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RELATIVE EXTENSIONS OF MODULES AND HOMOLOGY GROUPS *
BIZTHOCHI PO3IIUPEHHSA MOAYJIIB TA TOMOJIOI'TYHUX I'PYII

We introduce the concepts of relative (co)extensions of modules and explore the relationship between the relative
(co)extensions of modules and relative (co)homology groups. Some applications are given.

BBenieHo MOHATTS BiTHOCHHX (CITIB)pPO3IIMPEHb MOJYJIIB Ta BUBYEHO B3a€MO3B 130K MIXK BI/THOCHUMH (CITiB)PO3IINPEHHIMHI
MOZYJIIB Ta BITHOCHUMH (KO)rOMOJIOTIYHHMH TPyHaMHU.

1. Introduction. In classical homological algebra, given right R-modules M, N and a left R-module
L, the cohomology group Ext"(M, N) is obtained by using a right injective resolution of N or a
left projective resolution of M, and the homology group Tor, (M, L) is obtained by using a left
projective (flat) resolution of M or L. In relative homological algebra [5], if G is a preenveloping
class of right R-modules, then we can get the relative cohomology group Ext;(M, N) computed
by the right G-resolution of N. Similarly, if F is a precovering class of right R-modules, then we
can get the relative cohomology group rExt™(M, N) and the relative homology group zTor, (M, L)
computed by the left F-resolution of M.

The main goal of the present paper is to extend some important properties of classical (co)homology
groups to relative (co)homological groups. We introduce the concepts of an F-extension and a G-
coextension of modules, where F and G denote two classes of right R-modules. It is proven that
the set of all equivalence classes of F-extensions (resp. G-coextensions) of A by C, denoted by
FE(C, A) (resp. Eg(C, A)), is an Abelian group. Moreover, we prove that Ext},(C, A) = Eg(C, A)
if G is a monic preenveloping class and rExt!(C, A) = E(C, A)) if F is an epic precovering
class. As applications, we obtain several properties of relative (co)homology groups. For example,
if F is an epic precovering class of right R-modules, then we prove that: (1) there is a monomor-
phism £Ext!(C, A) — Ext!(C, A) for all right R-modules A and C; (2) there is an epimorphism
Tori (A, B) — rTori(A, B) for any right R-module A and any left R-module B. In addition, we
give a relative version of Wakamatsu’s lemmas.

We next recall some notions and facts needed in the sequel.

Following [3], we say that a right R-module homomorphism ¢ : M — G is a G-preenvelope of M
if G € G and the Abelian group homomorphism ¢* : Hom(G, G’) — Hom(M, G') is surjective for
each G’ € G. A G-preenvelope ¢: M — G is said to be a G-envelope of M if every endomorphism g :
GG — G such that g¢ = ¢ is an isomorphism. Dually we have the definitions of an F-precover and
an F-cover. G-envelopes (F-covers) may not exist in general, but if they exist, they are unique up
to isomorphism.
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We say that G is a (resp. monic) preenveloping class of right R-modules [8] if every right R-
module has a (resp. monic) G-preenvelope. Dually, F is called a (resp. epic) precovering class of
right R-modules if every right R-module has an (resp. epic) F-precover.

Let G be a preenveloping class. Then any right R-module N has a right G-resolution, i.e., there
is a cocomplex 0 - N — G° — G' — ... with each G* € G such that ... — Hom(G',G) —
— Hom(G%,G) — Hom(N,G) — 0 is exact for any G € G. Let G* be the deleted cocomplex
corresponding to a right G-resolution of N, which is unique up to homotopy, then for a right R-module
M, we obtain the nth cohomology group of the cocomplex Hom(M, G*), denoted by Extg (M, N)
(see [5], 8.2). Particularly, if G is the class of injective right R-modules, then Extg (M, N) is just the
classical cohomology group Ext" (M, N).

Dually, let F be a precovering class, then any right R-module M has a left F-resolution, i.e.,
there is a complex ... — Fy — Fy — M — 0 with each F; € F such that ... — Hom(F, F}) —
— Hom(F, Fy) — Hom(F,M) — 0 is exact for any F' € F. Let F, be the deleted complex
corresponding to a left F-resolution of M, which is unique up to homotopy. Then for a right
R-module N, we obtain the nth cohomology group of the cocomplex Hom(F., N), denoted by
FExt"(M, N) (see [5], 8.2). In addition, for a left R-module L, we get the nth homology group
of the complex F, ® L, denoted by rTor, (M, L). Particularly, if F is the class of projective right
R-modules, then #Ext™ (M, N) is just the classical cohomology group Ext" (M, N') and zTor, (M, L)
is just the classical homology group Tor, (M, L).

Throughout this paper, R is an associative ring with identity and all modules are unitary. All
classes of modules are closed under isomorphisms and direct summands. rM (resp. Mp) denotes
a left (resp. right) R-module. The character module Homy (M, Q/Z) of M is denoted by M. The
reader is referred to [5, 6, 8, 10, 12, 14] for unexplained concepts and notations.

2. Relative homology groups and relative extensions of modules. Let A and C be two right
R-modules. Then an exact sequence 0 - A — B — C' — 0 is called an extension of A by C [10].
We first introduce the concepts of relative (co)extensions as follows.

Definition 2.1. Given a class F of right R-modules, an exact sequence 0 -+ A — B — C — 0
of right R-modules is said to be an F-extension of A by C if

0 — Hom(F, A) — Hom(F, B) — Hom(F,C) — 0

is exact for any F € F.

Dually, given a class G of right R-modules, an exact sequence 0 — A — B — C' — 0 of right R-
modules is called a G-coextension of A by C'if 0 — Hom(C, G) — Hom(B,G) — Hom(A,G) — 0
is exact for any G € G.

Remark 2.1. (1) Let F (resp. G) be the class of projective (resp. injective) right R-modules, then
an F-extension (resp. a G-coextension) of A by C' is just the usual extension of A by C.

(2) Let F (resp. G) be the class of pure-projective (resp. pure-injective) right R-modules, then an
F-extension (resp. a G-coextension) of A by C'is just a pure exact sequence 0 - A - B — C —
— 0.

(3) Let G be the class of cotorsion right R-modules (A right R-module M is called cotorsion
[4] if Ext!(F, M) = 0 for every flat right R-module F), then a G-coextension of A by C'is just an
exact sequence 0 > A — B — C — 0 with A — B a strongly pure monomorphism in the sense
of [9].
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Two F-extensions (G-coextensions) A and A’ of A by C are called equivalent if there is o :
B — B’ such that the following diagram is commutative:

A:0

Y

B C 0
B’ C

0.

A
:
A0 A

By the Five lemma, the middle homomorphism o is an isomorphism. So the equivalence of
JF-extensions (G-coextensions) is a reflexive, symmetric and transitive relation. We write zE(C, A)
(resp. Eg(C, A)) to be the set of all equivalence classes of F-extensions (resp. G-coextensions) of A
by C.

If F (resp. G) is the class of projective (resp. injective) right R-modules, it is well known that
rE(C, A) (resp. Eg(C, A)) is an Abelian group using the so called Baer sum (see [10]). We can
extend this result to a more general setting as follows.

Theorem 2.1. The following are true for right R-modules A and C':

(1) Eg(C,A) is an Abelian group for any class G of right R-modules.

(2) rE(C,A) is an Abelian group for any class F of right R-modules.

Proof (DLet A1:0 - A3 B B C —-0andAy:0—- A3 B, 3 C - 0betwo
G-coextensions of A by C. Then we get the following pushout diagram:

0 0
i1 gt
0 A B C 0
g
0 Bs Hyo C 0,
T2
C ——=1(C
0 0

where Hia = (B1 @ Ba)/W,W = {(i1(a), —iz(a)): a € A}, f(b1) = (b1,0) for by € By, g(b2) =
= (0,bg) for by € By. Let Q = {(z,y): mi(x) = m2(y),x € B1,y € Ba} C B1®By. Then W C Q.
Put Y19 = Q/W C Hjs. Then we get the sequence

1111210—>A>\410Y127—1§C—>0,
where A\12(a) = (i1(a),0) for a € A and 112((x,y)) = m1(x) = me(y) for (z,y) € Q.
We first claim that Wy is exact. In fact, it is clear that \jo is monic, 719 is epic and TioA\19 =
= 0. If 72((x,y)) = 0, then z = i1(a1) and y = iz(az) for some aj,as € A. Thus (z,y) =
= (il(al), ig(ag)) = (il(al + CLQ),O) = )\12(&1 + CLQ). So ¥y is exact.
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We now prove that ¥;5 is a G-coextension of A by C. In fact, let G € G and @ € Hom(A, G),
then there exist 51 € Hom(B;,G) and B2 € Hom(Bgy,G) such that o = i1 and o = [aig by
hypothesis. Thus by the property of a pushout, there exists £ € Hom(H2, G) such that the following
diagram is commutative:

(51

A—— B

4

By —— His )

Write €: Y19 — His to be the inclusion. Then

a = Bri1 = {fi1 = () M12.

So Hom(Y12, G) — Hom(A, G) is epic, i.e., ¥12 is a G-coextension of A by C.

Define [A1] + [Ag] = [W12]. It is obvious that [A] + [Ag] = [Ag] + [Aq].

Let As: 0 — A3 B3 B8 C — 0 be a G-coextension of A by C. We next prove that ([A{] +
+ [Ag]) + [As] = [A1] + ([A2] + [As]).

Let ([A1] + [Ag]) + [A3] = [E], where 2: 0 — A 2 U/V & C — 0 is a G-coextension
of A by C with U = {((z,¥),2): 72((z,y)) = m3(2), (x,9) € Yi2,2 € B3} C Y12 @ B3, V =
= {()\12(0,), —ig(a)) rac A} Let [AQ] + [Ag] = [1/}23] and [Al] + ([AQ] + [Ag]) = [A}, where o3 :
0—>A)\—2§YggzﬁsC—>Oisag—coextensionofAbyC’andA:0—>Aﬁ>M/N1>C’—>Ois
a G-coextension of A by C with M = {(z, (y,2)): m1(z) = m3((y,2)), = € By, (y,2) € Yoz} C
C B ®Yeys, N= {(il(a), —)\Qg(a)) ac A}

Define 0: U/V — M/N by o(((x,y),2)) = (z,(y, 2)) for (z
that o is well defined. In fact, if ((x,y),z) = 0 z) = (M2(a),—iz(a)) for some
a € A. So (z,y) = (i1(a),0), z = —iz(a). Thus (z,y) — (i1(a),0) = (i1(b), —i2(b)) for some
b€ A. Hence x = i1(a+b), y = —iz(b). So (x,(y, 2)) = (i1(a + b), (—iz(b), —i3z(a)) = (i1(a +
+0), (—i2(a+b),0) = (i1(a + b), —A23(a+ b)) € N. Thus (z, (y, z)) = 0. Moreover, it is easy to
verify that the following diagram is commutative:

—
=
o
=3
=
8
<
—

(1]

w p
0 — A —U/V C 0

A0 —— Ay Le o .
So ([A1] + [Ag]) + [As] = [A1] + ([A2] + [Asg]).

On the other hand, the split exact sequence U: 0 — A % A@® C 5 C — 0 is clearly a G-
coextension of A by C. We claim that [A1] + [U] = [Aq]. In fact, let [A1] 4 [U] = [¢1], where 9 :

0> A% Qi/Wiy B C — 0 is a G-coextension of A by C with W; = {(i1(a), —(a,0)):
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a€ A}, Q1 ={(x,(a,m1(x))): x € By,a € A}. Define oy : Q1/W1 — By by oi((x, (a,m1(x)))) =
= x + i1(a). It is easy to verify that oy is well defined, 01\ = i; and 701 = 71. Thus [U] is the
zero element in Eg(C, A).

Finally consider the exact sequence Allz 0— A Y B1 5 C — 0, which is obviously a G-
coextension of A by C. We claim that [A{] 4+ [A}] = [U]. In fact, let [A;] + [A]] = [¢], where

/

P00 — A L Q' /W' L C — 0 is a G-coextension of A by C' with W’ = {(i1(a),i1(a)):
a€ ALQ = {(x,y): m(x) = m(y),z,y € B1} = {(y+i1(a),y): a € A,y € By}. Define o’ :
Q /W' — A®d C by o'((y+i1(a),y)) = (a,m(y)). It is easy to verify that o’ is well defined,
o'\ =1 and ko' = 7/. So A] is the negative element of A; in Eg(C, A).

It follows that Eg(C, A) is an Abelian group.

(2) can be proved dually.

Theorem 2.1 is proved.

It is well known that, in standard homological algebra, the cohomological group Ext!(C, A)
is isomorphic to the group of all equivalence classes of extensions of A by C'. This result can be
generalized as follows.

Theorem 2.2. The following are true:

(1) If G is a monic preenveloping class of right R-modules, then there is an Abelian group
isomorphism Extg;(C, A) = Eg(C, A) for all right R-modules A and C.

(2) If F is an epic precovering class of right R-modules, then there is an Abelian group isomor-

phism FExt'(C, A) = xE(C, A) for all right R-modules A and C.

0 1 2
Proof. ()Let0— AL G0 % G % Gy — ... be a right G-resolution of A. Then we get the
cocomplex

1 2
0 — Hom(C, G) % Hom(C, G") % Hom(C,G?) — ....
So Ext§(C, A) = ker(d?)/im(d}).

LetI’': 00— A 5 B 5 C — 0 be a G-coextension of A by C, then there exist eg: B — GY and
e1: C = G' such that the following diagram with exact rows is commutative:

7 T
0 A B C 0
- -
v v
d° dt
0 A GY G! G2.

Note that d?cy7 = d2d'eq = 0. Thus d?c; = 0, and so 1 € ker(d?).

Define ©: Eg(C, A) — Ext{(C,A) by O([I']) = 1. We claim that © is well defined. In
fact, if there exist f: B — G and &} : C — G' such that the above diagram also commutes,
then (g} — e0)i = 0, so there exists y: C — G such that €y — €0 = xm. Thus (¢} —e1)m =
= d'(e}) — e0) = d'xm. So €} —e1 = d'x € im(d}). Hence &7 = &}.

We now prove that © is a group homomorphism.

Let T:0 — A % H % C — 0 be a G-coextension of A by C. Then there is the following
commutative diagram with exact rows:
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L P
0 A H C 0
Yo 7
N N
d° dt
0 A G° Gt G? .

Let [I'] 4+ [Y] = [¥], where ¥: 0 — A A Q/W 5 C — 0 is a G-coextension of A by C with
Q=A{(x,y): n(x)=p(y), z€ B, yc€ H} and W = {(i(a), —t(a)): a € A} by Theorem 2.1.

Define n: Q/W — GO by n((x,y)) = eo(z) + y0(y) for (z,y) € Q. Then 7 is well defined and
(@) = 1((i(a), 0)) = =0i(a) = d°(a), (1 +71)7((2, 1)) = (£14+71) (m(2)) = deo(w)+d 0 (y) —
= d'n((z,y)). So we have the following commutative diagram with exact rows:

A T
0 — A — Q/W C 0
R
d° dt
0 A GO G! G?.

Thus O([I'] + [Y]) = O([']) + O([Y]). We next prove that O is a group isomorphism.

Write ¢ : im(d') — G to be the inclusion. Then there exists v: G° — im(d") such that yv = d'.

Let B € ker(d?). Then d?83 = 0. Soim(B3) C ker(d?) = im(d'). Thus there exists B:C — im(d')
such that 8 = uB . We obtain the following pullback diagram:

f g

0 A D C 0
do v

0 A G° im(d') — 0

For any M € G and any homomorphism h: A — M, there is j: G° — M such that h = jd°.
So (jw)f = jd° = h. Thus the sequence Hom(D, M) — Hom(A, M) — 0 is exact. Hence the

exact sequence A: 0 — A ENYSREN C — 0 is a G-coextension of A by C. Since § = ,ug , we have
O([A]) = . So © is an epimorphism.

On the other hand, let O([[']) = &7 = 0, then ¢; = d's for some x € Hom(C,G"). Since
d*e; = d?d'x = 0, im(e;) C ker(d?) = im(d'). Thus there exists £1: C' — im(d') such that
€1 = péi. So pvk = d'k = e = péy. Thus vk = &).

Consider the following diagram with exact rows:

0 A B C 0
| /i
do v
0 A G° im(d') ——= 0

Then there exists d : B — A such that 57 = 1 by [6, p. 44] (Lemma 8.4). Therefore I" is a split exact
sequence, and so [I'] = 0. Hence O is a monomorphism.
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(2) can be proved dually.

Theorem 2.2 is proved.

As an immediate consequence of Theorem 2.2, we have the following corollary.

Corollary 2.1. The following are true:

(1) If G is a monic preenveloping class of right R-modules, then there is a monomorphism
Ext$(C, A) — Ext'(C, A) for all right R-modules A and C.

(2) If F is an epic precovering class of right R-modules, then there is a monomorphism
FExt!(C, A) — Ext'(C, A) for all right R-modules A and C.

Obviously, a preenveloping class G of right R-modules is monic if and only if G contains all
injective right R-modules and a precovering class F of right R-modules is epic if and only if F
contains all projective right R-modules. Furthermore, we have the following result.

Corollary 2.2. The following are true:

(1) Let G be a monic preenveloping class of right R-modules, then EX%(C7 A) = Ext!(C, A) for
all right R-modules A and C' if and only if G is the class of injective right R-modules.

(2) Let F be an epic precovering class of right R-modules, then rExt'(C, A) = Ext'(C, A) for
all right R-modules A and C' if and only if F is the class of projective right R-modules.

Proof. (1) =. For any M € G, there is an exact sequence 0 - M — E — C — 0 with E
injective. By Theorem 2.2(1), the exact sequence is a G-coextension of M by C, and so is split.
Thus M is injective.

< is trivial.

(2) can be proved dually.

Corollary 2.2 is proved.

Now we characterize when Ext(—, —) and zExt"(—, —) (n = 1,2) vanish.

Proposition 2.1. The following are true:

(1) Let G be a monic preenveloping class of right R-modules, then any G-coextension of A by C
0 — A— B — C — 0is split if and only ifExté(C,A) =0.

(2) Let F be an epic precovering class of right R-modules, then any F-extension of A by C
0 — A — B — C — 0is split if and only if 7FExt'(C, A) = 0.

Proof. (1) <. Since G is a monic preenveloping class of right R-modules, we have Extg (C,—)
=~ Hom(C, —) (see [5, p.170]) and G is closed under finite direct sums by [1] (Lemma 1). Thus by
[5] (Theorem 8.2.5(1)), the G-coextension of A by C 0 - A — B — C — 0 induces the exact
sequence

I

0 — Hom(C, A) — Hom(C, B) — Hom(C, C)) — Extg(C, A) = 0.

So0 —+A— B— C — 0is split.

=-. Since any G-coextension of A by C 0 - A — B — C — 0 is equivalent to the exact
sequence 0 - A - A® C — C — 0, Eg(C,A) = 0. So Ext;(C, A) = Eg(C,A) = 0 by
Theorem 2.2(1).

(2) <. Since F is an epic precovering class of right R-modules, we have rExt’(— 6 A) =
=~ Hom(—, A) (see [5, p. 170]) and F is closed under direct sums by [7] (Proposition 1). So by [5]
(Theorem 8.2.3(2)), the F-extension of A by C' 0 - A — B — C' — 0 induces the exact sequence

0 — Hom(C, A) — Hom(B, A) — Hom(A, A) — zExt'(C, A) = 0.
Thus 0 - A — B — C — 0 is split.

ISSN 1027-3190. Ykp. mam. scypn., 2015, m. 67, Ne 9



RELATIVE EXTENSIONS OF MODULES AND HOMOLOGY GROUPS 1239

=-. Since any F-extension of Aby C 0 - A — B — C — 0 is equivalent to the exact sequence
0+ A—A®C — C — 0, we have zFE(C,A) = 0. Thus Ext'(C, A) = zE(C,A) = 0 by
Theorem 2.2(2).

Proposition 2.1 is proved.

Corollary 2.3. The following are true:

(1) Let G be a monic preenveloping class of right R-modules, then a right R-module A belongs
to G if and only if Exté»(C’, A) = 0 for any right R-module C.

(2) Let F be an epic precovering class of right R-modules, then a right R-module C' belongs to
F if and only if 7Ext'(C, A) = 0 for any right R-module A.

Proof. 1t is easy by Proposition 2.1.

Proposition 2.2. The following are true:

(1) Let G be a monic preenveloping class of right R-modules, then Exté(N, M) = 0 for all right
R-modules M and N if and only if C € G for any G-coextension 0 — A — B — C — 0 with
Beg.

(2) Let F be an epic precovering class of right R-modules, then ¥Ext*(N, M) = 0 for all right
R-modules M and N if and only if A € F for any F-extension) - A — B — C — 0 with B € F.

Proof. (1) =. By [5] (Theorem 8.2.5(1)), for any right R-module N, any G-coextension
0— A— B — C — 0with B € G induces the exact sequence

0 = Ext;(N, B) — Ext§(N,C) — Ext3(N, A) = 0.

So Extg(N,C) = 0. Thus C' € G by Corollary 2.3(1).

<. For any right R-module M, by hypothesis, there exists a G-coextension 0 - M — B —
— C — 0 with B € G. So C € G. Thus by [5] (Theorem 8.2.5(1)), for any right R-module N, we
get the induced exact sequence

0 = Ext;(N, C) — Ext3(N, M) — Extz(N, B) = 0.

So Extg(N, M) = 0.

(2) can be proved dually.

Proposition 2.2 is proved.

The following result may be viewed as a relative version of Wakamatsu’s lemmas.

Theorem 2.3. The following are true:

(1) Suppose that G is a monic preenveloping class of right R-modules and C is a class of right R-
modules closed under G-coextensions. If o: N — M is a C-envelope of N, then Ext(coker(«), C) =
=0 forany C € C.

(2) Suppose that F is an epic precovering class of right R-modules and D is a class of right R-
modules closed under F-extensions. If «: N — M is a D-cover of M, then rExt' (D, ker(a)) =0
forany D € D.

Proof. (1) By Proposition 2.1(1), it is enough to show that any G-coextension 0 - C — B LN
2 coker(a) — 0 with C € C is split.

Let \: im(«) — M be the inclusion and 7: M — coker(«) the canonical map. Then there exists
v: N — im(«) such that Ay = .

Consider the following pullback diagram:
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0 0
im(o) im(o)
i A
B
0 C X M 0
o, b
p
0 C B coker(or) — 0
0 0

Since 0 — C' — B & coker(a) — 0 is a G-coextension, it is easy to see that 0 — C' — X — M — 0
is also a G-coextension. Thus X € C since C is closed under G-coextensions. Because a: N — M
is a C-envelope, there exists g: M — X such that iy = ga. Thus @ = Ay = iy = Sga. Hence Sg
is an isomorphism.

Define ¢: coker(a) — B by p(z) = 0g(Bg)~'(z) for z € M. Since 0g(Bg) 'a = Oga =
= #iy = 0, ¢ is well defined. Note that

po(Z) = pbg(Bg) " (x) = 7Bg(Bg) () =m(x) =T

for # € M. Thus pp = 1. Hence 0 — C' — B & coker(a) — 0 is split, and so Extg (coker(c),
) = 0.

(2) can be proved dually.

Theorem 2.3 is proved.

Remark 2.2. (1) Let F (resp. G) in Theorem 2.3 be the class of projective (resp. injective) right
R-modules, then Theorem 2.3 is just the usual Wakamatsu’s lemmas (see [5], Corollary 7.2.3 and
Proposition 7.2.4 or [14], Section 2.1).

(2) Following [13], an exact sequence 0 —+ A — B — C' — 0 of left R-modules is called
RD-exact if the sequence Hom(R/Ra, B) — Hom(R/Ra,C) — 0 is exact for every a € R. A left
R-module G is called RD-injective if for every RD-exact sequence 0 -+ A — B — C — 0 of left
R-modules, the sequence 0 — Hom(C, G) — Hom(B,G) — Hom(A, G) — 0 is exact. According
to [2], a right R-module F' is called RD-flat if for every RD-exact sequence ) - A - B — C — 0
of left R-modules, the sequence 0 - F® A - F® B — F ® C' — 0 is exact.

Let F be the class of pure-projective right R-modules. It is well known that F is an epic
precovering class of right R-modules (see [5], Example 8.3.2). Let0 - X - Y — Z — 0Obe a
pure exact sequence of right R-modules with X and Z RD-flat, then we get the split exact sequence
00— Zt YT = Xt — 0. Since X* and Z" are RD-injective by [2] (Proposition 1.1), we
have Y is RD-injective. Hence Y is RD-flat. So the class of RD-flat right R-modules is closed
under F-extensions by Remark 2.1(2). Note that any right R-module M has an RD-flat cover «::
N — M by [11] (Theorem 2.6(2)). Thus rExt!(D,ker(a)) = 0 for any RD-flat right R-module D
by Theorem 2.3(2).
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We next give some isomorphism formulas about relative (co)homological groups.

Theorem 2.4. The following are true:

(1) Let G be a preenveloping class of right R-modules, Ag a projective right S-module, s B an
(S, R)-bimodule, Cr a right R-module and n > 0. Then

ExtZ(A ®g B, C) = Homg(A, Exti(B, C)).

(2) Let F be a precovering class of right R-modules, Ar a right R-module, rpBs an (R, S)-
bimodule, Eg an injective right S-module and n > 0. Then

rExt"(A,Homg(B, E)) =2 Homg(rTor, (A, B), E).

Proof. (1) LetG : 0 — G° — G' — ... be a deleted right G-resolution of C. Then we obtain
the cocomplex Homp(A ®g B, G"):

0 — Homp(A ®s B,G%) — Homp(A ®s B,G') — ...,
which is isomorphic to the cocomplex Homg(A, Hompg(B, G')):
0 — Homg(A, Homg (B, G°)) — Homg(A, Homg(B,G")) — ....

Note that Homg (A, —) is an exact functor. So by [12, p. 170] (Exercise 6.4), we have Extg (A4 ®
® sB,C) = H"(Homp(A ®g B,G")) = H"(Homg(A, Homg(B,G'))) = Homg(A, H" (Hompg(B,
G'))) = Homg (A, Ext;(B, C)).

2) Let F.: ... — F1 — Fy — 0 be a deleted left F-resolution of A. Then we obtain the
cocomplex Homg(F, ®g B, E):

0— Homs(Fo QR B,E) — Homg(Fl QR B,E) — o,
which is isomorphic to the cocomplex Hompg(F,,Homg(B, E)) :
0 — Hompg(Fy, Homg(B, E)) — Homg(Fy,Homg(B, E)) — ....

Note that Homg(—, E) is an exact functor. So by [12, p. 170] (Exercise 6.4), we have Homg ( zTor,, (A,
B), E) = Homs(H,(F. @5 B), E) = H"(Homg(F, @y, B), E) = H"(Homp(F., Homg(B, E))) =
= rExt"(A,Homg (B, E)).

Theorem 2.4 is proved.

Corollary 2.4. Let F be a precovering class of right R-modules, Ar a right R-module, pB a
left R-module and n > 0. Then xExt"(A, BT) = zTor,(A, B)*.

Proof. Llet S = 7Z and E = Q/Z in Theorem 2.4(2). Then we get the isomorphism
_7:EX'[”<147 B+) = _7:’1‘01'7,1(147 B)Jr

Finally we discuss the relationship between Tor, (A, B) and rTor, (A, B).

Suppose that F is an epic precovering class of right R-modules. Let

...—)F2—>F1—>F0—)A—>O
be a left F-resolution of a right R-module A and let

o> PP P —>A—0
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be a left projective resolution of A. Then there exist f; : P; — F; such that the following diagram is
commutative:

Py P Py A 0
f2 fi fo

Y Y Y

Fy F Fy A 0.

Applying — ® B to the above diagram, we have the following commutative diagram of complexes:
. —> P®B — PP®B — Ph®B ——= 0

fa®1 i fi®l \L fo®1 l

. — FH®B — FF®B — F{Z,®B —— 0.

Then it is easy to check that there exist group homomorphisms:
My Tor, (A, B) — rTor,(A,B), n>0.

Theorem 2.5. [f F is an epic precovering class of right R-modules, then 1, : Tori(A, B) —
— rTori (A, B) is an epimorphism for any right R-module A and any left R-module B.
Proof. Consider the following commutative diagram:

-
FExt'(A, BT) —— Ext}(4, B")

A

FTor (A, B)*t . Tory (A, B)*.

Note that « and 3 are isomorphisms by Corollary 2.4 and  is a monomorphism by Corollary 2.1(2).
So 7y : #Tory (A, B)t — Tori (A, B)T is a monomorphism. Thus 7, : Tor; (A4, B) — #Tori (A, B)
is an epimorphism.

Theorem 2.5 is proved.

Remark 2.3. Let F be an epic precovering class of right R-modules. Although 7, : Tor; (A, B) —
— rTory (A, B) is an epimorphism by Theorem 2.5, this is not an isomorphism in general. For exam-
ple, if F is the class of pure-projective Z-modules, then xTor;(Za,Zy) = 0, but Tory (Zg, Z2) = Zs.

Note that Torg(A, B) = rTorg(A, B) = A® B for any right R-module A and any left R-module
B. 1t is natural to ask when Tor, (A, B) — rTor,(A, B) is an isomorphism. We give the following
answer which is easy to verify.

Proposition 2.3. Let F be an epic precovering class of right R-modules. Then the following are
equivalent:

(1) Tor,(A, B) = £Tor, (A, B) for any right R-module A, left R-module B and n > 1.

(2) Tori(A, B) = xTori(A, B) for any right R-module A and left R-module B.

(3) Every M € F is flat.
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