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ON FUNDAMENTAL THEOREMS FOR HOLOMORPHIC CURVES ON ANNULI *

OYHIAMEHTAJIBHI TEOPEMMU JIAA I'OJIOMOPOHUX
KPUBUX HA KUIBIIAX

We prove some fundamental theorems for holomorphic curves on annuli intersecting a finite set of fixed hyperplanes in
general position in P™(C) with ramification.

JloBeneHo mesiki pyHAaMEHTANbHI TEOPEMH IS TOIOMOP(HUX KPUBUX Ha KUNBIIX, IO MEPETHHAIOTH CKIHICHHY MHOXHHY
(ikcoBaHMX rinepIuIomyH 3aransHoro nonoxeHus B P (C) 3 posraiy/ukeHHsIM.

1. Introduction and main results. In 1933, H. Cartan (see [3]) proved the second main theorem for
holomorphic curves with targets being hyperplanes in general position in P"(C). Since that times, the
problem which studies the characteristics of holomorphic maps has been attracted by many authors.
For example, in 1983, E. 1. Nochka (see [6]) proved the second main theorem in the case of the
hyperplanes is in /N-subgeneral position in P(C) with ramification. In 2003, M. Ru and T. Y. Wang
(see [7]) proved an inequality of the second main theorem type, with ramification for a holomorphic
curve intersecting a finite set of moving or fixed hyperplanes. In 2004, M. Ru (see [9]) showed the
second main theorem for holomorphic curves with targets being hypersurfaces in general position
in P(C) without ramification. In 2009, T. T. H. An and H. T. Phuong (see [1]) gave the result on
the second main theorem for holomorphic curves from C to P"(C) intersecting hypersurfaces with
ramification.

Recently, there exist the results about of the characteristics of meromorphic functions on annuli in
complex plane C. In 2005, A. Y. Khrystiyanyn and A. A. Kondratyuk (see [4, 5]) showed some results
about of the fundamental theorems and defect relation, which were considered again by T. B. Cao and
Z.S.Deng in [2] and by Y. Tan and Q. Zhang in [11]. Our idea is to prove some fundamental theorems
for holomorphic mappings from annuli A C C to P"(C) intersecting a finite set of hyperplanes. To
state our results, we first introduce some notations.

Let Ry > 1 be a fixed positive real number or +o0, set

1
A= eC: —<|z|<Ryy,
{reci g <l <o}
be a annuli in C, and for any real number r such that 1 < r < Ry we denote

1 1
Ar:{zeC:T<|z]<r}, ALT:{Z'E(C:T<]2§1},

Agp={zeC:1<|z|<r}.

Let f = (fo: ... : fn): A — P*(C) be a holomorphic map where fy, ..., f, are holormorphic
functions and without common zeros in A. For 1 < r < Ry, characteristic function T (r) of f is
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defined by
2 2
7y(r) = 5 [loglftreas + 5 [ 1og] )] as,
0 0
where || f(2)|| = max{|fo(z)],...,|fn(2)|}. The above definition is independent, up to an additive

constant, of the choice of the reduced representation of f.
Let H be a hyperplane in P"*(C) and

n
L(zp,...,2n) = Z a;zj
=0

be linear form defined H, where a; € C, j = 0,...,n, be constants. Denote by a = (ao, . .., a,) the
non-zero associated vector with H. And denote
n
(H,f)=(a,f) = a;fj.
§=0
Under the assumption that (a, f) #Z 0, for 1 < r < Ry, the proximity function of f with respect to
H is defined as

27 27
_ L (g WD Gy 1 N
)= g 0/ & 0, e 2 O/ & f{a, e

where the above definition is independent, up to an additive constant, of the choice of the reduced
representation of f.

Next, we denote by ny ¢(r, H) the number of zeros of (a, f) in Ay, counting multiplicity and
by ng,f(r, H) the number of zeros of (a, f) in Ay, counting multiplicity too. Set

1
t,H
Nyjp(r,H) = Ny g(r,L) = / TLLf(t’)dt,
r—1
r H
t
NZ,f(T, H) = Ng’f(r, L) — / an(tv )dt
1

The counting function function of f is defined by
Ny(r,H) = Ny ¢(r,H) + No s (r, H).

Now let & be a positive integer, we denote by 79 s(r,H) and ng #(r, H) be the numbers of zeros of
(a, f) in Ay, and Ay, respectively, where any zero of multiplicity greater than ¢ is “truncated" and
counted as if it only had multiplicity §. Set

Lo s
ni ((t,H)
Myt = Ny = [ T

1
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ON FUNDAMENTAL THEOREMS FOR HOLOMORPHIC CURVES ON ANNULI 983

)
Ny (t>H)
Ngyf(r,H):Ng’f(r,L):/’ft dt.
1

The truncated counting function of f is defined by
N{(r,H) = Ny ;(r, H) + N3 ;(r, H).

Recall that hyperplanes Hy, ..., Hy, ¢ > n, in P"(C) are said to be in general position if for any
distinct 41, ...,4i,41 € {1,...,q},

n+1
() supp(H;,) = 2,
k=1

this is equivalence to the H;,, ..., H,

iny, Deing linearly independent.

In this paper, a notation

Lt””

in the inequality is mean that for Ry = 400, the inequality holds

for r € (1,+00) outside a set A satisfying / 1 ldr < 400, and for Ry < o0, the inequality
A/

T

holds for r € (1, Rg) outside a set A satisfying /
A

Wdr < +OO, where A\ Z 0.
0 —

/7
r

Our main results are:
Theorem 1.1. Let H be a hyperplane in P"(C) and f = (fo:...: fn): A — P*(C) be a

holomorphic curve whose image is not contained H. Then we have for any 1 < r < Ry,
T¢(r) =myg(r,H) + N¢(r, H) + O(1).

Theorem 1.2. Let f = (fo:...: fn): A — P™(C) be a linearly nondegenerate holomorphic
curve and Hy, ..., Hy be hyperplanes in P"(C) in general position. Then we have

(q—n—1)Tf(r) <> NF(r, Hy) + Op(r)
j=1

where
O(logr +log T¢(r)) if Ry= +oo,

Of(r): o1 1
ogR

0o—7T

+ long(T)> if Ro<+oo.

Theorem 1.1 is first main theorem, and Theorem 1.2 is second main theorem for holomorphic
curves from annuli A to P"(C) intersecting a collection of fixed hyperplanes in general position with
truncated counting functions. When one applies inequalities of second main theorem type, it is often
crucial to the application to have the inequality with truncated counting functions. For example, all
existing constructions of unique range sets depend on a second main theorem with truncated counting
functions.
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2. Some preliminaries in Nevanlinna theory for meromorphic functions. In order to prove
theorems, we need the following lemmas. Let f be a meromorphic function on A, we recall that

27
1 1 1
——— == f1logt ———
m<r’f—a> 5 [ 1oz et —a ™
0

2

mir. ) =m(r,00) = o [log|(re)]as,

0

where log™ 2 = max{0,logz},a € C and r € (Ry*; Ry). For r € (1, Ry), we denote

1\ 1 11
o (“f—a) _m<r’f—a> +m<r’f—a)’
mo(r, f) = m(r, f) + m(r=1, f).

1
Denote by n; ( ) the number of zeros of f —ain {z € C:t < |z| < 1}, na (t, f)
—a

; 1
7f_a

the number of zeros of f —a in {z € C: 1 < |z| < t}, ny(t,00) the number of poles in {z € C:

t < |z| < 1} and na(t, 00) the number of poles in {z € C: 1 < |z| < t}. Forany r: 1 < r < Ry,

put

1 1
) (o)
L f—a 1\ F—a
Nl (T, f—a) - /tdt, N2 (T7 f-a) _/tdt’
1/r i
and
1 '
Nitr ) = Mmoo = [ it N )= Natroe) = [ 25
1/r 1
Let

) ) el
No(r, f) = Nu(r; ) + Na(r, ).
Denote the Nevanlinna characteristic of f by
To(r, f) = mo(r, f) = 2m(1, f) + No(r, f).

Lemma 2.1 [4]. Let f be a nonconstant meromorphic function on A. Then for any r € (1, Ry),
we have

ISSN 1027-3190.  Yxp. mam. ocypu., 2015, m. 67, Ne 7



ON FUNDAMENTAL THEOREMS FOR HOLOMORPHIC CURVES ON ANNULI 985

2 2

Mo (7 7) = Mot 1) = - 0/ log () d6 + 5 O/ log £ ¢")| o~

2

—% /log | f(e)|d6.

0

Lemma 2.2 [5]. Let f be a nonconstant meromorphic function on A and A\ > 0. Then for any
re (1, Ro)
(@) if Ry = +o0,

] mo ( J}) — O(logr +log To(r. f) :

(i1) if Ro < +o00,

H mo <r, ;) =0 <log Rol— " + log Ty (r, f)> .

Lemma 2.3 [4]. Let f be a nonconstant meromorphic function on A. Then we have for any
re (1, Ro)

To(r, f1 + f2) < To(r, f1) + To(r, f2) + O(1),
7 ( jﬁ) < T f2) + To(r, f2) + O(L).

3. Proofs of Theorems 1.1 and 1.2. Proof of Theorem 1.1. Let a = (ag,...,ay,) is
the associated vector with H. First we note that No(r, (H, f)) = 0. By the definitions of T¢(r),
Ny(r,H), ms(r, H) and apply to Lemma 2.1 for (H, f), we have

Ny ) = No (1 5 ) =

2

27
= % /IOg’(a,f)(rew)\dG + % /log ](a,f)(r_leig)\d0+ 0(1).
0 0

Hence, we get

Ny(r, H) +my(r, H) =

2T 2T
1 1 (re®)] 1 LF(r )]

2

2
1 . 1 .
o / log| (0, £)(re)|d6 + / log |(a, £)(r~1¢?)|d8 + O(1) =
0 0
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986 H. T. PHUONG, N. V. THIN

2m 2m
1 - 1 ,
- 1 10 - 1 —1 10 1) =
o= [loglstrean+ 5 [1og] )]s + o)
0 0

= Tf(T‘) + O(l)

Theorem 1.1 is proved.
To prove Theorem 1.2, we need some lemmas. First we recall the property of Wronskian. Let

f=(fo:...: fn): A — P"(C) be holomorphic curves, the determining of Wronskian of f is
defined by

folz)  fi(z) fn(2)

foz)  fi(2) n(2)

W=W()=W(fo,....fn) =

= e B

We denote by Ny (7, 0) the counting function of zeros of W ( fy, ..., fn) in A,, namely

Ny (r,0) = No (r, v;) +0(1).

Let Ly, ..., L, are linearly independent forms of zg, ..., z,. For j =0,...,n, set

By the property of Wronskian there exists a constant C' # 0 such that
W(Fo,...,F,) =CW(fo,.-., fn)-

Lemma 3.1. Let f = (fo:...: fn): A — P*(C) be a linearly nondegenerate holomorphic
curve and Hy, ..., H, be hyperplanes in P"(C) in general position. Let a; is the associated vector
with Hj for j = 1,...,q. Then we have

||f TEZG)H do / Hf —Le?)||  de
I — 1 — <
/maxz O8 T N (roif)| )(rei?)] 27 + aXZ og (a;, /)(r—Tei®)| 20 =

< (n + 1)Tf(7“) — Nw(T, 0) + Of(’l“),

where
O(logr + log T(r)) if Ro= 400,
Oy(r) = 1
O ( log + log T's(r) if Ry < 4oo.
Ro—r
Here the maximum is taken over all subsets K of {1,...,q} such that a;, j € K, are linearly
independent.
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Proof. We prove the case Ry = +00, case Ry < 400 can be proved similarly. First, we prove

2m
0y de 1 :
/maXZlog |7 (re)] — 4+ — [ log|W(f)(re)|do <
0

(aj, f)(rei®)| 2z " 2n
JEK

2w

< (n+ 1)y [ log |(re)d8 + Oflog -+ log Ty (1), G.1)
0

holds for any € (1, Ry). Let K C {1,...,q} such that a;, j € K, are linearly independent. Without
loss of generality, we may assume that ¢ > n + 1 and #K = n + 1. Let 7 is the set of all injective
maps 4: {0,1,...,n} — {1,...,q}. Noting that #7 < +o0, then we have

Hf re)|| do
/maleog rew)\ﬂ
0 JjEK

|fre®)|  df
1
/ i?ea%{zog au(i)s F)(re?) 2m

||f rew || do
= 1 | | =
/max 0og ‘ 629)‘ 5
0

/ 1f (re) [+ df
= [ max( log — - o
neT HFO [(ap(y, (re®)] ) 27

2w
0| n+1
= /log max ——; I £ el ﬁ—FO(l) <

b T I, ey, e | 27 -

Lf (re) | do
log — — +0(1) =
0/ ,%:T o (@), £)(re)| 27

2 '
— [0 W (@0): £+ (e D) (e B,

0 ueT HLO (@), f)(re®)| 2
2
£ (et 1
——— + O(1).
*0/ 8 2 (i anar £ sl e 27+ O

By the property of Wronskian, we see that
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|W((au(0)af)a BRI (au(n)af)” = |C| |W(f0a . '7fn)|a

where C' # 0 is constant. So we obtain

Hf (re”)|| df
<
/max E log (e 9. =

jeK

log N(O) H '
0/ ;; H]_O ‘(a,u(j)a f)(“fw)\ o

27
LFre® do
+ [ 1og W oy f)re®) 2 T O

0
We have
W (@) £): - (@, ) (re”)
IT,_ (e £)re)
1 1 1
(au), f) (auy, f) (@p(n)> )
_ | (aue) f) (ap(1), f) (@), f) (rei®).

(au0), ™ (aumy, H™ (au(nys f)

(au), f) (auy, f) (au(n), f)
We see that

By Lemma 2.2, we get
(a j 7f)/
mo (r, ”(”)> = O(logr +log To(r, (ay(y), f))-

From the definition of Ty(, (a,(;), f)"), N((a,y, f)') = 0 and (3.5), we obtain

(3.2)

(3.3)

(3.4)

(3.5)
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To(’l“, (au(j)a f)/) = mo(’l", (a,u(j)a f)/) =

(a 1 7f),
=m0 (n 2L 0.1)) <

< mo(r, (au(j)> f)) +O(logr +log To(r, (a,, f)) =

= TU(Ta (au(j)> f)) + O(lOg’l“ + log T()(T‘, (au(j)7 f)) (36)

Similarly, again using Lemma 2.2 and (3.6), we have
TO(T’ (a,u,(j)v f)”) = mO(T7 (a,u,(j)a f)”) =

(a ] ,f)// /
= (1 D .97 ) <

< mO(ra (au(j)a f)/) + O(lOgr + log To(?", (au(j)7 f),) =

= To(r, (au(j)v f)) + O(logr + log Ty(r, (au(j)’ ). (3.7

By argument as (3.7) and using inductive method, we obtain that the inequality

To(r, (auy, H)P) < To(r, (aug), £)) + Ologr +log To(r, (a5, ) (3.8)

holds for all I € N*. Furthemore, by Lemma 2.2, we also have the equality

mo [ r (au(j)7f)(l+1)
(au(), H

holds for all I € N. Combining (3.4), (3.8) and (3.9), we get for any k£ € {1,...,n} and j €
€ {0,...,n},

) = O(logr + log To (7, (a,j), f)(l))), (3.9)

(a,(5), £
|| " (T’ (@u5) f)

By the definition of Ty (r, f;), Tf(r), we have for any ¢ € {0,...,n},

) < O(logr + log To (7, (ay), f)) - (3.10)

T0lr. £ + O() = mofr ) = m(r fi +m ( 1.51) <

o 2
1 . 1 ;
<0(%/®gﬂw%w+%/®gﬂrv%w>mﬂm>
0

0

and

TO(Tv (au(j)a f)) < ZTO(T7 ft) + 0(1)

t=0
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Then we have from (3.10),

Hence for any p € 7, we have from (3.3)

)

m (7", ((H(j N ) < O(logr +1log T¢(r)) .

2

/” ot V(@0 ) (a0 (T do

) 1, Here™y) 27

This implies that

21

W ((au(oys f): - - - (@umy £)) (re”)| do
lo n — <

0/ g% IL_, I Heetl 2

< 27r10g+ Z ’W((aﬂ(o)vf)u"'7(au(n)af))(7'€i9)| do .
0 ner Hj:o [(au), )(re”)] 2m

21 .
(W ((au0) £)s - - - (@@, ) (re®)| do
< log™ A : —+0(1) <
;;0/ Hj:o (@), )(re'®)] o

< O(logr + log T¢(r)).

We may obtain the inequality (3.1) from (3.4) and (3.11). Similarly, we get

l(aj, f)(r~te?)|2m 27

2m
—1eit 1 )
/maleog G )l di?+ — [ log |[W(f)(r~te)|d8 <
0

27

1 .
< (n+ 1)y [log | 1e)]d0 + Oflogr + log Ty 1)
0
holds for any r € (1, Ry). Combining (3.1) and (3.12) we obtain

27 27
<(n+1) (;ﬂ / tog | F(re™)|1d6 + - / 1ogf<r1e"0>de) -

0 0

27 27
—% (/ 1ogW(f)(rei")de+/1ogW(f)(r1ei9)d9) +

0 0

— < O(logr +logTy(r)) .

||f (re”)||  df Hf e de
/maleog J(rei? |%+ maleog T, £ 1619)|% <

(3.11)

(3.12)
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ON FUNDAMENTAL THEOREMS FOR HOLOMORPHIC CURVES ON ANNULI 991

+O0(logr +log T¢(r)).

Since
27

Niw(r,0) = 5 /log W (f)(re®)|do + — /log W) (L))o + O(1).
0
Lemma 3.1 is proved.
Lemma 3.2. Let f = (fo:...: fu): A — P™(C) be a linearly nondegenerate holomorphic
curve and Hy, . .., Hy be hyperplanes in P™(C) in general position and let a; is the associated vector
with Hj for j = 1,...,q. Then we have

q 0

re do
me(r,H /maleog LEA iz||9)| 27r+
j=1

JEK

f -1 19 do
/maleog | _1;”9”%4-0( ).

(1
JEK irf

Proof. Let a; = (ajp,...,a;y) is the associated vector of H;, 1 < j < ¢, and let 7T is the set
of all injective maps p: {0,1,...,n} — {1,...,¢}. By hypothesis that H, ..., H, are in general
position that for any p € T, the vectors a,, (), - - - , @) are linearly independent.

Let € T, we have

(f, au(t)) = au(t),OfO +...+ au(t)vnfn, t = 0, 1, Loy n. (3.13)

Solve the system of linear equations (3.13), we get

ft = bu(t),O(a,u(O)7 f) +.o.+ b,u,(t),n(au(n)a f)a t=0,1,...,n,

where (bu(t),j)n

£.i=0 is the inverse matrix of (aﬂ(t)vj)?,j:o . So there is a constant C), satisfying

(2 < Cp max |(a,), £)(2)]-

0t<

Set C' = max,e7 C),. Then for any u € T, we have

IF(2) < € max [(auw, f)(2)]

0<t<n

For any z € A, there exists the mapping o € 7 such that
0 < [(auo), /) (2)] < [(auay, )] < ..o < apey, F)(2)] < [(ay, f)(2)],
for j ¢ {n(0),...,u(n)}. Hence
q n
T MO < oot [ O
=1 |(aj, f neT - (auw), £)(2)]
We have
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q
Z mpy (r, Hj) =
J=1

4 °r ) a n ~1,i0
S S G| L S [fte®)] do
P 0/ % Ty, )0 27 2 2 0/ & (a1 20

2
1 Tl fre®)|  df ||f ~1ei)||  df
- 4+ — <
o / IOgH [(ay, N)(re®)] 2r / H L T(ay, NrTe®)] 27 =
)T

< 1/logmax - ”f(mw)HA 9
27 ) pneT ](au(t),f)(rezo)\ 27

27
1 n -1 i9
—I—/logmax I f(r )l Cﬁ%—O( 1) =

2n-0 neT o [(au@, f)(r=1e)| 2m
/maxlog - Hf(rew)H “
~on ueT (aue), F)(re?)] 2
T et de
__ 1) =
QW/I/IL?%IOg (au(), H(r=tei)] 2m Q)
L7 |f(re®)| db
re
= — | max lo o —
27T J MET ; g ‘(au(t)vf)(rezeﬂ 2ﬂ—
L7 I () db
r ¥
+/max lo -—+0
2m ) neT tz:; s |(%(t)af)(7‘716’2€)| 2m W

So we obtain

q i0
[f(re®)Il — do

g (r,Hj) /max E log —+

j=1 a’]a 610)| 2m

JEK

f -1 z0 de
/maleog | —121||0)‘ %—FO( ).

JEK
Lemma 3.2 is proved.
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Proof of Theorem 1.2. We prove for Ry = +00, the case Ry < +oo can be proved similarly.
By Lemmas 3.1 and 3.2, we obtain

q 0
[f(re®)||  df
]Z:;m r, Hj) /maxz log (a; r619)| o +

JEK irf

/maleog Hf )] ie+0()

22 % fa, HTe)] 2m

< (n+1)T§(r) — Nw(r,0) + O(logr + log T(r)). (3.14)
By Theorem 1.1, we get that
Ty(r) = Ng(r, Hj) +my(r, Hy) + O(1)

for any j € {1,...,q}. So from (3.14), we have

(@q—n—1)Ty(r) <

N¢(r,Hj) — Nw(r,0) + O(logr + log T¢(r)) . (3.15)

1]

=

For zp € A,, we may assume that (a;, f) vanishes at zy for 1 < j < ¢, (aj, f) does not vanish
at zo for j > ¢1. Hence, there exists a nonnegative integer k; and nowhere vanishing holomorphic
function g; in neighborhood U of z such that

(aj, f)(z) = (2 — zo)kfgj(z), for j=1,...,q,

here k; = 0 for ¢1 < j < q. We may assume that k; > n for 1 < j < g, and 1 < k; < n for
qo < j < q1. By property of the Wronskian, we have

q0
W(f) = CW((a07f)7 ) (an7f>) = H(Z - zo)kj_nh’(z)v
j=1

where h(z) is holomorphic function on U. Then W (f) is vanishes at zp with order at least

q
zojk‘ —n) Zkz — qon.
j=1

By the definition of Ny (r, H), Nw(r,0) and N} (r, H), we get

Z — Ny (r,0) =

jZ:NLf(T,H - N < > Z (r,Hj) — No ( W> +0(1) <

ISSN 1027-3190.  Vkp. mam. scypn., 2015, m. 67, Ne 7
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< ZN{ff(r, Hj)+ Y N3 (r,Hj) + O(1) = ZN”(T, H;) 4+ O(1).

Theorem 1.2 is proved.
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