHHX IpocTopiB Jlebera, B sIKMX
KOHTYp Ta BaroBi (QyHKIIIT MarOTh AESKi CHHTYJISPHOCTI.

1. Introduction. Let C be a complex plane, C := C U {oc}; G C C be a bounded Jordan region,

with 0 € G and the boundary L := OG be a closed Jordan curve, 2 := C \ G = ext L. Let g,

denotes the class of arbitrary algebraic polynomials P, (z) of degree at most n € N := {1,2,...}.
Let 0 < p < oo. For a rectifiable Jordan curve L, we denote

1/p
1Ple, = IPalleyny = | [ B PP | 0<p<oc,
L
HPnHLoo = ||Pn||£oo(1,L) = I?eaLX |Po(2)], p=o0.
Clearly, |||, is a quasinorm (i.c., a norm for 1 < p < oo and a p-norm for 0 < p < 1).

Denoted by w = ®(z), the univalent conformal mapping of 2 onto A := {w: |w| > 1} with

@(2)

normalization ®(00) = oo, lim, ,oo — > 0 and ¥ := &1, For ¢ > 1, we set
z

L; = {Z: ‘(I)(Z)| = t}, Li =L, Gy :=int Ly, €y := ext L.

Let {z;}., be the fixed system of distinct points on curve L which is located in the positive
direction. For some fixed Ry, 1 < Rp < oo, and z € Gp,, consider generalized Jacobi weight
function & (z) which is defined as follows:

m
h(z) = ho(z) [ 1z — %, (1.1)
j=1
where ; > —1, forall j=1,2,...,m, and hg is uniformly separated from zero in G, i.e., there

exists a constant ¢y := co(Gr,) > 0 such that for all z € G,
ho(z) >co > 0.

In many problems of approximation theory, theory of polynomials and others, often need to study
the following inequality:

1Pallz.y < cpin(Ly by p) | Pall 2,y » (1.2)
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where ¢ = ¢(G, p) > 0 is a constant which is independent of n and P,,, and pu,, (L, h,p) — oo, n —
— 00, depending on the geometrical properties of curve L and weight function A in the neighborhood
of the points {z; };”:1 . In most cases, these problems can be divided in two parts. Firstly, the case
where the boundary curve and weight function do not have singularities and secondly, in case where
boundary curve or (and) weight function have an any singularities.

The first classical result of (1.2)-type, in case h(z) =1 and L = {z: |z] =1} for 0 < p < o0
is found by Jackson in [13]. The other classical results are similar to (1.2) belongs to Szeg6 and
Zigmund, in [24]. The estimation of (1.2)-type for 0 < p < oo and h(z) = 1 where L is a rectifiable
Jordan curve is investigated by Suetin in [25], Mamedhanov in [16, 17], Nikol’skii in [19, p. 122 -
133], Pritsker in [22], Andrievskii in [11] (Theorem 6), Abdullayev et al. [2—7] and etc. There
are more references regarding the inequality of (1.2)-type, we can find in Milovanovic et al. [18§]
(Sect. 5.3).

The question arises: how can “pay off” singularity curve and weight function, so that, the
estimation of (1.2) has coincided with the estimation of where the boundary curve and weight
functions are not any singularities.

Let a rectifiable Jordan curve be L, has a natural parametrization z = z(s), 0 < s <[ := mes L.
It is said to be L € C'(1,)), 0 < X\ < 1, if 2(s) is continuously differentiable and z’(s) € Lip \. Let
L belong to C(1,\) everywhere except for a single point z; € L, i.e., the derivative 2/(s) satisfies
the Lipschitz condition on the [0,1] and z(0) = z(I) = 21, but 2/(0) # 2/(l). Assume that L has a
corner at z; with exterior angle vm, 0 < v < 2, and denote the set of such curves by C(1,\,v).

Suetin, in [27], investigated this problem in case p = 2 for orthonormal on L polynomials @, (z)
with the weight function h defined as in (1.1) and for the curve L € C(1, \,v). He showed that
the condition of “pay off” singularity curve and weight function at the points z; can be given as
following:

(1+m)m =1 (1.3)

Under this conditions, for Q,(z) in case L € C(1,A,v) Suetin [27] provided the following
estimation:

Qn(2)] < e(L)Vn, z€L, (1.4)

where ¢(L) > 0 is a constant independent on n.

In this work we study the estimations of the (1.2)-type for more general regions of the complex
plane and we obtain the analog of the equality (1.3) correnponding to the general case.

2. Definitions and main results. Throughout this paper, ¢, cg, c1, co, ... are positive and &g,
€1, €2,... are sufficiently small positive constants (generally, different in different relations), which
depends on G in general and, on parameters inessential for the argument; otherwise, such dependence
will be explicitly stated.

For any k > 0 and m > k, notation ¢ = k,m means i = k,k+1,...,m.

Before giving our new results, we need to give some definitions and the notations. Let z = ¢ (w)
be the univalent conformal mapping of B := {w: |w| < 1} onto the G normalized by v (0) = 0,

¥’'(0) > 0. By [20, p. 286-294], we say a bounded Jordan region G is called k-quasidisk,

1+ &

0 < k < 1, if any conformal mapping v can be extended to a K -quasiconformal, K = 1 the

’
— K
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homeomorphism of the plane C on plane C. In that case, the curve L := 0G is called a k-quasicircle.
The region G (curve L) is called a quasidisk (quasicircle), if it is k-quasidisk (k-quasicircle) for
some 0 < Kk < 1.

We denoted the class of k-quasicircle by Q(k), 0 <k < 1,and L € Q, if L € Q(k), for some
0 < k < 1. It is well-known that the quasicircle may not even be locally rectifiable in [14, p. 104].

Definition 2.1. [t is said that L € @(/@), 0<k<1,if L €Q(k)and L is rectifiable.

Theorem 2.1. Let p > 0. Suppose that L € @(/{),for some 0 < k < 1 and h(z) defined in
(1.1) for v; = 0, for all j = 1,m. Then, for any P, € py, n € N, there exists ¢; = ¢1(L,p) > 0
such that

14K

[Pallg, Scan v - ||Pn||£p(ho,L) : (2.1)

[ee]

Thus, Theorem 2.1 provides an opportunity to observe the growth of |P,(z)| on the curve L.
Note that, Theorem 2.1 provided for L := {z: |z| = 1} (i.e., k = 0) in [13], for arbitrary rectufiable
curve L without weight function in [16], for polynomials in many variables in [22] (Theorem 1.1),
for the special curve in [4—7] and others.

From the conditions of the theorem, we see that, it holds for k-quasidisks with 0 < k& < 1. But
calculating the coefficient of quasiconformality x for some curves is not an easy task. Therefore, we
define a more general class of curves with another characteristic. One of them is the following:

Definition 2.2. We say that L € Q,, 0 < a < 1,if L € Q and ® € Lipa, z € Q.

We note that the class @), is sufficiently wide. A detailed account on it and the related topics are
contained in [15, 21, 28] (see also the references cited therein). We consider only some cases:

Remark 2.1. a) If L = OG is a Dini-smooth curve [21, p. 48], then L € Q.

b) If L = 0G is a piecewise Dini-smooth curve and largest esterior angle at L has opening ar,
0<a<1][21,p. 52],then L € Q4.

¢) If L = 0G is a smooth curve having continuous tangent line, then L € @, forall 0 < o < 1.

d) If L is quasismooth (in the sense of Lavrentiev), that is, for every pair z1, 2o € L, if s(z1, 22)
represents the smallest of the lengths of the arcs joining z; to 23 on L, there exislts a constant ¢ > 1
such that s(z1, 22) < c¢|2z1 — 22|, then ® € Lipa for a = % <1 1 arcsin i) [28].

s
m

e) If L is “c-quasiconformal” (see, for example, [15]), then & € Lip a for a= N
2 (7r — arcsin c)
Also, if L is an asymptotic conformal curve, then ® € Lipa for all 0 < o < 1 [15].

Definition 2.3. [t is said that L € @a, 0<a<l,if L €Q, and L is rectifiable.

In this case we have the following theorem.

Theorem 2.2. Let p > 0. Suppose that L € @a, for some 0 < o < 1 and h(z) defined as in
(1.1) with ~; = 0, for all j = 1, m. Then, for any P, € p,, n € N, there exists ca = co(L,p) >0
such that

1
no%p 5 <a<l,
[Pallz., <c2 ||PnHLp(h07L) s 1 2.2)
TL;, I<a< 5,

where § = 0(L), 6 € [1,2], is a certain number.
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Therefore, according to (2.1), we can calculate « in the right parts of estimation (2.2) for each
case, respectively.

Now, we assume that the the weight function » have “singularities” at the points {z;};-, , ie.,
7v; # 0 for all ¢ = 1, m. In this case, we have the following “local” (at the point z; € L) estimations.

~ 1
Theorem 2.3. Let p > 0. Suppose that L € Q, for some 3 < «a <1 and h(z) defined as in

(1.1). Then, for any v; > —1, i = 1,m, and P,, € p,, n € N, there exists c3 = c3(L,p,vi,a) >0
such that

itl
[Pa(2i)| < can o [ Pall 2, ) - (2.3)

Now, let’s introduce “special” singular points on the curve L. Let us give the following definition.
For § > 0 and z € C let us set B(z,0) :={(: |¢ — z| < ¢}, Q(z,0) := QN B(z,0).

Definition 2.4. We say that L € Qup,,..8,,0<Bi <a<1li=1m,if

i) for every sequence noncrossing in pairs circles {D(¢;, 0;)}." | restriction of the function ® on
Q(Gi, 0i) belongs to Lip B; (® €2, 6:) € Lip §;), and restriction

@O\ G, 6) € Lip a,
i=1

ii) there exists a sequence noncrossing in pairs circles {D((;,0;)}i~, , such that for all i =1, m,

07 > 6 and &,z € Q((;,07), z # G # &, is fulfiled estimation
|®(2) — @(&)] < kil2,€) |z — €7, (2.4)

where
— Bi—a Bi—«
kilz,€) = emax (16 = G773 12 = 1A )

and c¢; not depends on z and &.

Definition 2.5. We say that L € Qup,..5,,, 0 < i <a <1, i=T1,m, if L € Qagp,..pn,
0< B <a<l,i=1,m,and L = 0G is rectifiable.

It is clear from Definition 2.4 (2.5), that each region L € Qn.8,,..8,., 0 < i <a <1,i=1,m,
may have “singularities” at the points {z;};", € L. If a region L does not have such “singularities”,
ie., if 8; = a for all 1 = 1,m, then it is written as G' € Q,,0 < o < 1.

Throughout this work, we will assume that the points {z;}~, € L are defined in (1.1) and
{Gi}%, € L are defined in Definitions 2.4 and 2.5 coincides. Without the loss of generality, we also
will assume that the points {z;};", are ordered in the positive direction on the curve L.

We state our new results. Our first results is related to the simple cases. Namely, let the curve L
and the weight function h has not the “singularities” at the points {z;};~, , i.e., f; = v, and ; =0
for all i = 1,m. In this case, we have the following “local” (at the singuler points) and “global”
estimations.

~ 1
Theorem 2.4. Let p > 0. Suppose that L € Qnp, ... 3,,, for some 3 <B<a<l i=1m,

and h(z) defined as in (1.1). Then, for any v; > —1, i = 1,m, and P, € p,, n € N, there exists
cq = cq(L,p,vi,, Bi) > 0 such that

241
| Pn(zi)| < can P50 [ Poll ) n ) (2.5)
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and
E
1Pall ey, < can?® [Pallz, o, py (2.6)

where 5 := max {0,v;, i =1,m}.

Therefore, if contour L does not have any singular points, i.e., 5; = «, for ¢ = 1, m, then we
have the Theorem 2.3.

Now, we conside the general case: assume that the curve L have “singularity” on the boundary
points {z;}~,, ie., B; # «, for all i = I,m, and the weight function h have “singularity” at the
same points, i.e., 7; # 0 for some i = 1, m. For simplesity, let us suppose ~y; # 0 for all i = 1, m.
In this case, we have the following “global” estimations.

77777

and h(z) defined as in (1.1) and

1= @)
«

Jfor each points {z};", . Then, for any P, € p,, n € N, there exists ¢s5 = c5(L,p, 7, ) > 0 such
that

1
1Pall .. < esn® [ Pall oy - 2.8)

Comparing Theorem 2.5 with Theorem 2.2, it is seen that, if the equality (2.7) is satisfied, then
the growth rate of the polynomials P, (z) on L does not depend on whether the weight function h(z)
and the boundary contour L have singularity or not. The condition (2.7) is called the condition of
“interference of singularities” of weight function / and contour L at the “singular” points {z;}", .

~ 1
Corollary 2.1. If L € C(1,\,v), then L € Qqp, for a =1 (2.1) and p1 = > [15]. In this
case, for p = 2 from (2.7) and (2.8), we have

(71 + 1) V= 17
[ Pall., < csv/n ||Pn||£2(h,L) : (2.9)

For P, = Qn, the estimation (2.9) coincides from (1.4). Therefore, Theorem 2.5 is generalised the
result in [27] (Theorem 1).

2.1. Sharpness of estimates. The sharpness of the estimations (2.1), (2.2) and for some special
cases can be discussed by comparing them with the following results:

Remark 2.2. For any n € N, there exists polynomials P € ¢,,, weight functions h* and the
constants c¢g = cg(L) > 0 such that, for L := {z: |z| = 1} we have

1
1P llowy = con? 1P|, ne, 1y -

3. Some auxiliary results. For a > 0 and b > 0, we shall use the notations “a =< b” (order
inequality), if a < ¢b and “a =< b” are equivalent to cia < b < coa for some constants ¢, ¢,
¢o (independent of a and b) respectively.

The following definitions of the K -quasiconformal curves are well-known (see, for example, [9;
14, p. 97; 23]):
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Definition 3.1. The Jordan arc (or curve) L is called K -quasiconformal (K > 1), if there is a
K -quasiconformal mapping f of the region D D L such that f(L) is a line segment (or circle).

Let F(L) denotes the set of all sense preserving plane homeomorphisms f of the region D D L
such that f(L) is a line segment (or circle) and lets define

Kp :=inf{K(f): fe F(L)},

where K (f) is the maximal dilatation of a such mapping f. L is a quasiconformal curve, if K1, < oo,
and L is a K-quasiconformal curve, if K; < K.

Remark 3.1. It is well-known that, if we are not interested with the coefficients of quasiconfor-
mality of the curve, then the definitions of “quasicircle” and “quasiconformal curve” are identical.
However, if we are also interested with the coefficients of quasiconformality of the given curve, then

: : , , : . . , K?—1
we will consider that if the curve L is K -quasiconformal, then it is x-quasicircle with k = Bl
By Remark 3.1, for simplicity, we will use both terms, depending on the situation.

For z € C and M C C, we set
d(z, M) =dist (z, M) :=inf{|z = (| : (€ M}.

Lemma 3.1 [1]. Let L be a K-quasiconformal curve, zy € L, z3,2z3 € QN {z: |z — 21| =
= d(z1,Lyy) }; wj = D(25), j =1,2,3. Then

a) The statements |z1 — zo| = |21 — 23] and |w1 — wa| = |wy — ws| are equivalent and similarly
so are |z1 — z3| < |21 — 23| and |w1 — wa| < |wy — ws|.

b) If |21 — 22| =X |21 — 23|, then

S

=

C

Z1 — 23 w1 — w3

’wl—wg

j ‘

w1 — w2 21— %2 w1 — wa

where e < 1, ¢ > 1,0 < 19 < 1 are constants, depending on G and L, := {z = p(w): |w| =10} .
Lemma 3.2. Let G € Q(k) for some 0 < k < 1. Then

W (wr) — U(ws)| = |wy — wa|

for all wy,wy € A.
This fact follows from [20, p. 287] (Lemma 9.9) and the estimation for the U’ (see, for example,
[10], Theorem 2.8)

d(¥ (7)., L)

=i 3.1)

|¥'(7)] =<
Let {z; };n:1 be a fixed the system of the points on L and the weight function A (z) defined as
(L.1).
Lemma 3.3 [6]. Let L be a rectifiable Jordan curve, h(z) defined as in (1.1). Then, for arbitrary
P, (2) € pp, any R > 1 and n € N, we have

14~*

1Pl 2, hnp) < R 1 Pallz,n,ry> P> 0. (3.2)

Remark 3.2. 1In case of h(z) = 1, the estimation (3.2) has been proved in [12].
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4. Proof of theorems. 4.1. Proof of Theorem 2.4. Suppose that L € @a,ﬁl,...,ﬁma for some

1 .
5 < B <a<1,i=1,m, be given and h(z) defined as in (1.1). Let w = pg(z) be the univalent

conformal mapping of G, R > 1, onto the B normalized by ¢r(0) = 0, ¢/z(0) > 0, and let {¢;},
1 <j <m <mn, be azeros of P,(z) lying on Gg. Let

¢r(()eRr(2)

s 1 r(2) — or(¢)
RrR(2) — pRr((;
Bur(2) = [[ Bir(z) =[] e (4.1)
j=1 j=1 1—
denotes a Blashke function with respect to zeros {(;}, 1 < j < m < n, of P,(z) [29]. Clearly,
|Bm,R(z)| =1, z€lLgp, (4.2)
and
|Bm,r(2)| <1, ze€Gp. (4.3)

For any p > 0 and z € G let us set

P, (2) p/2
J 4.4)

T, (2) == [Bm,R(Z

The function T}, (2) is analytic in G, continuous on Gr and does not have zeros in G. We take
an arbitrary continuous branch of the 7}, (z) and for this branch we maintain the same designation.
Then, the Cauchy integral representation for the T}, (z) in G gives

dg
(=2

1

T, (2) = / T, (¢) 2 € Gp, (4.5)

2
Lgr

or

T(5) = 5 [ 120 Lt

27 C—z
Lr

Now, let z € L. Multiplying the numerator and the determinator of the integrand by h'/2((),
according to the Holder inequality, from (4.2) and (4.3), we obtain

1/p
1\2/P
s () | [rom@ra] s
Lgr

1/p N

|d¢] < 1 > ?
X ™ - =\ 5= In,l X In,2> (4.6)
L{ I1,Ic— = 2

where
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1/p
|d¢]
In 1= ||PnH,Cp(h LR) 5 In 9 = / ™
’ 5 4 ) o ) 2+7
Lr Hj:l € — 277
Then, by Lemma 3.3, for any points {z]} " | € L, we have
[P (2)] 2 [1Pull g, (Tn2)'"" (@.7)
To estimate the integral I,, 2, we introduce
w; = D(z5), pj = argw;, L' :=1L ﬂﬁj, L% :=Lpg ﬂﬁj, ji=1,m, (4.8)
where V= U(A;),
Api={e=Res o, PREE < AT
(4.9)
and, for j =2, m — 1,
A;::{t:Rew:R>1,W§9<%+2%}. (4.10)
Then, we get
\d<| !dC\ i
sl =3 / z: =Yl @D
—z|TTV |C i=1
where
|d¢] ,
g 1= i=1,m, (4.12)
” / |C 22’2-&-%
since the points {z]} _, € L are distinct. It remains to estimate the integrals I}, , for each i = 1, m.

For simplicity of our next calculations, we assume that
m=1, R=1+2. (4.13)
n

Let the numbers 61, 07, 0 < 1 < 6] < dp < diamG, are choosen from Definition 2.4. By denoted

lg1:=LrNQz1,61), lpo:=Lp\lgy, Fr;=e(g,), i=12,

|d¢] |dd]| |dd|
= . 4.14
n2 / |<_21’2+’y1 / |C_Zl|2+’y1 +l1/ |C_Zl|2+’Y1 ( )
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By applying the Lemma 3.1, we have

del — _ d(¥(r), L) |dr|
/IC e / I‘I’(T)—‘1’(101)|2+“(\T|—1)j

r]
</ W) — W) (] 1)

<I>(l}m)

d 1+t

<n | T'yﬁl <nh (4.15)

)

a(l,) [T —wi|

d
/ = | CLW = (61)* " meslp; < 1. (4.16)
Then, from (4.14), we get

L 1+

Lo 2n A, (4.17)

By combining the relations (4.7)—(4.17), we obtain

ntt
|Pn (21)] 2 n PP ||PnH/;p7

and, according to (4.13), we completed the proof.
~ 1 -
4.2. Proof of Theorem 2.5. Suppose that L € Q, 3, ... 3,,, for some 3 <G <a<l i=1m,

be given and h(z) defined as in (1.1). Let w = pgr(2), Bm r(z) and T}, (2) be defined as in begining
to proof of the Theorem 2.4 by (4.1) and (4.4). Then Cauchy integral representation for the 7;, (2)
in Gp gives

d
Tn<z>=21m/Tn<<><_Cz, e 4.18)
Lgr
or
P (2) r” 1 'Pn<<> ") we ||
Eave <2”L/ BrrO)] ¢ <L/ A=)

since | By, r(C)| =1, for ( € L. Lets now z € L. Multiplying the numerator and determinator of
the integrand by h'/2(¢), by the Holder inequality, we obtain

1/2
P, p/2 1
‘ B,mi()> <L / PO PP 1] | x
5 Lg
1/2
jd¢| !

i} g T2, 4.19

L{ Hj:1 K_zj’%‘ ‘C—Zfz 27 1 X Jdn2 ( )
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where

1/2 1/2

d
Tt = / WO \PAOP | L T dc|

o | [
LR P | R

Then, since | B, r(z)| <1, for z € L, from Lemma 3.3, we have

P (2)] 2 (JagJn2)™? 2| Pall, (Ju2)™?, z€ L. (4.20)

The integral .J,, » we estimate analogous to the integral I,, ». By using designations (4.8)—(4.10), we
obtain

PRI o BN -3 LR o PR CE!
(u2) Z/ 1 E Z/ e e 42

P (S

where

Jb oy = 0y i=1,m, (4.22)
" C
Ly

- Zi|% IC — Z|27

since the points {z; }anl € L are distinct. It remains to estimate the integrals Jfﬂ foreach 7 = 1, m.

As we have assumed in (4.13) for simplicity of calculations, here, we also assume that

m=1, R=1+ 2. (4.23)
n

Let the numbers 41, 67, 0 < §; < 6 < §y < diamG, are choosen from Definition 2.4. We denote
Lpy = LpNQ(z1,61),
Ly = Ly N (Q(21,67)\Q(21, 61)),
Lllli,3 = LR\(L}%,l U L}m)a Fll%,z‘ = (I’(L}z,i),
Li:=L'ND(z,6),
Ly == L' N (D(z1,01)\D(21,61)),
Ly :=L\(LiUL}), F':=&(L}), i=1,23.

By taking into consideration these designations and by replacing the variable 7 = ®(¢), from (3.1)
and (4.12), we have

3
|W'(7)] |dT|
J, = —
"k / [ (7) = W) 9 () — E(w)P
3 A¥(). 1) i s
- =) J(Fgry) 4.24
; 1/ |\I’(T) — \I’(wi)’% |\I’(T) — \Il(w’)|2 (|7-’ _ 1) ; ( R,z) ( )
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So, we need to evaluate the integrals J(F} ;) for each i = 1,2, 3. Therefore, we will continue in the
following manner. Let

1Palloe =: |Pn ()], 2" € L, (4.25)

and w’' = ®(2'). There are two possible cases: the point z’ may lie on L' or L.
1) Suppose first that 2/ € L' If 2/ € L}, then w' € F! for i = 1,2,3. Let’s F}%; =

= {7’ € FRJ |7 —wy| > |7 — ’|} , Fll%i = Fllij\Fll%j, j = 1,2. Consider the individual cases.
1.1) Let 2’ € L}. Applying Lemma 3.1, we have
/ AW (r). L) |dr )
U (r) = (w) ™ [W(r) = ¥ () (7] = 1) ~

< | dr] o jdr] )
=n tn =
/i) =) ) - ww)
FR’,l FR:l

|dT| |dT|
<n e / +n TES U =
_ « — o B ] o
Pl U FL2 T —wi |7 — w|
d d
F}{’Yll ‘T—w/|" F}1;z21 |T—w1\°‘
d L) |dr
s = [ e =
/[ W(r) = @ (w)|" [¥(r) = W) (7] = 1)
FR,Q
< / d(¥(7), L) |dT| (61)77, 7 >0, .
~ @O =P (=) | (2diam@) ", 1< <0,
R,2
IdTI
. (4.27)
/ W(r w)| (|7] = 1)

Setting in (2.4) z: =2/, £: ( = \IJ(T) and according to |¢ — z1| > |2/ — 21|, we obtain
}C — z"a - max{K — z1|a—61 : ’z' — zl‘a_ﬁl} }w’ — 7-| =

= ¢z — 7| > 60 W — 7| = |’ 7). (4.28)
Then, from (4.27), we get
|dT| / |dT| 1
e M/jn ITEED
B2 v ="

Fro

(4.29)

/ A((r), L) |dr| )
() = W) [0() — )P (7~ 1)
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L 720
< = - <n.
5 5 2d1amG) , —1<vy <0,

1.2) Let 2/ € L1, Analogously to case 1.1, we have

/ A(¥(r), L) |dr| )
[W(r) = W) [¥(r) — W) (7~ 1)

\d7'| |d7‘| -
’\I/ 71+1 ‘\I/ )|71+1 —

|dT| |dT|
=" P T CEr
F}%’yl |T_w| |T—w’a F}%:ZQ ‘T_w]_| |7__w1|a
d d
jn/| LAY [ L B S (4.30)
fi |7 — w'|« P2 |7 —wq]®
For 2/ € L1, applying (2.4), we see that
¢ —2|" = max{K o I Zl‘a_ﬁl} |w' — 7| >
25?751 ‘w'—T} - ‘w'—T‘,
and, consequently, we obtain
/ d(¥(r), L) |d|
U (7) = W (w)[" [¥(7) = U(w)[* (|7 = 1) ~
(W (7), L) |dr| (01)™7, m =0,
= _ =
U(r) = W)’ (7] = 1) | (2diamG) ", —1 <7 <0,
|dT| / |dT| 1
jn/jn T <, (4.31)
() — () E—
Fho Fho
d(¥ L)|d
J(Fhg) = / (Wir),L)ldr] <
S| (r) = W(w)[" [¥(7) = W ()" (7] = 1)
FR,S
._n / |d| (01)™™, 7 >0, .
— _ 1 —_ — -
(67) B1 / |7 — w!|= (QdiamG) 71, -1 <y <0,
FR,3
d
N e L (432)
/| —w'le
FR,S
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1.3) Let 2’ € Li. In this situation for the integral J(Féyl), we get

/ d(¥(r), L) |d|
() — W (wn) | [ (r) = ¥ (w)]* (7]~ 1) ~

/ IdTI y / |d| ~
sF S [ — = 2
W (r wy)[™ o =] A

R,1
utl_g 1
< n.n A1 =na. (4.33)

Applying (2.4), we see that

}C - Z/‘a = maX{K - 21|Ohﬁ1 ) ’Z' - Zl‘a_ﬁl} }w' - T| >

Z 5?*/81
so, we get
J(Fhy) = / @, Ll <
S (r) = W (w) [ [¥(7) = ()" (7] = 1)
R,2
. / |dr| (61)~™, 71 >0, .
=n ————— o =
o [U(r) =¥ | (2diamG) ™", -1 < <0,
R,2
<o [T (4.34)
-l
R,2
and
’ () = W (w) " ¥ (r) = T (w)]* (7] - 1)
FR,s
n ldr| ) (607 m =0,
§¥)a—p1 / 1 —\ — =
(07) .y |7 —w'|~ | (2diam G) T —l<y <0,
d
N e L (439)
T
R,3
By the relations (4.24) —(4.35), we obtain
Tl < me, (4.36)

Therefore, in case of 2/ € L' for each 4 > —1 and for all z € L, from (4.7), (4.11) and (4.36)

we get
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1
[P (2)] 2 o || P, - (4.37)

Theorem 2.5 is proved.
4.3. Proof of Remark 2.2. a) Let L := {z: |z| =1}, h*(2) = 1 and P}(z) = Z 2

n

j=1

Then L € Q1, |P(2)| < Zil 2]9 = n, |z| = 1. On the other hand, |P*(1)| = n. Therefore,

1P

J
HEOO =n. HP;H£2(17L) = \/% Then

Vi ey

1P, =n= Nors 1Pl o1,y = m\/ﬁHP;HLQ(LL) .

Theorem 2.1 follows from [8] (Theorem 2.2). Theorem 2.3 is obtained from Theorem 2.4 for the

case B; = «, ¢ = 1, m. For 3 < a < 1, the Theorem 2.2 we get from the Theorem 2.3 in the case

_ 1 . L .
7; =0, i = 1,m. Case of a = = follows by using the estimation d(z, Lr) = n~2, where is true for

arbitrary continuum with connected complement (see, for example, [10], Corollary 2.7).
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