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WEIGHTED ESTIMATES FOR MULTILINEAR COMMUTATORS
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3BAKEHI OI[THKHU JIJISI MYJABTUJITHIMHUX KOMYTATOPIB
IHTEI'PAJIIB MAPIIMHKEBHUYA 3 OBMEKEHUMU SAIPAMU

Let pu, 7 be a multilinear commutator generalized by pq, the n-dimensional Marcinkiewicz integral with bounded kernel,
and let b; € Osc,,, 75 (1 < j < m). We prove the following weighted inequalities for w € Ao and 0 < p < oo:

lua(Hllerw) < CIM(llrw), ko s(Hllzew) < ClIMpaog pyr/e (F)llLew)-
The weighted weak L(log L)*/" -type estimate is also established for p = 1 and w € A;.

Hexait pg 5 — MYJIBTIIIHIRHANA KOMYTaTop, IO Y3arajbHIOE (i, M-BUMIPHUI iHTerpan MapluuHKeBHYa 3 0OMEXEHUM
anpom, Ta Hexail by € Oscey, i, 1 < j < m. JloBeneHo Taki 3BaxeHi HEPIBHOCTI i w € Ao Ta 0 < p < o0:

e (Nllzrw) < CIM(ADllerw), g s(Hllrw) < CIMLaog 1/ (FllLew)-

1/r

3BaxkeHy cinabky ouinky L(log L)/ -Tury Takox BCTaHOBIEHO st p = 1 Ta w € Aj.

1. Introduction and main results. Suppose that S”~! is the unit sphere in R™, n > 2, equipped
with the normalized Lebesgue measure do. Let 2 € L'(S™~!) be a homogeneous function of degree
zero which satisfies the cancellation condition

/ Q(z') dz’ =0, (1.1)

where 2/ = z/|x| (Vx # 0).
The n-dimensional Marcinkiewicz integral corresponding to the Littlewood —Paley g-function

00 1/2
introduced by Stein [1] is defined by uq(f)(z) = (/0 |FQt(f)(.’E)|2;i;) , where Fo (f)(x) =

Qz —y)
= —1/(y) dy.

/|r—y|§t |.%‘ - y|n !
As usual, we denote by A4, 1 < p < oo, the Muckenhoupt’s weights class. We denote [w] 4, as

A, constant (see [2], Chapter V or [3], Chapter 9 for details). Operators that map L” to L4 are called
of strong type (p, ¢) and operators that map LP to L% are called of weak type (p, ¢) (see [3, p. 32]).
Let

logt, when t > 1,
log" t = max(logt,0) =
0, when 0<t¢<1,

where logt = Int, and we denote by L(log L) the set of all f with / |f(2)|log™ | f(x)] dr < oo

R
(see [2, p. 128], [3], § 7.5.a). Here and in what follows, ||b||. denotes the BMO-norm of b (see [3],
Chapter 7 for details).
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In 1958, Stein [1] proved that ug is of strong type (p,p) for 1 < p < 2 and of weak type (1, 1)
when ) € Lip,, 0 < a < 1, that is, there is a constant C' > 0 such that
(") — Q(y’)‘ <Cl2 -y |* Va',y e s (1.2)

In 1990, Torchinsky and Wang [4] studied the weighted LP-boundedness of ;. when € satisfies
(1.1) and (1.2). They also considered the weighted LP-norm inequality for the commutator of the
Marcinkiewicz integral, which is defined by

2 1/2
e = | [ [ OB fgyay) | men,
0 |lz—yl<t

In 2004, Ding, Lu and Zhang [5] studied the weighted weak L(log L)-type estimates for i},
precisely, if w € A1, b € BMO, € satisfies (1.1) and (1.2), then, for all A > 0, there exists a constant
C > 0, such that

o(fr e R iy (@) > A < ¢ [ (1 +log* 'f(f)') (@) do.
Rn

In 2008, Zhang [6] studied the weighted boundedness for the multilinear commutator of Marcin-
kiewicz integral p,  when © € Lip,, 0 < a < 1,0 < p < oo and w € Ay (see [3], § 9.3), and
established a weighted weak L (log L)'/"-type estimate when p = 1 and w € A;, where

2 1/2
po (@) = / / m Hl(bj(x)bj(y)) fly) dy % , meN.
0 Jlz—yl<t J=

And in 2012, Zhang, Wu and Liu [7] establish the weighted weak L(log L)™-type estimate for o g
when ) satisfies a kind of Dini conditions.

In 2004, Lee and Rim [8] proved the LP boundedness for 11, when there exist constants C' > 0
and p > 1 such that
C

1 P
tog lz" — /|

holds uniformly in 2’,3’ € S"~! and Q € L°°(S™"!) be a homogeneous function of degree zero
with cancellation property (1.1). In 2005, Ding [9] studied the weak (1, 1)-type estimate when p > 2
and € satisfies (1.1) and (1.3).

In the following, we will always assume that 2 € L°(S™~1) and satisfies (1.1) and (1.3), where
p > 2. Let m be a positive integer. For b= (b1,b2,...,by), bj € Osc

(1.3)

expLTj7 Tj Z 17 1 S] S m,
we denote
11 1 S TT
PR PP e 2] —j]j[lub,j\|05%xpw. (1.4)
For the definitions of Oscexp 17, || - HOSCCxp .~ and M L(log L)!/7> S€€ Section 2.

Our results can be stated as follows.
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Theorem 1.1. Let 0 < p < oo and suppose that w € As. For p > 2, Q € L*(S" 1) is

homogeneous of degree zero and satisfies (1.1) and (1.3). Then there is a positive constant C, such
that

/ no(f) (@)Pw(z) de < Cluf_ / M(f) (@) o)

Rn
for all bounded functions f with compact support.

Theorem 1.2. Let 0 < p < o0, w € Ax and bj € OsCeypy 7, 75 > 1,1 < j <m, r and ||5|| be
as in (1.4). For p > 2, Q € L*>(S" 1) is homogeneous of degree zero and satisfies (1.1) and (1.3).
Then there is a positive constant C, such that

/ o () @) Po(a) di < CIBP [ My 110 @) () d (1)
R

for all bounded functions f with compact support.

Sincer; > 1,7 =1,2,...,m, then ML(log L)/ is pointwise smaller than M7, g 1,)m . Noting that
M 10g Lym 1s equivalent to M m+1 the m + 1 iterations of the Hardy — Littlewood maximal operator
M (see (21) in [10]), by using the weighted LP-boundedness of M again, from Theorem 1.2, we
have the following result.

Corollary 1.1. Let 1 < p < 00, w € Ap, bj € Oscyyypri, 15 = 1,1 < j < m, r and 1B]| be
as in (1.4). For p > 2, Q € L>®(S" 1) is homogeneous of degree zero and satisfies (1.1) and (1.3).
Then there is a positive constant C, such that

/ 0 () @) Po(e) dx < B[P / F@)Po(a) do

for all bounded functions f with compact support.

Theorem 1.3. Let w € Ay, bj € Osceyppriy 75 2 1,1 < j < m, r and 16]| be as in (1.4).
For p > 2,Q € L>®(S" 1) is homogeneous of degree zero and satisfies (1.1) and (1.3). Let ®(t) =

= tlogl/ "(e + t). Then there is a positive constant C, for all bounded functions f with compact
support and all X > 0, such that

w{z € R™: pg3(f)(x) > A}) < C / @(W)w(y) dy.
Hn

The remainder of the paper is organized as follows. In Section 2, we will recall some notation
and known results we need, and establish the basic estimates for sharp functions. In Section 3 we
prove Theorems 1.1 and 1.2. In the last section, we prove Theorem 1.3.

Throughout this paper, C' denotes a constant that is independent of the main parameters involved
but whose value may differ from line to line. For any index p € [1, oo], we denote by p/ its conjugate

index, namely, 1/p + 1/p’ = 1. For A ~ B, we mean that there is a constant C' > 0 such that
C'B<A<CB.
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2. Preliminaries and estimates for sharp functions. As usual, M stands for the Hardy-
Littlewood maximal operator. For a ball B in R", denote by fg = |B|™! / f(y) dy. We need
B
the following variants of M and the Fefferman - Stein’s sharp function. For 6 > 0, define

1/6 1/6

Ms(f)(@) = M) @], M) = [MA(FP) )],

where

i — sup inf - el dy ~ sup —— _
ME(f)(a) = supinf B/ (6) = cldy ~ sup B/ £() — ol dy.

B>z ¢ B3z

The following relationships between Mg and My which will be used is a version of the classical
ones due to Fefferman and Stein (see [2, p. 153]).

Lemma 2.1 [10-12]. (a) Letw € Ay and ¢: (0,00) — (0, 00) be doubling. Then there exists
a positive constant C, depending upon the doubling condition of ¢, such that, for all X\, 6 > 0

iuzgcb(k)w({y € R": Ms(f)(y) > A}) < Clw]a, iurgsb(A)w({y e R": Mi(f)(y) > A}),
> >
for every function f such that the left-hand side is finite.

(b) Let w € Ay and 0 < p,§ < co. Then there exists a positive constant C, depending upon p,
such that

[ Dastp@) oy do < Ottty [ M) @)l d,
R?’L R’VL
for every function f such that the left-hand side is finite.
A function ® defined on [0, o) is said to be a Young function, if ® is a continuous, nonnegative,
strictly increasing and convex function with ®(0) = 0 and lim;_,~, ®(¢) = oco. Define the ®-average
of a function f on a ball B by

| flle,B = inf{)\ > 0: |115’ <I><|f()f/)|> dy < 1},
B

The maximal operator Mgy associated with the ®-average, || - ||o,5, is defined by
Mg (f)(z) = sup || f[|e,5,
B>z

where the supremum is taken over all the balls B containing x.

When ®(t) = tlog"(e + t), we denote || - [|¢,5 and Mg by || - ||Log ), B and My (105 1),
respectively. When ®(t) = ¢! — 1, we denote |- | o, and Mg by || |lexp zr,B and Mexp 1. If k € N
then M 106 £)m ~ M™F1 (see (21) of [10]).

We have the generalized Holder’s inequality as follows, for details and the more general cases
see Lemma 2.3 in [11].

Lemma 2.2 [11]. Let ry,...,7pm > 1 with 1/r = 1/r1 + ...+ 1/ry, and B be a ball in R™.
Then there holds the generalized Holder s inequality

1
w/\fl(x)..-fm(w)g(x)ldw < Cllfillep LB - | fmllesp Lrm BI9N L1og Ly1/7 B+
B
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542 JIJANGLONG WU, QINGGUO LIU

For r > 1, we say f € Oscexp 7 if f€L (R™) and || f[losc,,, ,» < 00, Where

loc

HfHOscexer = S%p ||f - fBHeXpLT,Ba

and the supremum is taken over all the balls B C R".

By John —Nirenberg theorem (see [2] or [13]), it is not difficult to see that Oscey,z1 = BMO(R™)
and Oscexp - is contained properly in BMO(R™) when r > 1 (see [14]). Furthermore, ||b]|. <
<C HbHOsccxp .~ When b € Oscexprr and 7 > 1 (see [6]). For more information on Orlicz space
see [15].

We will take the point of view of the vector-valued singular integral of Benedek, Calderon and
Panzone [16]. Let H be the Hilbert space defined by

- 1/2
h(t)|?
= b bl = /‘ OF 4] <o
0

t

Forall z € R" and ¢t > 0, let

Qz —y)
|z —y[*t

Fos D@ = |

lz—y|<t

[T (45(@) = b;(») | @) dy, meN.
j=1

Then for each fixed z € R", Fo.(f)(z) and F,;,(f)(z) can be regarded as mapping from [0, 00)
to ‘H, and o

uo(F)(@) = [Fas D@l 1055 @) = [Fo s, (@)l

The following pointwise estimates for the sharp function of 1 come from [17].

Lemma 2.3 [17]. Let 0 < 0 < 1, f, ua(f) be both locally integrable function. For p > 2,
Q € L*°(S™ 1) is homogeneous of degree zero and satisfies (1.1) and (1.3). Then there is a positive
constant C, independent of f and x, such that

Mg(/m(f))(x) < CM(f)(z), ae. x€R"

Some ideas for the proof of Lemma 2.3 come from [5]. For details and the more information see
Lemma 3.2.4 in [17].

For the multilinear commutators He there holds a similar pointwise estimate. To state it, we
first introduce some notations. For all 1 < j < m, we denote by C7" the family of all finite
subsets 0 = {o(1),...,0(j)} of {1,2,...,m} with j different elements. For any o € C}* and
g: (bl, e ,bm), we define ¢/ = {1,2, .. ,m} \ g, gg’ = (ba(l)v .. 7b0'(j))7 and ba = ba(l) .. -ba(j)'
For any vector (74(1), - - -, T»(j)) 0f j positive numbers and 1/r, = 1/75(1) + ...+ 1/74(;), we write

@.1)

HbUH = HbUHOSchp Lre Hba(l)HOscexp Lo Tt Hbo(j)HOscexp Lol

For any o = {o(1),...,0(j)} € €}" and by = (b(1)s - - -5 bo(j)), We write

j
Fop, (@) = / L_y_)l (H (bo(iy(x) — ba(i)(?/)))f(l/) dy

|z —y|"
lz—y|<t
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and

o, (N@) = | Fop, (N@)], -
Ifo = {1,...,m}, then o’ = @. We understand j1, ; = p1, 5 and g, 7 = = piq.

Lemma 2.4 [17]. Letr; > 1,bj € OsCoyp, i, 1 < j < m, 7 and 1b]| be as in (1.4). For p > 2,
Q € L>*(S" 1) is homogeneous of degree zero satisfying (1.1) and (1.3), then for any 6 and & with
0 < d < e <1, there is a constant C > 0, depending only on § and ¢, such that, for any bounded
function f with compact support,

ME (g (1)@) < C | IBIM g 1y (@) + 3 37 1Balloseery wre Me (105, (1)) (2)

y — m
j=1 oe(fj

Some ideas for the proof of Lemma 2.4 come from [5, 6, 10, 11]. For details and the more
information see Lemma 3.2.5 in [17].

Remark 2.1. Noting that (1.3) is weaker than Lip,, 0 < a < 1, condition, the main results in
this paper improve the main results in [6]. And the Theorem 1.3 is equivalent to the Theorem 4.1.1
in [18] when by = by = ... = by,.

3. Proof of Theorems 1.1 and 1.2. The proof of Theorem 1.1 is similar as Theorem 1.1 in [6].
So, we omit the details and only give the proof of Theorem 1.2 here. For brevity, we write

1/p

Ih(@) ) 1p(w) = / |h(2)|Pw(x) dzx for 0<p<oo.
R'I"L

Proof of Theorem 1.2. Without loss of generality, we assume

/Wm@wwmwmmm<m, 3.1)
Rn

since otherwise there is nothing to be proven. We divide the proof into two cases.
Case 1. Suppose that w and b;,1 < j < m, are all bounded. Firstly, we take it for granted that,
for all bounded functions f with compact supports,

[ st ) @) to) do < (32)
R’IL

holds for 0 < p < oo and appropriate § with 0 < 6 < 1.
Under the assumption of (3.2), we will proceed the proof by induction on m. For m = 1, b = b1,
Ha i = Hab, - By Lemma 2.1(b) and Lemma 2.4, for 0 < 6 <& < 1, we have

92,0 ()| ) < 1M (15200 ()| () < CUME (0 (P 10) <

< Cllbillosce 1r (1M Log £y1/m (DllLe ) + [1Me (o ()l zrw) )- (3.3)
(log L)

Since w € A, there is a pg > 1, such that w € A,,. We can choose § > 0 small enough, so
that p/d > po. So w € A, /5. Then by the definition of My and the weighted LP/%-boundedness of
the Hardy — Littlewood maximal operator M, we get
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/[Mzs(un(f))(ﬂf)]pw(iv) dx = /[M(\m(f)‘s)(x)]p/‘sw(w) dx <

Rn R”

/]/m x)|Pw(z) dx. (3.4

This, together with (3.3), Theorem 1.1 and the fact M(f) < CMp,qp)1/:(f) for any s > 0,
gives

102,61 (P () < Clibillose,,, 1r (HML(logL)l/m (e + Hm(f)HLp(w)) <
< Clb1llosey s (IM 10 13171 (Pl o) + 1M (F) o) <

S CHbl ||OSCeXp L1 HML(]ogL)l/Tl (f) ”Lp(w)

Now, suppose that the theorem is true for 1,2, ...,m — 1 and let us prove it for m. Recall that, if
o ={o(1),...,0(j)}, 1 <j < m, and the corresponding satisfies 1/75 = 1/r,1) + ...+ 1/1,),
then o/ = {1,...,m} \ o and the corresponding r, satisfying 1/r,» = 1/r — 1/r,. Reasoning as in

(3.4), for 8 > 0 small enough, we obtain

[l (D)@ Peta)do <€ [ g (£)@)Pola) da. (3.5)

The same argument as used above and the induction hypothesis give us that

e 5 (P Lrw) < IMs(ig ()l rw) < C”Mg(ugj(f))HLp(w) <

< CINM g 2y Do) + €S S M ll0mcuy o 1Mol 5, (D0 <
j=1 0‘66;-"‘

< CllollIM L og Ly (Pl o +CZ > llbo l0scexp o g, (P Lp(w) <
j= lae(?m

< ClIBIIM o y1/ (Pl o)+

+CZ Z Hb ”OSchercerU ”OSCeXpL o H L(log L)Y« /( )HLP(w) <

J=1 UE(?m

< CIBII M g £yte () o ()

where the fourth inequality follows from (3.5) and the last one follows from the fact that
ML(log LY7o (f) < ML(log L)l/r(f)-
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To finish the proof of this special case of Theorem 1.2, we need to check (3.2). From (3.5), it
suffices to prove

/ \ugj(f)(x)\pw(x) dr < oo, 0<p< oo, (3.6)

whenever the weight w and the functions b;, 1 < j < m, are all bounded.
Assume that suppf C B = B(0, R) for some R > 0 and write

/\um, z)[Pw(z dw—/!ugb o) |Pw(x) do + g 5 () (@)[Pw(@) do = T+ IT.
Rn (QB)

Noting that w and b; are all bounded, by the Holder inequality, the induction hypothesis and the
fact My 105 Lym ~ M m+1 1P/%_poundedness of M, there is

/Ibo(év)lplusz,bg,(f)(fB)IPW(x) At < GV I oo ey | BI' ™ Nba £ 75 gy < 00
This and the definition of ji, 7(f) give us that

I<CZ > /|b )Pluas,, (f)(@)Pw(z) dz < co. (3.7)

] 10'66] 2B

To deal with 1T, we first estimate b( )(z) for x € (2B)°. |z|/2 < |z — y| < 3|z|/2 when
);

€ (2B)¢ and y € B. Noting that 2 € LOO(S” 1), w and b; are bounded functions and |z| ~ |z —y|
when = € (2B)¢ and y € B, there is a constant Cq 5> depending on the L°°-norm of €, b; and w,
such that v

2 1/2
> fly dt
o)) < Ol Bl | [| [ 0] 5| <
0 |le—yl<t
1/2
) @
SCQ,E,W/ |m_y‘n71 / t73 dyg
R» jo—yl<t
) dy < Coy 3 M(f) (). (3.8
s, ,x Wy QMB,/Lf Ny < Cop MU)) )

By (3.8) and the fact that M (f)(z) < CM,1oq £y1/-(f)(2), it follows from (3.1) that
112 Cog | Phyogrypr(D@Pu()do < oc.
(2B)°

This together with (3.7) shows that (3.6) is true when w and b; are bounded functions, so does
(3.2). And then Theorem 1.2 is proved for this special case.
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Case 11. For unbounded w and b;, we will truncate the weight w and the functions b;, j =
— 1,...,m, as follows. Let N be a positive integer, denote by wy = inf{w, N} and by o =
= (b, ..., b)), where bj»V is defined by

N, when b;(z) > N,

bY () = < bj(x), when |bj(x)] < N,

—N, when bj(xz) < —N.
By Lemma 2.4 in [11], there is a positive constant C' independent of /N such that

16 lose,, vy < billose,, v - (3.9)

pLJ

Applying (1.5) for v and wp, and using (3.9), we have

[ g (@) Paon ) do < P [ My g1y (D @) P d (3.10)
.

Rn

Next, taking into account the fact that f has compact support, we deduce that bév converges to
b; and b(]}y(l) . bév(j)f converges to by(1) ... by(;)f in any space LP for p > 1 as N — oo. Recalling
the LP-boundedness of 11, we claim that, at least for a subsequence, {| fig g (f )(@)Pwn (2) }F—y
converges pointwise almost everywhere to [p, 3(f)(z)[Pw(z) as N — oco.

This fact, together with (3.10) and Fatou’s lemma, finishes the proof of Theorem 1.2.

4. Proof of Theorem 1.3. The idea of the proof of Theorem 1.3 follows that of Theorem 1.5 in
[11]. We first prove the following lemma.

Lemma 4.1. Let w € Ay, B(t) = tlog'/"(e + 1), b, r, and r;j be the same as in Theorem 1.3.
Then for p > 2, Q € L>®(S™"1) is homogeneous of degree zero and satisfies (1.1) and (1.3), there
exists a positive constant C such that

w({y € R™: Mi(ng5(f)(y) > t}) w({y € R™: Ma(|[B[|f)(y) > t})

) ®(1/1) =0 2(1) o
for all bounded functions f with compact support and all 0 < § < 1.
Proof. To use Lemma 2.1(a), we first check that
1
stl;g (I)(l/t)w({x e R": Ma(,uQ’g(f))(x) >t}) < oo 4.2)

for all bounded functions f with compact support and all § with 0 < § < 1.

We only prove (4.2) for the special case where w and b; are bounded functions. For the general
case, we consider the truncations of w and b as in the proof of Theorem 1.2, by a limit discussion, this
time, we take into account the weak (1,1) boundedness of uq that gives the convergence in measure.
Then we can obtain (4.2) for all w and b with the hypotheses of Lemma 4.1, we omit the details.

Assume that suppf C B = B(0, R). Then, forany 0 < e < 1

w({x € R™: Ms(ﬂg,g(f))(x) > t}) <
0 ®(1/1) -
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w({:p cR™: ME(XQB)UJQJ;(f))(x) > t/Q})
< Cesup (1/1)

+Cosup ———

>0 <I>(1/t w({z € R": Mc(x@B)etiqi(f))(x) > t/2}) = C=(I + II), 4.3)

where C; is a positive constant depending on €.
For I, making use of the weak (1,1) boundedness of M and [®(1/t)]~! < Ct, and noting that w
and b; are all bounded. Then there is a positive constant C,,, depending on w, such that

I1<C, iggt‘{x e R": M, (X2BMQb( () > t/QH <

1/2

<c/|um, (2)] dz < C| B2 /mm J@)Pdz | < oo

where the last step follows as (3.7).
Recall the fact that (M (f))® € A; for 0 < e < 1 and f locally integrable, then

1
M.(M(f)(x) = [M(IM(f)])(x)]"F < CM(f)(x).
Noting that w is bounded, it follows from (3.8) and the weak (1,1) boundedness of M that

I1 <C, sugt cw({z e R™: Mo(M(f))(z) > Ct}) <
t>

< Cwsugt-w({w e R™: M(f)(x) > Ct}) <

<C, | |f(z)]dx < occ.
/

Combining (4.3) and the estimates for I and II, we have (4.2).

Now, let us turn to proving (4.1) by induction. For b € OSCoxp 17, Write b = b/|b]), then ||b]| = 1,
and MQ,b( )/ |10 = 'U’Q,b/||b||(f) = piq3(f). So we can assume that 6] = 1. For m = 1, we
understand b = b, ||| = [0l 0scerp e = 1 to z(f) = pap(f). Therefore, to prove (4.1), it suffices
to prove

w({y € R™": MY (uos(f)(y) > t}) w({y € R™: My qq 1y1/-(f)(y) > t})
sup < C'sup
£>0 P(1/t) >0 o(1/1)
for all bounded functions f with compact support.

Applying Lemma 2.4 for m = 1 and any € with 0 < § < € < 1, it is easy to see that the left-hand
side of (4.4) is dominated by

4.4

aup CUY E R M (D)) > 1) _
>0 O(1/t) B
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w({y eR"™: ML(logL)l/T<f)(y) > t/2})

< Csup B(1/1)
w({y € R™ : M. (ua (1)) (4) > 1/2))
+Csup (1/t) '

Recall that (4.2) is valid and since [®(1/t)]~! is doubling, then by Lemma 2.1(a), Lemma 2.3
and noting that M (f) < My o, 1y1/+(f), we have

w({y € R": M{(pas(£)(y) > t}) w({y € R": My 1y (F)(y) > 1})

i (1/0) =G 3(1/1)
+Csup w({y € R": ]gff%(f))(y) >t
< Ci‘;lg w({y e R": Mg(lig/gl/r(f)(y) > t}) N C?‘ig w({y € R”q;f/g)(y) > t}) -
< Csup gy € R Mygog (D) > 1)

This is (4.4), thus, we have proved (4.1) for m = 1.
Now, let us check (4.1) for the general case m > 2. Suppose that (4.1) holds for m — 1, let us
prove it for m. Noting that (4.2) is true and recalling the fact that [®(1/¢)]~! is doubling, then by

Lemmas 2.3 and 2.4 for € with 0 < § < &, Lemma 2.1(a) and the induction hypothesis on (4.1), we
obtain

w({y € R": M{(pg5(f))(y) > t}) w({y € R™: Ma(f)(y) > t/C})
s a(1/1) = O (1/1) *

oy D sup g /t w({y € R": Melpg (15,1 £)w) > t/Cm}) <

Jleem

< Oy, sup

cp(i/t) w({y € R": Ma(f)(y) > th+

0, Y sup q) w({y € R™: Mgz (15, 1£)() > t}) <

j=1 ae@m

< Oy, sup

< Cypu @(i ey € R Ma(1)(0) > 1)+

30> sup sy € R My (15 1 11)(0) > 1) <

Jle(fm
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< Cy, sup

b @(i/w w({y € R": Ma(f)(y) > th+

+Chn Z > sup q) jely € R Ma(f)(y) > 1),

j=loecy

where ||5,,H and ||ggl|| are as in (2.1), and in the last step, we make use of the fact that |]50/ I ||gg|| =
= [[bll = 1.

This concludes (4.1) for all m, so the proof of Lemma 4.1 is completed.

Lemma 4.2. Let w € Ao, ®(t) = tlog'/" (e +t), b, r, and rj be the same as in Theorem 1.3.
For p > 2,Q € L*(S" 1) is homogeneous of degree zero and satisfies (1.1) and (1.3), there exists
a positive constant C such that

w({y € R": pg 5(f)(y) > t}) < Oy Py ERT: Mo (||6]| ) (y) > t})
=0 @(1/1) =T 2(1/1)
for all bounded functions f with compact support.

The proof is similar as the proof of Lemma 4.2 in [6], we omit the details here.

To prove Theorem 1.3, we need the following weighted weak-type inequality due to Pérez and
Trujillo — Gonzalez [11].

Lemma 4.3 [11]. Let w € Ay, ®(t) = tlog'/"(e + t). Then there is a positive constant C, for
any A > 0 and any locally integrable function f, such that

stre R a)0) > 3) < € [ o H )y
R’ﬂ

Proof of Theorem 1.3. By homogeneity of b, we can assume that A = ||b]| = 1. Then we only
need to prove that

oy € R g (H) > 1) <€ [ (1 ))wtw) dy

By ®(ab) < 2®(a)®(b), a,b > 0 and Lemmas 4.2 and 4.3, we have

w({y € R™: pug 5(f)(y) > 1}) < Csup ———=w({y € R": pg 5(f)(y) > A}) <

AS0 ‘1)(1/>\)
o(ly € R Ma()y) > AD) _ | HONW
< Csup {1/ <Csw iy | q’( X ) (W) dy <

Rn

1
< Csup s R/ &(|f (1)) ®(1/Nw(y) dy < C / e ® (17 (9) ) () dy.

Theorem 1.3 is proved.
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