UDC 512.5

J. Guo, J. Zhang (College Math. and Statistics, Yi li Normal Univ., Xinjiang, China),

L. Miao (School Math. Sci., Yangzhou Univ., China)

ON NEARLY *M*-SUPPLEMENTED SUBGROUPS OF FINITE GROUPS* ПРО МАЙЖЕ *M*-ДОПОВНЕНІ ПІДГРУПИ СКІНЧЕННИХ ГРУП

A subgroup H is called nearly \mathcal{M} -supplemented in a finite group G if there exists a normal subgroup K of G such that $HK \leq G$ and TK < HK for every maximal subgroup T of H. We obtain some new results on supersoluble groups and formation by using nearly \mathcal{M} -supplemented subgroups and investigate the structure of finite groups.

Підгрупу H називаємо майже \mathcal{M} -доповненою в скінченній групі G, якщо існує нормальна підгрупа K групи G така, що $HK \trianglelefteq G$ і TK < HK для кожної максимальної підгрупи T групи H. Отримано деякі нові результати про суперрозв'язні групи та їх утворення за допомогою майже \mathcal{M} -доповнених підгруп та досліджено структуру скінченних груп.

1. Introduction. It is well-known that supplemented subgroups play an important role in the theory of finite groups. For instance, Hall [4] proved that a group G is soluble if and only if every Sylow subgroup of G is complemented in G. Srinivasan [10] proved that a finite group is supersoluble if every maximal subgroup of every Sylow subgroup is normal. Later on, by considering some special supplemented subgroups (*c*-supplemented subgroups), Wang [12] proved that G is soluble if and only if every Sylow subgroup of G is *c*-supplemented in G. Recently, Miao and Lempken [6] considered \mathcal{M} -supplemented subgroups of finite groups G and obtained some characterization of saturated formations containing all supersoluble groups. More recently, Wang and Guo [13] introduced the concept of nearly *s*-normal subgroups and obtained some interesting results.

Now, we introduce the following concept of nearly *M*-supplemented subgroups.

Definition 1.1. A subgroup H is called nearly M-supplemented in group G, if there exists a normal subgroup K of G such that $HK \leq G$ and TK < HK for every maximal subgroup T of H.

The following examples indicate that the nearly \mathcal{M} -supplementation of subgroups can neither be deduced from \mathcal{M} -supplementation of subgroup nor from nearly *s*-normality of subgroup.

Example 1.1. Let $G = S_4$. Since A_4 is normal in G, clearly, A_4 is nearly \mathcal{M} -supplemented in G, but A_4 is not \mathcal{M} -supplemented in G.

Example 1.2. Let $G = S_4$ and $H = \langle (1234) \rangle$ be a cyclic subgroup of order 4. Then $G = HA_4$, where A_4 is the alternating group of degree 4. Clearly, since $A_4 \leq G$, we have H is nearly \mathcal{M} supplemented in G, but H is not nearly *s*-normal in G. Otherwise, there exists a normal subgroup K of G such that $HK \leq G$ and $H \cap K \leq H_{sG}$, we have $H_{sG} = 1$. Otherwise, if $H_{sG} = H$ is *s*-permutable in G, then H is normal in G, a contradiction. If $H_{sG} = \langle (13)(24) \rangle$ is *s*-permutable in G, then $\langle (13)(24) \rangle$ is normal in G, a contradiction. But $H \cap K \neq 1$. Therefore H is not nearly *s*-normal in G.

All the groups in this paper are finite. Most of the notation is standard and can be found in [1] and [9].

2. Preliminaries. For the sake of convenience, we first list here some known results which will be useful in the sequel.

^{*} This research is supported by the grant of NSFC (Grant #11271016).

Lemma 2.1. Let G be a group. Then:

(1) If H is nearly \mathcal{M} -supplemented in $G, H \leq K \leq G$, then H is nearly \mathcal{M} -supplemented in K.

(2) Let $N \leq G$ and $N \leq H$. If H is nearly M-supplemented in G, then H/N is nearly M-supplemented in G/N.

(3) Let π be a set of primes. Let N be a normal π' -subgroup and let H be a π -subgroup of G. If H is nearly M-supplemented in G, then HN/N is nearly M-supplemented in G/N.

(4) Let R be a soluble minimal normal subgroup of a group G. If there exists a maximal subgroup R_1 of R such that R_1 is nearly M-supplemented in G, then R is a cyclic group of prime order.

Proof. (1)–(4) follow from the definition of nearly \mathcal{M} -supplemented subgroups.

Lemma 2.2 ([7], Lemma 2.6). If H is a subgroup of a group G with |G : H| = p, where p is a prime divisor of |G| and (|G|, p - 1) = 1, then $H \leq G$.

Lemma 2.3 ([8], Lemma 2.7). Let G be a finite group and P a Sylow p-subgroup of G, where p is a prime divisor of |G| with (|G|, p - 1) = 1. Then G is p-nilpotent if and only if P is \mathcal{M} -supplemented in G.

Lemma 2.4 ([2], Theorem 1.8.17). Let N be a nontrivial soluble normal subgroup of a group G. If $N \cap \Phi(G) = 1$, then the Fitting subgroup F(N) of N is the direct product of minimal normal subgroups of G which are contained in N.

Lemma 2.5 ([14], Theorem 3.1). Let \mathcal{F} be a saturated formation containing \mathcal{U} , G a group with a solvable normal subgroup H such that $G/H \in \mathcal{F}$. If for any maximal subgroup M of G, either $F(H) \leq M$ or $F(H) \cap M$ is a maximal subgroup of F(H), then $G \in \mathcal{F}$. The converse also holds, in the case where $\mathcal{F} = \mathcal{U}$.

Lemma 2.6 ([3], Main theorem). Suppose that a finite group G has a Hall π -subgroup where π is a set of primes not containing 2. Then all Hall π -subgroups of G are conjugate.

Lemma 2.7. Let \mathfrak{F} be a formation and G be a group. Suppose that a subgroup H of G has a \mathfrak{F} -supplement in G. Then:

(1) If $N \leq G$, then HN/N has a \mathfrak{F} -supplement in G/N.

(2) If $H \leq K \leq G$, then H has a \mathfrak{F} -supplement in K.

Lemma 2.8 ([8], Lemma 2.9). Let G be a finite group and P be a Sylow p-subgroup of G, where p is the smallest prime divisor of |G|. Then G is p-nilpotent if and only if every maximal subgroup of P having no p-nilpotent supplement in G is M-supplemented in G.

Lemma 2.9. Let G be a group and N a subgroup of G. The generalized Fitting subgroup $F^*(G)$ of G is the unique maximal normal quasinilpotent subgroup of G. Then:

(1) If N is normal in G, then $F^*(N) \leq F^*(G)$.

(2) $F^*(G) \neq 1$ if $G \neq 1$; in fact, $F^*(G)/F(G) = \text{Soc}(F(G)C_G(F(G))/F(G))$.

(3) $F^*(F^*(G)) = F^*(G) \ge F(G)$; if $F^*(G)$ is solvable, then $F^*(G) = F(G)$.

(4) $C_G(F^*(G)) \le F(G)$.

(5) If $P \leq G$ with $P \leq O_p(G)$, then $F^*(G/\Phi(P)) = F^*(G)/\Phi(P)$.

(6) If $K \leq Z(G)$, then $F^*(G/K) = F^*(G)/K$.

Lemma 2.10 ([6], Lemma 2.7). Let G be a finite group with normal subgroups H and L and let $p \in \pi(G)$. Then the following hold:

- (1) $\Phi(L) \leq \Phi(G)$.
- (2) If $L \leq \Phi(G)$, then F(G/L) = F(G)/L.
- (3) If $L \leq H \cap \Phi(G)$, then F(H/L) = F(H)/L.
- (4) If H is a p-group and $L \leq \Phi(H)$, then $F^*(G/L) = F^*(G)/L$.
- (5) If $L \le \Phi(G)$ with |L| = p, then $F^*(G/L) = F^*(G)/L$.

ON NEARLY \mathcal{M} -SUPPLEMENTED SUBGROUPS OF FINITE GROUPS

(6) If $L \le H \cap \Phi(G)$ with |L| = p, then $F^*(H/L) = F^*(H)/L$.

3. Main results.

Theorem 3.1. Let G be a finite group and P be a Sylow p-subgroup of G, where p is a prime divisor of |G| with (|G|, p - 1) = 1. Then G is p-nilpotent if and only if every maximal subgroup of P having no p-nilpotent supplement is nearly \mathcal{M} -supplemented in G.

Proof. As the necessity part is obvious, we only need to prove the sufficiency part. Assume that the theorem is false and choose G to be a counterexample of minimal order. Moreover, we have

(1) $O_{p'}(G) = 1.$

In fact, if $O_{p'}(G) \neq 1$, then we consider the quotient group $G/O_{p'}(G)$. By Lemmas 2.1 and 2.7, it is easy to see that $G/O_{p'}(G)$ satisfies the hypotheses of our theorem. The minimal choice of G implies that $G/O_{p'}(G)$ is *p*-nilpotent and hence G is *p*-nilpotent, a contradiction.

(2) $O_p(G) \neq 1$.

Assume that $O_p(G)=1$. If every maximal subgroup P_1 of P has a p-nilpotent supplement in G, then G is p-nilpotent, a contradiction. So there at least exists a maximal subgroup P_1 of P such that P_1 is nearly \mathcal{M} -supplemented in G. Then there exists a normal subgroup K_1 of G such that $P_1K_1 \leq G$ and $TK_1 < P_1K_1$ for every maximal subgroup T of P_1 . Furthermore, if $P_1K_1 < G$, then $(P_1K_1)_p = P_1$ or $(P_1K_1)_p = P$. If $(P_1K_1)_p = P_1$, then P_1 is \mathcal{M} -supplemented in P_1K_1 . By Lemma 2.3, P_1K_1 is p-nilpotent, it follows from $(P_1K_1)_{p'}$ char $P_1K_1 \leq G$ and (1) that $(P_1K_1)_{p'} = 1$. Therefore $P_1K_1 = P_1 \leq G$, a contradiction. Hence we have $(P_1K_1)_p = P$. Obviously, P_1K_1 satisfies the hypotheses of the theorem and hence P_1K_1 is p-nilpotent by the choice of G. With the similar discussion as above, we also get a contradiction. So we assume that $P_1K_1 = G$. This means every maximal subgroup of P having no p-nilpotent supplement in G is \mathcal{M} -supplemented in G. By Lemma 2.8, G is p-nilpotent also a contradiction.

(3) G has a unique minimal normal subgroup N contained in $O_p(G)$ such that $N = O_p(G) = F(G)$.

Let N be a minimal normal subgroup contained in $O_p(G)$. Obviously, G/N satisfies the condition of the theorem and hence G/N is p-nilpotent by the choice of G. Since the class of all p-nilpotent groups is a saturated formation, we have N is the unique minimal normal subgroup of G contained in $O_p(G)$ and $\Phi(G) = 1$. By Lemma 2.4 $N = O_p(G) = F(G)$.

(4) Final contradiction.

Since N is the unique minimal normal subgroup of G contained in $O_p(G)$ and $N \notin \Phi(G)$, there exists a maximal subgroup M of G such that $N \notin M$. Then G = NM and $N \cap M = 1$, $P = NM_p$ where M_p is a Sylow p-subgroup of M. Since $G/N \cong M$ is p-nilpotent and (3), we have $G = NN_G(M_{p'}) = PN_G(M_{p'})$ where $M_{p'}$ is a Hall p'-subgroup of M and of course of G. So we may assume $M_p \leq P \cap N_G(M_{p'}) \leq L_2 < L_1 < P$. Otherwise, if $P \cap N_G(M_{p'}) = P$, then $M_{p'} \leq G$, a contradiction. If $|P : P \cap N_G(M_{p'})| = |G : N_G(M_{p'})| = p$ and hence $N_G(M_{p'}) \leq G$ by Lemma 2.2, a contradiction. If L_1 has a p-nilpotent supplement K in G such that $G = L_1N_G(K_{p'})$ where $K_{p'}$ is a Hall p'-subgroup of K and of course of G. By Lemma 2.6, there exists an element x of L_1 such that $N_G(M_{p'}) = (N_G(K_{p'}))^x$. Therefore $G = L_1N_G(K_{p'}) = (L_1N_G(K_{p'}))^x = L_1N_G(M_{p'})$. Moreover, $P = P \cap L_1N_G(M_{p'}) = L_1(P \cap N_G(M_{p'})) = L_1$, a contradiction. So we may assume L_1 is nearly \mathcal{M} -supplemented in G, there exists a normal subgroup B of G such that $L_1B \leq G$ and $TB < L_1B$ for every maximal subgroup T of L_1 . We will divide into the following two cases.

(a) $L_1 B < G$.

If $(L_1B)_p = L_1$, then L_1 is \mathcal{M} -supplemented in L_1B and hence L_1B is *p*-nilpotent by Lemma 2.3. It follows from $(L_1B)_{p'}$ char $L_1B \leq G$ and (1) that $L_1B = L_1 \leq G$, a contradiction. If $(L_1B)_p = P$, L_1B satisfies the condition of the theorem by Lemmas 2.1 and 2.7, the minimality of G implies that L_1B is *p*-nilpotent. So $(L_1B)_{p'}$ char $L_1B \leq G$. With the similar discussion as above, $L_1B = P = N \leq G$ by (3) and L_1 is the maximal subgroup of N with L_1 is nearly \mathcal{M} -supplemented in G, hence we have |N| = p by Lemma 2.1(4) and G/N is *p*-nilpotent. Therefore G is *p*-nilpotent, a contradiction.

(b) $L_1B = G$.

That is, L_1 is \mathcal{M} -supplemented in G. For every maximal subgroup T of L_1 , |G:TB| = p and hence $TB \leq G$ by Lemma 2.2. Set $T = L_2$ and $N \leq L_2B$ or $N \cap L_2B = 1$. If $N \cap L_2B = 1$, then $|N| = |G: L_2B| = p$, a contradiction. If $N \leq L_2B$, since $M_p \leq P \cap N_G(M_{p'}) \leq L_2$ and $P = NL_2$, it follows that $L_1B = PB = NL_2B = L_2B < G$, a contradiction.

Theorem 3.1 is proved.

Theorem 3.2. Let G be a finite group where p is an odd prime divisor of |G|. Then G is p-nilpotent if and only if $N_G(P)$ is p-nilpotent and every maximal subgroup of P is nearly \mathcal{M} -supplemented in G.

Proof. As the necessity part is obvious, we only need to prove the sufficiency part. Assume that the assertion is false and choose G to be a counterexample of minimal order. Then

(1) $O_{p'}(G) = 1.$

Suppose that $L = O_{p'}(G) \neq 1$, we consider the factor group G/L. Clearly, P_1L/L is a maximal subgroup of Sylow *p*-subgroup of G/L where P_1 is a maximal subgroup of Sylow *p*-subgroup of *P*. Since P_1 is nearly \mathcal{M} -supplemented in *G*, we have P_1L/L is also nearly \mathcal{M} -supplemented in G/L by Lemma 2.1(3). On the other hand, $N_{G/L}(PL/L) = N_G(P)L/L$ ([6], Lemma 3.6.10) and so it is *p*-nilpotent. Therefore G/L satisfies the hypotheses of the theorem. The minimal choice of *G* implies that G/L is *p*-nilpotent, and hence *G* is *p*-nilpotent, a contradiction.

(2) If M is a proper subgroup of G with $P \leq M < G$, then M is p-nilpotent.

Clearly, $N_M(P) \leq N_G(P)$ and hence $N_M(P)$ is *p*-nilpotent. Applying Lemma 2.1(1), we find that *M* satisfies the hypotheses of our theorem. Now, the minimal choice of *G* implies that *M* is *p*-nilpotent.

(3) G = PQ, where Q is a Sylow q-subgroup of G with $q \neq p$.

Since G is not p-nilpotent, by Thompson ([11], Corollary), there exists a characteristic subgroup H of P such that $N_G(H)$ is not p-nilpotent. Since $N_G(P)$ is p-nilpotent, we may choose a characteristic subgroup H of P such that $N_G(H)$ is not p-nilpotent, but $N_G(K)$ is p-nilpotent for every characteristic subgroup K of P with $H < K \leq P$. Since $N_G(H) \geq N_G(P)$ and $N_G(H)$ is not p-nilpotent, we must have $N_G(P) < N_G(H)$. Then by our claim (2), we obtain $N_G(H) = G$. This leads to $O_p(G) \neq 1$ and $N_G(K)$ is p-nilpotent for every characteristic subgroup K of P satisfying $O_p(G) < K \leq P$. Now, by using the result of Thompson ([11], Corollary) again, we see that $G/O_p(G)$ is p-nilpotent and therefore G is p-soluble. Since G is p-soluble for any $q \in \pi(G)$ with $q \neq p$, there exists a Sylow q-subgroup Q of G such that $G_1 = PQ$ is a subgroup of G. Invoking our claim (2) above, G_1 is p-nilpotent if $G_1 < G$. This leads to $Q \leq C_G(O_p(G)) \leq O_p(G)$, a contradiction. Thus we have proved that G = PQ.

(4) G has a unique minimal normal subgroup N such that $N = O_p(G) = C_G(N) = F(G)$.

Let N be a minimal normal subgroup of G. By (1) and (3), N is an elementary abelian p-group. Obviously G/N satisfies the condition of the theorem, the minimal choice of G implies that G/N is p-nilpotent. Since the class of all p-nilpotent groups is a saturated formation, we have N is the unique minimal normal subgroup and $\Phi(G) = 1$. By Lemma 2.4 $N = O_p(G) = C_G(N) = F(G)$ and $N \nleq \Phi(G)$.

(5) Final contradiction.

Since N is the unique minimal normal subgroup of G and $N \notin \Phi(G)$, there exists a maximal subgroup M of G such that $N \notin M$. Then G = NM and $N \cap M = 1$. Clearly, $P = NM_p$ and $M_p \leq P_2 < P_1$ where P_1 is the maximal subgroup of P and P_2 is the maximal subgroup of P_1 . If $M_p = P_1$ then |N| = p and hence Aut (N) is a cyclic group of order p - 1. If p < q, by ([9], 10.1.9) then NQ is p-nilpotent. Consequently, $Q \leq C_G(N) = O_p(G)$, a contradiction. If q < p, then $M \cong G/N \cong N_G(N)/C_G(N)$ is isomorphic to a subgroup of Aut (N). It follows that Q is a cyclic group that G is q-nilpotent by ([9], 10.1.9) and hence $P \trianglelefteq G$. Therefore $N_G(P) = G$ is p-nilpotent, a contradiction.

By hypotheses, P_1 is nearly \mathcal{M} -supplemented in G. There exists a normal subgroup B_1 such that $P_1B_1 \leq G$ and $TB_1 < P_1B_1$ for every maximal subgroup T of P_1 . Furthermore,

(a) $P_1B_1 < G$.

Since $M_p \leq P_1$ and $N \leq P_1B_1$, we have $(P_1B_1)_p = P$. By Lemma 2.1(1) and the hypotheses, P_1B_1 satisfies the condition of the theorem, the minimal choice of G implies that P_1B_1 is p-nilpotent. Since $(P_1B_1)_{p'}$ char $P_1B_1 \leq G$ and $(P_1B_1)_{p'} \leq G$. We have $(P_1B_1)_{p'} = 1$ by (1), and hence $(P_1B_1) = P \leq G$, also is a contradiction.

(b) $P_1B_1 = G$.

That is, P_1 is \mathcal{M} -supplemented in G. For every maximal subgroup T of P_1 , $TB_1 < G$ and $|G:TB_1| = p$ by ([6], Lemma 2.2). Set $T = P_2$, if $N \leq P_2B_1$, then $P_2B_1 = NP_2B_1 = PB_1 = P_1B_1 = G$, a contradiction. So we may have that $N \nleq P_2B_1$ and hence we have $G = P_2B_1N$ and $|N| = |G:P_2B_1| = p$, a contradiction.

Theorem 3.3. Let \mathcal{F} be a saturated formation containing \mathcal{U} , suppose G has a soluble normal subgroup N with $G/N \in \mathcal{F}$. If every maximal subgroup of noncyclic Sylow subgroup of F(N) having no supersoluble supplement is nearly \mathcal{M} -supplemented in G, then $G \in \mathcal{F}$.

Proof. Assume that the theorem is false and let G be a counterexample of minimal order. Furthermore, we have that

(1) $N \cap \Phi(G) = 1.$

If $N \cap \Phi(G) \neq 1$, then there exists a minimal normal subgroup L of G such that $L \leq N \cap \Phi(G)$. Since N is soluble, we know that L is an elementary abelian p-group, moreover, we have F(N/L) = F(N)/L. By Lemmas 2.1(2) and 2.7, every maximal subgroup of noncyclic Sylow subgroup of F(N/L) having no supersoluble supplement is nearly \mathcal{M} -supplemented in G/L and $(G/L)/(N/L) \cong G/N \in \mathcal{F}$. Clearly, G/L satisfies the condition of the theorem and hence $G/L \in \mathcal{F}$ by the minimal choice of G. Therefore $G \in \mathcal{F}$, a contradiction.

(2) Every minimal normal subgroup of G contained in $O_p(N)$ is cyclic of order p where p is a prime divisor of |N|.

If N = 1, the assertion is ture. So we may assume that $N \neq 1$, the solubility of N implies that $F(N) \neq 1$. By Lemma 2.4, F(N) is the direct product of minimal normal subgroups of G contained in N. There at least exists a maximal subgroup W of G not containing F(N) and hence there at least exists a prime p of $\pi(|N|)$ with $O_p(N) \notin W$ by Lemma 2.5. Applying Lemma 2.5 again, we have |G:W| is not prime order.

Denote $P = O_p(N)$. Then P is the direct product of some minimal normal subgroups of G. We assume that $P = R_1 \times R_2 \times \ldots \times R_t$ where R_i is a minimal normal subgroup of G, $i = 1, 2, \ldots, t$. Since $N \cap \Phi(G) = 1$, for every minimal normal subgroup R of G contained P, there exists a maximal subgroup M of G such that G = RM = PM and $R \cap M=1$. Let M_p be a Sylow p-subgroup of M and $P = (P \cap M) \times R$. Then $G_p = PM_p$ is a Sylow p-subgroup of G. Now, let P_1 be a maximal subgroup of G_p containing M_p and set $P_2 = P_1 \cap P$. Since $|P:P_2| = |P:P_1 \cap P| = p$, that is, P_2 is a maximal subgroup of P. On the other hand, $P_2 = P_2 \cap P = P_2 \cap (P \cap M)R = (P \cap M) \times (P_2 \cap R)$. Similarly, we know that $P_2 \cap R$ is a maximal subgroup of R. If P_2 is nearly \mathcal{M} -supplemented in G, then there exists a normal subgroup K of G such that $P_2K \trianglelefteq G$ and $TK < P_2K$ for every maximal subgroup T of P_2 . Set $K_2 = (P \cap M)K \trianglelefteq G$, therefore $(P_2 \cap R)K_2 \trianglelefteq G$ and $T'K_2 < (P_2 \cap R)K_2 = P_2K$ for every maximal subgroup T' of $P_2 \cap R$, that is, $P_2 \cap R$ is nearly \mathcal{M} -supplemented in G and hence |R| = p by Lemma 2.1(4). If P_2 has supersoluble supplement in G. Then there exists a subgroup H of G such that $G = P_2H$ and H is supersoluble. Let $L = (P \cap M)H$, so we have $G = P_2H = P_2(P \cap M)H = P_2L = PL$. If $P \nleq L$, then L < G. Since $P \cap M \le P_2 \cap L \le P \cap L = (P \cap M)R \cap L = (P \cap M)(R \cap L) = P \cap M$, then $|P| = |P_2|$, a contradiction. So we assume $P \le L$, then L = G, $G/(P \cap M) = L/(P \cap M) \cong H/(P \cap M \cap H)$ is supersoluble. Since $M/(P \cap M)$ is a maximal subgroup of $G/(P \cap M)$, and hence |G:M| = p and |R| = p.

(3) Final contradiction.

For every R_i , i = 1, 2, ..., t, is of prime order, $G = R_i M$ and $R_i \cap M = 1$. It is clearly that |G:M| = p and hence $G \in \mathcal{F}$ by Lemma 2.5, a contradiction.

Theorem 3.3 is proved.

The final contradiction completes our theorem.

Corollary 3.1. Let \mathcal{F} be a saturated formation containing \mathcal{U} and G be a soluble group. If every maximal subgroup of noncyclic Sylow subgroup of F(G) having no supersoluble supplement is nearly \mathcal{M} -supplemented in G, then $G \in \mathcal{F}$.

Corollary 3.2. Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose G has a soluble normal subgroup N with $G/N \in \mathcal{F}$. If every maximal subgroup of noncyclic Sylow subgroup of N having no supersoluble supplement is nearly \mathcal{M} -supplemented in G, then $G \in \mathcal{F}$.

Proof. By Theorem 3.1, we know that N has supersoluble type Sylow tower. Let P be the Sylow p-subgroup of N, where p is the largest prime divisor of |N|. Then P char N and hence $P \leq G$. It is easy to know G/P satisfies the hypotheses, therefore $G/P \in \mathcal{F}$. Since every maximal subgroup of noncyclic Sylow subgroup of F(P) = P having no supersoluble supplement is nearly \mathcal{M} -supplemented in G, then $G \in \mathcal{F}$ by Theorem 3.1.

Theorem 3.4. Let \mathcal{F} be a saturated formation containing \mathcal{U} and G be a group with a normal subgroup H such that $G/H \in \mathcal{F}$. If every maximal subgroup of every noncyclic Sylow subgroup of $F^*(H)$ having no supersoluble supplement is nearly \mathcal{M} -supplemented in G, then $G \in \mathcal{F}$.

Proof. Suppose that the theorem is false and choose G to be a counterexample of the minimal order, so in particular, $H \neq 1$. Furthermore, we have

Case I. $\mathcal{F} = \mathcal{U}$.

By Corollary 3.2, we easily verify that $F^*(H)$ is supersoluble and hence $F(H) = F^*(H) \neq 1$. Since the pair (H, H) satisfies the hypotheses of the theorem in place of (G, H), the minimal choice of G implies that H is supersoluble if H < G; then $G \in \mathcal{U}$ by Theorem 3.3, a contradiction. Hence

(1) H = G is nonsoluble and $F^*(G) = F(G) \neq 1$.

Let N be a proper normal subgroup of G containing $F^*(G)$. By Lemma 2.9, $F^*(G) = F^*(F^*(G)) \leq F^*(N) \leq F^*(G)$, so $F^*(N) = F^*(G)$. Moreover, every maximal subgroup of every non-cyclic Sylow subgroup of $F^*(N)$ having no supersoluble supplement is nearly \mathcal{M} -supplemented in N by Lemma 2.1(1). Hence N is supersoluble by the minimal choice of G. So we have

(2) Every proper normal subgroup of G containing $F^*(G)$ is supersoluble.

Suppose now that $\Phi(O_p(G)) \neq 1$ for some $p \in \pi(F(G))$. By Lemma 2.9 we have $F^*(G/\Phi(O_p(G))) = F^*(G)/\Phi(O_p(G))$. Using Lemma 2.1 we observe that the pair $(G/\Phi(O_p(G)))$, $F^*(G)/\Phi(O_p(G)))$ satisfies the hypotheses of the theorem. The minimal choice of G then implies $G/\Phi(O_p(G)) \in \mathcal{U}$. Since \mathcal{U} is a saturated formation, we then get $G \in \mathcal{U}$, a contradiction. Thus we have

(3) If $p \in \pi(F(G))$, then $\Phi(O_p(G)) = 1$ and so $O_p(G)$ is elementary abelian; in particular, $F^*(G) = F(G)$ is abelian and $C_G(F(G)) = F(G)$.

Suppose that L is a minimal normal subgroup of G contained in F(G) and that |L| = p for some $p \in \pi(F(G))$; also set $C := C_G(L)$. Clearly, $F(G) \leq C \leq G$. If C < G, then C is solvable by (2). Since G/C is cyclic, we get that G is solvable, a contradiction. So we have C = G and hence $L \leq Z(G)$. Then we consider the group G/L. By Lemma 2.9, we have $F^*(G/L) = F^*(G)/L = F(G)/L$. In fact, G/L satisfies the hypotheses of the theorem by Lemma 2.1. Therefore the minimal choice of G implies that $G/L \in \mathcal{U}$ and hence G is supersoluble, a contradiction. This proves

(4) There is no minimal normal subgroup of prime order in G contained in F(G).

If $F(G) = H_1 \times \ldots \times H_r$ with cyclic Sylow subgroups H_1, \ldots, H_r of F(G), then $G/C_G(H_i)$ is abelian for any $i \in \{1, \ldots, r\}$ and so $G/\bigcap_{i=1}^r C_G(H_i) = G/C_G(F(G)) = G/F(G)$ is abelian. Therefore G is solvable, a contradiction. This proves

(5) $P := O_p(G) \in Syl_p(F(G))$ is non-cyclic for some $p \in \pi(F(G))$.

Let P_1 be a maximal subgroup of $O_p(G)$. If P_1 has a supersoluble supplement in G, then there exists a supersoluble subgroup K of G such that $G = P_1K = O_p(G)K$. Clearly, $G/O_p(G) \cong K/K \cap O_p(G)$ is supersoluble and hence G is soluble, a contradiction. So we obtain that

(6) Every maximal subgroup of every noncyclic Sylow subgroup of F(G) has no supersoluble supplement in G.

Furthermore, if $P \cap \Phi(G) = 1$, then $P = R_1 \times \ldots \times R_t$ with minimal normal subgroups R_1, \ldots, R_t of G by Lemma 2.4. Clearly, $P_2 = R_1^* R$ is the maximal subgroup of P where R_1^* is the maximal subgroup of R_1 and $R = R_2 \times \ldots \times R_t$. By hypotheses, P_2 is nearly \mathcal{M} -supplemented in G. There exists a normal subgroup of K of G such that $P_2K \trianglelefteq G$ and $TK < P_2K$ for every maximal subgroup T of P_2 . Let $K_1 = RK$. Clearly, $K_1 \trianglelefteq G$ and $P_2K = R_1^*K_1$ and $T_1K_1 < R_1^*K_1$ for every maximal subgroup T_1 of R_1^* . Therefore R_1^* is also nearly \mathcal{M} -supplemented in G and hence $|R_1| = p$ by Lemma 2.1(4), contrary to (4). So we get that

(7) $R := P \cap \Phi(G) \neq 1.$

Now suppose that $Q \in \text{Syl}_q(F(G))$ for some prime $q \neq p$ and let L be a minimal normal subgroup of G contained in R. Then Q is elementary abelian by (3). By the definition of a generalized Fitting subgroup, $F^*(G/L) = F(G/L)E(G/L)$ and [F(G/L), E(G/L)] = 1, where E(G/L) is the layer of G/L. Since $L \leq \Phi(G)$, F(G/L) = F(G)/L by Lemma 2.10. Now set E/L = E(G/L). Since Q is normal in G and [F(G)/L, E/L] = 1, $[Q, E] \leq Q \cap L = 1$, i.e., [Q, E] = 1. Therefore $F(G)E \leq C_G(Q) \leq G$. If $C_G(Q) < G$, then $C_G(Q)$ is supersoluble by (2); thus E(G/L) = E/L is supersoluble and consequently $F^*(G/L) = F(G)/L$. Clearly, we see that G/L satisfies the hypotheses of the theorem. By the minimal choice of G, G/L is supersoluble and so is G, a contradiction. Henceforth we have $C_G(Q) = G$, i.e. $Q \leq Z(G)$. Obviously, using the same argument as in the proof of (7), $G/Q \in U$ and hence G is supersoluble, also is a contradiction. Thus we have

(8) F(G) = P, in particular, $1 < R = \Phi(G) \le P$.

On the other hand, let X be a minimal normal subgroup of G contained in P with $X \neq L$. By the definition of a generalized Fitting subgroup, $F^*(G/L) = F(G/L)E(G/L)$ and [F(G/L), E(G/L)] = 1, where E(G/L) is the layer of G/L. Since $L \leq \Phi(G)$, F(G/L) = F(G)/L by Lemma 2.10. Now set E/L = E(G/L). Since X is normal in G and $[F(G)/L, E/L] = 1, [X, E] \le \le X \cap L = 1$, i.e., [X, E] = 1. Therefore $F(G)E \le C_G(X) \le G$. If $C_G(X) < G$, then $C_G(X)$ is supersoluble by (2); thus E(G/L) = E/L is supersoluble and consequently $F^*(G/L) = F(G)/L$. Using the same argument as in the proof of (3) we see that G/L satisfies the hypotheses of the theorem. By the minimal choice of G, G/L is supersoluble and so is G, a contradiction. Henceforth we have $C_G(X) = G$, i.e., $X \le Z(G)$. Clearly, this also violates (4). Thus we have

(9) L is the unique minimal normal subgroup of G contained in P.

By (3), there exists a maximal subgroup P_1 of P with $L \nleq P_1$. By hypotheses, P_1 is nearly \mathcal{M} -supplemented in G. So there exists a normal subgroup K_1 in G such that $P_1K_1 \trianglelefteq G$ and $TK_1 < P_1K_1$ for every maximal subgroup T of P_1 . If $P_1K_1 = G$, since $L \cap P_1 \neq 1$, we may choose a maximal subgroup P_2 of P_1 with $L \cap P_1 \nleq P_2$ and $P_2K_1 < G$. On the other hand, $L \le \Phi(G)$ and hence $P_2K_1 = LP_2K_1 = G$, a contradiction.

So we may assume $P_1K_1 < G$. Since L is the unique minimal normal subgroup, we have $L \cap P_1K_1 = 1$ or L. If $L \cap P_1K_1 = 1$, then $L \cap P_1 = 1$ and hence |L| = p, contrary to (4). Therefore $L \leq P_1K_1$ and $P \leq P_1K_1$. By Lemma 2.9 and (2), P_1K_1 is supersoluble. Particularly, K_1 is supersoluble and $(K_1)_q \leq K$ where q is the largest prime divisor of $|K_1|$. On the other hand, $P_1 \cap K_1 \leq \Phi(P_1) = 1$ and $P \cap K_1 = 1$, otherwise, $|P \cap K_1| = p$, contrary to (4). It follows from $(K_1)_q$ char K_1 and $K_1 \leq G$ imply that $(K_1)_q \leq G$. So we have $(K_1)_q \leq P$, a contradiction. Therefore $K_1 = 1$ and $P_1K_1 = P_1 \leq G$, contrary to the choice of P_1 .

Case II. $\mathcal{F} \neq \mathcal{U}$.

By Case I, H is supersoluble. Particularly, H is soluble and hence $F^*(H) = F(H)$. Therefore $G \in \mathcal{F}$ by Theorem 3.3.

Theorem 3.4 is proved.

Corollary 3.3. Let G be a group with a normal subgroup H such that $G/H \in U$. If every maximal subgroup of every non-cyclic Sylow subgroup of $F^*(H)$ is nearly \mathcal{M} -supplemented in G, then $G \in \mathcal{U}$.

- 1. Doerk K., Hawkes T. Finite soluble groups. Berlin; New York: de Gruyter, 1992.
- 2. Guo W. The theory of classes of groups. Beijing etc.: Sci. Press-Kluwer Acad. Publ., 2000.
- 3. Gross F. Conjugacy of odd order Hall subgroups // Bull. London Math. Soc. 1987. 19. P. 311-319.
- 4. Hall P. A characteristic property of soluble groups // J. London Math. Soc. 1937. 12. P. 188-200.
- 5. Huppert B. Endliche Gruppen, I. Berlin etc.: Springer-Verlag, 1967.
- 6. *Miao L., Lempken W.* On *M*-supplemented subgroups of finite groups // J. Group Theory. 2009. **12**. P. 271–289.
- 7. Miao L. On p-nilpotency of finite groups // Bull. Braz. Soc. 2007. 38, № 4. P. 585-594.
- Miao L. Finite groups with some maximal subgroups of Sylow subgroups *M*-supplemented // Math. Note. 2009. 86. – P. 655–664.
- 9. Robinson D. J. S. A course in the theory of groups. Berlin; New York: Springer-Verlag, 1993.
- Srinivasan S. Two sufficient conditions for supersolvability of finite groups // Isr. J. Math. 1980. 35, № 3. -P. 210-214.
- 11. Thompson J. G. Normal p-complement for finite groups // J. Algebra. 1964. 1. P. 43 46.
- Wang Y. Finite groups with some subgroups of Sylow subgroups c-supplemented // J. Algebra. 2000. 224. P. 467–478.
- Wang Y., Guo W. Nearly s-normality of groups and its properties // Communs Algebra. 2010. 38, № 10. P. 3821–3836.
- Wang Y., Wei H., Li Y. A generalization of Kramer's theorem and its applications // Bull. Austral. Math. Soc. 2002. 65. – P. 467–475.

Received 03.01.12

ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 1