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ON REMOVABLE SETS FOR DEGENERATED ELLIPTIC EQUATIONS

IMPO MHOXHWHU, 10 YCYBAIOTbHCHA,
JJIs1 BUPOJOKEHUX EJIIIITUYHUX PIBHAHD

We establish the necessary and sufficient conditions of compact removability.

BcranoBneHo HEOOXiIHI Ta JOCTATHI YMOBH KOMIIAKTHOI YCYBHOCTI.

1. Introduction. The questions of compact removability for Laplace equation is studied by Carleson
[1]. The uniform elliptic equation of the seconds order of divergent structure is studied by E. I. Moi-
seev [2]. The compact removability for elliptic and parabolic equations of nondivergent structure is
considered by E. M. Landis [3]. T. S. Gadjiev, V. A. Mamedova [4]. The removability condition
of compact in the space of continuous functions are constructed in the papers Harvey, Polking [5],
T. Kilpelainen [6]. The different questions of qualitative properties of solutions of uniformly dege-
nerated elliptic equations is studied by S. Chanillo, R. Z. Wreeden [7]. Uniform elliptic operator of
the second order of divergent structure is considered in the paper [8].

Let E,, be n dimensional Euclidean space of the points = (x1,...,z,). Denote by R > 0 for
Bp (2%) the ball {z: |z — 2°| < R}, and by Q% (2%) the cylinder By (2°) U(0, T') . Further let for

i=1 R«
an bounded domain E,, with the domain 9D, 0 € D. ¢ is a such king of ellipsoid that D C &, B(e)
is a set of all functions, satisfying in € the uniform Lipschitz condition and having zero near the Je.

(i — a0’
€ E,, R>0andk >0¢, (:L‘O) be an ellipsoid {x: Z M < (k:R)2 } Let D be

Denote by « and (a1, ..., ay,) the vector () = aq, ..., .
Denote by I/V21 o(D) the Banach space of the functions u(z) given on D with the finite norm

. 1/2
lullwy oy = / <u2 + Z)\i(ﬂf)ug> dr |,
’ D i=1
where
ou . . i 2
W g Tl @ = ()™ el = Xl g
= (D
2
0< o < —.
n—1

Further, let V%/éa(D) be a degenerated set of all functions from C3°(D) by the norm of the space
W3 (D). Denote by M(D) the set of all bounded in D functions.

Let E C D be some compact. Denote by A (D) the totality of all functions u(z) € C* (D),
each of which there exists some neighbourhood of the compact E, in which u(z) = 0.
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1042 T. S. GADIJIEV, N. Q. BAYRAMOVA

The compact F is called the removable relative to the first boundary-value problem for the
operator L in the space M (D), if all generalized solution of the equation Lu = 0 in 9 /E formed in
zero on 0D and belonging to the space M(D), identically equal to zero. We’ll say that the function

u(z) € V(E/%a(s) is nonnegative on the set H C ¢, in sense V[O/%’a(s), if there exists the sequence
of the functions {w(y,)(x)}, m = 1,2,..., such that u,,(z) € B(e), up(x) > 0 for z € H and
limy,— o0 Hu(m) — uHW;ﬂ(E) =0.

The function u(x) € Wia(D) is nonnegative and 0D in sense Wzl’a(D), if there exists the
sequence of the functions {um(z)}, m = 1,2,..., such, that u(,)(z) € C*(D), um(x) > 0 for
x € 0D and limy, o Hu(m) - UHWQIa o= 0. It is easy to determine the inequalities u(x) > const,

u(x) > v(x), u(x) < 0, and also equality u(x) = 1 on the set H in sense W} ,(¢), if at the same

time u(z) > 1 and u(x) <1 on H, in sense W} ,(e).
Let w(z) be measurable function in D, finite and positive for a.e. € D. Denote by £, (D)
the Banach space of the functions given on D, with the norm

1/p

lulle, o) = / @2 P de | . 1<p<oo
D

Let W, (D) be a Banach space of the functions given on u(x), with the finite norm D:

1/p

HUHWI}A(D) = / <|U|p + Z p/2 |ui |p> dx ;1 <p<oo.

Analogously to W3 (D), it is introduced the subspace W (D) for 1 < p < oo. The space,

conjugated to W (D) we’ll denote by W, (D).
We’ll consider the elliptic operator in the bounded domain D C E,

e=3 g (g ).

In assumption, that ||a;;(x)|| is a real symmetric matrix with measurable in D elements, moreover
for all £ € E,, and a.e. z € D the condition

vy Ni(@)E < Zam 2)&& <7 1ZA : 2)
=1 i,7=1 =1

Here 7 € (0,1] is a constant.
The function u(z) € WQI’Q(D) is called the generalized solution of the equation Lu = f(x) in

D, if for any function 7)(z) € W3 (D) the integral identity

i (x)ug e de = | fde 3)
> /

3,j=1
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ON REMOVABLE SETS FOR DEGENERATED ELLIPTIC EQUATIONS 1043

be fulfilled. Here f(x) is a given function from Lo(D).

Let E C D be some compact. The function u(x) € W217a (D\FE) is called generalized solution
of the equation Lu = f(z) in D \FE, vanishing on 0D, if integral identity (3) is fulfilled for any
function n(z) € Ag(D).

We’ll assume that the coefficients of the operator £ continued in E,, \ D with saving condition (1),
(2). For this, it is sufficient, for example, let’s assume a;j(z) = 0;;\i(z) for z € E,\D, i,j =
=1,...,n, where §;; is a Kronecker symbol.

Let h(z) € Wy (D), f°(z) € ha(D), f(x) € Ly\-1(D),i=1,2,...,n, are a given functions.
Let’s consider the first boundary-value problem

am e £, e
i=1 ¢
(u(z) — h(z)) € Wi (D). 5)

The function u(z) € W21,O¢(D) we’ll call generalized solution of problem (4), (5) if for any function
n(z) € Wi (D) the integral identity

/Z azg(m)umlnm]dx:/<_f0n+2flnl‘z> dx
D i D =1

ij=1

is fulfilled.

Our aim to get the necessary and sufficient condition of compact removability F in the class of
bounded functions.

2. Preliminaries statements. At first, we introduce some auxiliary statements.

Lemma 1. [frelative to the coefficients of the operator L, condition (1), (2) be fulfilled, then the
first boundary-value problem (4), (5) has a unique generalized solution u(x) at any h(z) € W217 (D),
fOx) € ha(D), fi(z) € L27)\_—1(D), i =1,2,...,n. At this there exists Py (a,n) such that, if p > po,
h(z) € Wl}ja(D), fOx) € hpl(D), fi(z) € LQ,Afl(D)’ i=1,2,...,n,9D € C', then solution u(x)
is continuous in D.

Lemma 2. Let relative to the coefficients of the operator L conditions (1), (2) be fulfilled. Then
any generalized solution of the equation Lu = 0 in D is continuous by Holder at each strictly internal
domain 0.

Lemma 3. Let relative to the coefficients of the operator L, conditions (1), (2) be fulfilled and
€r1 < D. Then for any positive generalized solution u(x) the equation Lu = 0 in D the Harnack
inequality is true

sup u < Cq (y,a,n) inf w. 6)
er,1(0) er,1(0)
If at this y € Oer2(0) and €r1(0) C D, then the inequality of form (6) is true in ellipsoid e 1 (y).

Lemma 4. Let relative to the coefficients of the operator L conditions (1), (2) be fulfilled, and
u(x) be generalized solution of the first boundary-value problem (4), (5) at f'(z) =0,i=0,...,n.
Then if h(z) is bounded on OD in sense Wy (D), then for solution u(x) the following maximum
principle is true: 7
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1044 T. S. GADIJIEV, N. Q. BAYRAMOVA

inf h < infu < sup < suph,
oD D D oD

where infgp h(supaD h) is an exact lower (upper) bound those numbers a, for which h(xz) > a

(h(z) < a) on OD in sense W%’Q(D).
These lemmas are proved analogously to paper [7]. Therefore, we don’t give the proof of these
lemmas.

Let H C & be some compact, Vi be a set of all functions o(z) € W3 (), such that p(z) > 1
on H, in sense W} ,(¢). Let’s consider the functional

n

Jo (¢) = / > aij(@)pigidr,  p(x) € Vi,

2 ig=1

L is a H compact capacity relative to ellipsoid ¢ is called the value inf ey, Jo(u) and denoted by
capf) (H). In case ¢ = E,, the corresponding value is called £ capacity of the compact H and
denoted by cap,(H).

Lemma 5. There exists the unique function u(x) € W%’a(s) such that u(x) > 1 on H in sense
Wia(a) and cap(z)(H) = Jr (u). Moreover, u(z) =1 on H in sense W%,a(e).
Proof. 1t is easy to see that Vp is convex closed set in W3 ,(¢). From the fact that W73, (¢) is a

Hilbert space, it follows the existence of unique function u(z) € Vi, which achieved an exact lower

if <1
bound of the functional J.(¢). Let’s next {u(z)}' = w(a) 1 wz) <1,
1 if wu(x) > 1.

It is clear, that {u(z)}' € Wia(a). Moreover, {u(z)}' € Vj. Denote by At = {z:2 €
€e, u(z) > 1}. We have

n

Ja{u@:)l}:( [+ ] ) > o) = [ ag@unar )

A+ e\t 7 BI=1 a\a+ BI=1

On the other side, according to (1)

Z aij(x)uu;de > 0. (3
A ig=1

From (7) and (8) we conclude

1 .
Je{u(z)'} < Jz(u) = ¢1€n‘£HJ£ (p),

ie., Jz {u(z)'} = Jz(u). From uniqueness extreme function it follows, that {u(z)} = u(x).

Lemma 5 is proved.

The function u(x), which achieved an exact lower bound of the functional J. (¢) on the set Vi
is called £ capacity of the compact potential H relative to the ellipsoid e.

Lemma 6. L be a capacity potential u(x) of the compact H relative to ¢ is a generalized
solution of the equation Lu = 0 in €\ H, vanishing on 0 and O in 1 on OH sense Wia ().
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ON REMOVABLE SETS FOR DEGENERATED ELLIPTIC EQUATIONS 1045

Proof. 1t is sufficient to show the truthiness of the first part of assertion of lemma. Let n(x) €
€ Wj,(e) and n(x) > 0 on H in sense W3 ,(¢). Then for any ¢ > 0 (u(z) +en(z)) € Vy.
Therefore

Je(uten) > Je(u).
Thus

n

Jr (u) +€2Jz () + 2¢ Z aij(x)uin;de > Jg (u),
T ig=1

1e.,
n

Jr (u) + 2¢ Z a;j(x)un;dx > 0.
T =1

Tending ¢ to zero, we conclude
n

/ Z agj(x)un;de > 0. ©)
L ig=1

It is easy to see as 7(z) in (9) we can take any function from C! (Z) with compact support in £\ H.
Then

n
/ Z a;j(z)umnjde > 0.
ol BI=L
Substituting n(x) on —n(x), we arrive to the equality

n
/ Z a;j(x)un;de = 0.
e\H iy=1
Lemma 6 is proved.

Let i be a charge of bounded variation, given on £. We’ll say, that the function u(x) € Li(¢)
is a weak solution of the equation Lu = —pu, equaling to zero on Oe, if for any function p(z) €

€ W3 ,(e) cap C (€) the integral identity

/uﬁgpdaz = /gpd,u

£ 3
is fulfilled. .
According to Lemma 1 (at h = 0) there exists the continuous linear operator H from W% o) in

[¢] * o]
W3 ,(€), such that for any functional T' € W3 ,(¢), the function uw = H (T') is unique in W3 ,(¢)
generalized solution of the equation Lu = T

The operator H is called Green operator.

By Lemma 1 this operator at p > py we transform I;Ik/%a(e) to C (). It is easy to see, that the
function u(x) is weak solution of the equation Lu = —pu, equaling to zero on Jg, iff for any function
Y (x) € C () the integral identity

/m/de = /H(w)du (10)
€ I3
is fulfilled.
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1046 T. S. GADIJIEV, N. Q. BAYRAMOVA

By analogy with [8] we can show that for each measure ;1 on ¢ there exists the unique weak
solution of the equation Lu = —pu equaling to zero on Oe.

Let’s say, that the charge 1 € W%’a(s) if there exists the vector f(z) = (f°(z), f1(z),..., ["(z)),
O(z) € hale), fi(z) € Lay,(g), i = 1,2,...,n, for any function ¢(x) € Wia(s) cap C (g) the

integral identity
= /sodu = / (focp - ZJ”@) dx
€ € i=1

is true.
At this, it is evident that

/cpd,u < Gy (f) ||90HW21,Q(6)

£

Lemma 7. The weak solution u(x) of the equation Lu = —p, equaling to zero on Oc, belongs
o *

0 Who(e), iff 1 € W o (e).
Proof. At first, we’ll show that if the function ¢(z) € Wia(&‘) satisfies the integral identity

/ Z aij(x)uipjde = —/ pdp (an

e b=l €

for any function p(x) € W%ya(a) cap C (€), then it is weak solution of the equation Lu = —p,
equaling to zero on Oe. Really, assuming ¢ = H (), ¢¥(z) € C (€) we obtain

/H(w)du /sodu— /Z aij(x)uip;de =

e =1

/ Z (aij(x)pj); d:v—/u&pdx—/uwd:c

1.] 1 15 g

and now it is sufficient to use the identity (10). We’ll show that u € W%ja(e). For this, it is sufficient

to prove, that if fi(z) = Zﬁ_l aij(z)ui(x), then f'(z) € Ly,-1(g), i = 1,2,...,n. Assume in

1
condition (11)§ =... =& 1 =&41=... =&, =0, =
Ai()
We have (@)
Q5 \ T -1 .
< < =1,...,n. 12
7 — )\Z(f]f) — 7 ) ? Y 7n ( )
1
Leti # j. Assuming £, =0 atk # jand k # 4, & = V&= , we get
Ai(x) Aj(z

ai(xz)  ajj(x) 2a;5(z
230 TN T ene
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ON REMOVABLE SETS FOR DEGENERATED ELLIPTIC EQUATIONS 1047

Using (12), we conclude

|a;(z)] 1 . L
7§’Y -7 17.7217""77’7 27&] (13)
Ai(@) ()

From (12) and (13) it follows that
@l (14)
Ai(w)Aj(x)

Thus, from (14) take out for j = 1,...,n
2
) dx = / aij(x)u; | dr <~ *n /)\Z(aj)u?da: < a.
!Ajm( = ) (& by

So, u € W%ya(s). Inversely, if u(z) is a weak solution of the equation Lu = —p, vanishing on Oe,

*
then there exists 1 € W3, (¢), such that

(fOSO - ifi%) dr = /wdu = /uﬁcpdx -
=1 € £

= /u Zn: (aij(z)pj); dv = —/ f: aij(x)uip;ds

2 dy=1 e L=l

for any function p(z) € I/?/%a(e) capC (g), Lo(z) € C ().

Then, from Lemma 1 we obtain that u(z) € V?/éa (e).

Lemma 7 is proved.

Let now d(z) be Dirac measure, concentrated at the point 0, y is an arbitrary fixed point .

The weak solution g(z,y) of the equation Ly = —d(x — y), vanishing on Oc is called Green
function of the operator £ in €.

In case ¢ = E, the corresponding function is called the fundamental solution of the operator £
and denoted by G(z,y).

According to above proved, if ¢ (x) is an arbitrary function from C (€), then the generalized

solution p(x) € Wia(e) of the equation Ly = —1) can be introduced in the following from:

p(y) = /g(x,y)w(x)da:.

£

We can show, that g(z,y) is nonnegative in € X €, moreover, g(x,y) = g(y, x).
Lemma 8. For any charge, of bounded variation on ¢ the integral

u(x) = /9(9:, y)du(y)

€

exists, finite a.e. in € and is weak solution of the equation Lu = —p, equaling to zero on O¢.
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1048 T. S. GADIJIEV, N. Q. BAYRAMOVA

Proof. Without losing generality, we’ll assume that the charge p is the measure in . Let

p(z) € C(g), ¥(x) > 0 in e. Denote by p(x) € Wia(s) the generalized solution of the equation
Lo = —1)(x). Then p(x) € C () according to Lemma 1 and ¢(z) > 0 according to Lemma 4. At
this

p(y) = /g(az,y)zp(:p)dm.

£

Then, by Fubini theorem we conclude, that the integral / g(x,y)du(y) there exists for almost all

€
T € €, moreover

[ @) = [ewintw) = [[ s vv@dsdut) = [v@ueids. as)

Let’s note, that the equality (15) is fulfilled for weak nonnegative and continuous in € function
¥ (x). Now, it is sufficient to remember the identity (10).

Lemma 8 is proved.

Let’s consider now L-capacity of the potential u(z) of the compact H relative to the ellipsoid
e. Before, it was proved that u(z) satisfies the inequality (9) at any nonnegative on H the function
n(xz) € C§°(e). By the Schwartz theorem [9] there exists the measure p on H such that

/ Z aij(x)un;de = /nd,u. (16)

o
Further, since v = 1 on H in sense W%,a(e), then the carrier of the measure y is situated on 0H.
The measure p is called £ -capacity distribution of the compact H.

According to Lemma 8 L-capacity potential u(x) is weak solution of the equation Lu = —p,
equaling to zero on J¢ and can be represented in the following form:
u(w) = [ g(@2) du(z). (7)
15
On the other side, there exists the sequence of the functions {n(m) (ac)} ,m=1,2,..., such that
™ (z) € B(e), n™(z) = 1 for z € H and lim,,_,o0 Hn(m) _UHW1 o = 0 Assuming in
2,

equality (10) n("™ () instead of 7™, we conclude that it first fart is equal to ;(H) at any natural
m, while the left part tends to cap(f)(H ) as m — oo. Thus,

capy) (H) = u(H). (18)
Lemma 9. Let relative to coefficients of the operator L conditions (1), (2), y € 0er2(0),
r1(0) C D, x € Oer1(y) be fulfilled. Then for the Green function g(x,y) the following estimations

are true:

C3 (v, a,n) [capf) (?m(y))]_1 < g(z,y) < Cy(v,a,n) [cap(f) (ER,l(y))}_l- (19)

If €r1(0) C D, x € Oep1(0), then

Cs [capp (ngl(o))} @0 <0y [capp (53,1(0))} - (20)
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ON REMOVABLE SETS FOR DEGENERATED ELLIPTIC EQUATIONS 1049

Proof. Without loss of generality, we can assume that the coefficients of the operator £ are
continuously differentiable in €. The general case is obtained by means of limit passage. Then at
x # y the function g(z,y) is continuous by x and y, moreover

lim g(z,y) = oo. 21

Let a be a positive number, which will be chosen later, K, = {x: g(x,y) > a}, where y is an
arbitrary fixed point on dep 2(0). From (21) it follows that y is internal point y of the compact K,,.
Then L is capacity potential K, represented in the form (17), so it means it equal to zero in it. Thus,

1= [ 4.2 dua(o)

where p is a L-capacity distribution of the compact K,. Allowing for the carrier of the measure i,
is situated on 0K, where g (v, 2) = a and using (18) , we obtain

pa (K) = cap?) (K) = © (22)

Let’s assume now, a = infiep.p(y) 9(2,y). According to maximum principle Eg;1(y) C K.
Therefore from (22) we conclude

1
o o <o ) -
x€0eRr,1(y) ’

If we’ll assume b = SUp,cpey, ,(y) 9(2, y), then Eg1(y) C Ko, ie.,

) ©) 1

cap,’ (Er1(y)) < cap,’ (Kp) = . (24)
£ Era(y)) e (K) sup  g(z,y)
x€0eRr,1(y)
From (23) and (24) follows that
-1
inf g(,y) < [capf) Era(y)] < swp glwy). (25)
2€er,1(y) r€0eR,1(Y)
On the other side, according to Lemma 3
sup  g(z,y) < C5(v,a,n) inf  g(z,y). (26)
x€0eRr,1(y) z€0eR,1(y)

Now, the required estimations (19) follows from (25) and (26). Absolutely analogously the truthiness
of equalities (20) is proved.

Corollary 1. Let the conditions of the lemma, and y € Ocg2(0) be fulfilled, €r1(0) C D,
x € 0er1(0) or y = 0,Er1(0) C D, x € 0er1(0). Then for fundamental solution G(x,y) the

estimations . o
Cs cap(f) (5371(0))] < G(z,y) < Cy [cap%) (€r.1(0)) (27)

are true.
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1050 T. S. GADIJIEV, N. Q. BAYRAMOVA

3. Removability criterion of the compact in the space M (D).

Theorem 1. Let relative to the coefficients of the operator L, conditions (1), (2) be fulfilled.
Then for removability of the compact E C D relative to the first boundary-value problem for the
operator L in the space M(D) it is necessary and sufficient, that

capy(E) = 0. (28)

Proof. Let the ellipsoid ¢ has the same sense, that above. It is easy to see that if condition (28)
be fulfilled, then
cap(z)(E) = 0.

Not losing generality, we can limited with case, when the coefficients of the operator £ is continuously
differentiable in 2. Let’s fixed an arbitrary ¢ > 0 and 2° C D\ E. By virtue of (28) there exists the
neighbourhood H of the compact E, such that

cap%) (F) <e. 29)
At this, we can assume that ¢ is such small, that

dist(z%, H ) > = dist (2°, E). (30)

DN

Denote by V() and puy the L-capacity potential of the compact H relative to the ellipsoid & and
L-capacity of the distribution H, respectively. According to above proved

Vi(z) = /9(% y)dpm (y),

moreover the function Vy(z) is generalized solution of the equation LVy = 0 in ¢\ H, vanishing
on 0 and in de on 1 in OH sense Wy ,(¢). Let now, u(x) € M(D) is an arbitrary solution of the
equation Lu = 0 in D\ E, vanishing on 0D, M = supp, |u| . It is easy to see, that the function Vi (x)
is nonnegative on 0D, in sense W217a (D). Hence, it follows, that the function u(z) — MVy(z) is
generalized solution of the equation Lu = 0 in D \F, is nonpositive on 0 (D \F) According to
Lemma 4 u(z) — MVy(z) <0and D \H in particular

U (IL‘O) < MVy (:EO) < Msupg (xo, y) WH (F) =M sup g (:Eo,y) cap(ﬁe) (ﬁ) (31
yeEOH yeOH

By virtue of continuity of the function g(z,y) at  # y and inequality (30) we obtain

sup g (2%, y) < Cg (v, a,n, 2% E).
yeOH

Thus, from (29) and (31) we conclude
U (xo) < MCge. (32)
Using an arbitrariness €, we lead to the inequality
u (z°) <. (33)
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Making analogous considerations with the function u(x) + MV (x), we have
u (z°) > 0. (34)

From (32), (33) and an arbitrariness of the point 2° it follows, that u(z) = 0 in D\ E. Thereby, the
sufficiency of condition (28) is proved. Let’s prove its necessarily. Let’s assume that cap,(E) > 0.
Denote by ¢’ the ellipsoid, such that & C 0, E C ¢’'. Assume D = e. Further, let ug(x) be Vg-
L capacity potential of the compact F relative to the ellipsoid &’ and L-capacity distribution F,
respectively. Following to [10], we can give the equivalent definition of Vallee Poussin type of
L-capacity of the compact F, relative to the ellipsoid &’. Let g(x,y) be a Green function of the
operator £ in €’. Let’s call the measure p on E, L-admissible, if u C E and

VE(x) = /g(w,y)du(y) <1 for & supppu. (33)

E/

The value sup u(F) = cap(fl)(E), where an exact upper boundary is taken on all £-admissible
measures, is called £-capacity of the compact E, relative to the ellipsoid &’.

Analogously, the L-capacity cap,(F) is determined. At this by the standard method we show,
that there exists the unique measure, on which an exact upper boundary of the functional p(E) is
reached, by the set of all £-admissible measures y. This measure is L-capacity distribution of the
compact F.

According to the above proved, the function ug(z) is generalized solution of the equation
Lup = 0in &' \E , equaling to zero on d¢’. Besides, from (34) and maximum principle it follows
that ug(z) € M (¢') . On the other side ug(z) #Z 0, as Vg (E) > 0.

Theorem 1 is proved.

Lemma 10. Let relative to the coefficients of the operator L condition (1) be fulfilled. Then, if

y € Oer2(0), then C7 (v, a,n) R”‘*'%_Q <cap, (Er1(y)) < Cs(v,a,n) R”*%_Z.
n 0 0 :
Proof. Let Ly = Zi:l oz <)\1(az)awz> Then, according to (1)

vcapg, (Er1(y)) < cap (Era(y)) <7 ' capg, (Fri(y)) - (36)

Let u(z) € C§° (eR%(y)), u(z) =1 for er1(y), moreover

A
\ui(x)yg%;i”), i=1,...,n (37)
R1+7
Then .
cape, Cray) < [ Yo Mlapidde (38)
eng®
noy?
On the other side, as y € e 2(0), then Z‘_l R;‘ = 4R? and thereby

ly;| <2R™T, i=1,...,n.

Besides, as « € € 3 (y), then
’2
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3 o
’xi_y’i‘§§R1+77 ZZlv,n
Thus .
lzi] <yl +lzi — il < §R1+71, i=1,...,n.

Hence, it follows that

Therefore
Ni(z) < CURY < C{y R™, i=1,...,n.

where a™ = max {aq,...,a,}.
Allowing for (37) and (39) in (38) we obtain

(a)
capz, (Er.1(y)) < Cho (o,n) R~ mes (5373(9)) = Cui (a,n) R™ 2

and by virtue of (36), the estimation from upper in (35) is proved.
For showing the truthiness of the estimations from lower in (35), we note that

cave, (Ena() = cave, (21, 0)).

Besides, considering the same as in [8], we conclude

capg, (63,2%@)) > Cha (o, ) Cap(ff) (83,255(?;)),

where g9 = SR’ﬁ(y).

Let W = {u(x) u(z)C§e (e0), u(z) =1 for x € ER,Q}/E(y)}. Then

Cap(ﬁ?) <5R72\1/H(y)> :ulél‘ﬁ//Z)\z(l')u?dﬁf
1=1

€0

On the other side, if y € Ocp 2(0), then we can find i, 1 < ig < n, such that 111‘20 >

AR
|yi0| > T

Besides, as x € ¢g, then
RIS

|$io - y10| S \/ﬁ

Therefore o
0

Rt

’xi()’ > ‘yio‘ - ’xio - yio’ >

ISSN 1027-3190.  Yxp. mam. sucypH.,
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Thereby )
Ni()>n R, i=1,...,n, (43)

where o~ = min{aj,...,a,}.
Allowing for (43) in (42) we have

Cap(foo) (53,2%@)) = C13(a,n) JQVfV/ZRaufda; (44)
2 i=1

Denote by Bp(z) the ball {z: |z — 2| < R}. Let’s make in (44) the substitution of the vari-
T

u(T)C§° (Bo), u(r) =1forve B L (v) } Then from (44) we deduce By = B% (y) where by
2y/n 2y/n

ables v; = i = 1,...,n, and let § is an image of the point y, where W = {ﬂ(fu):

_ e led o A
cap(;(?) (ER’Q\l/;(y)> > Ci13R" 2 ZaIélvaV/Z ((%i) dr =
Bo =1
— Ci3R™ 5 2 cap(B) (Bl (?7>>’ (45)
2/m

we’ll denote by cap(Po) (E e (@) Wiener capacity of the compact B . (y), relative to the ball
2y/n 2y/n

By. Now, it is sufficient to note that cap(5o) (E e () ) = (C14(n) and required estimation follows
2y/n

from (40), (41) and (45).
Lemma 10 is proved.
Lemma 11. Let relative to the coefficients of the operator L condition (1) be fulfilled. Then

(o) _ _ it lo)
Cis (v, a,n) R"2 72 < cap, (Er,1(y)) < Cig (v, a,n) Rz 72, (46)

Upper estimation in (46) is proved analogously to the estimation in (35). For the proofing of the
lower estimation, it is sufficient to note that €, 1 (y) C €r,1(0), i.e.,
' 4

cap; (2,1 (7)) < capg (2ra(0)), (47)

1 o
where y = <2R1+2 ,0,. .. ,()) and repeat the consideration of the proofing of the previous lemma.

Corollary 2. If conditions (1), (2) y € Oecp2(0) be fulfilled, then for any p € (0, R] the estimation

Cap, (gfhl (@)) < 017 (’77 Q, n) pn—&-%—Q (1 + Z (f) Z> (48)
=1

is true.
Then v(z) € C§° (ep’%(y)), v(z)=1forz €e,1(y)

jos(a)] < )

1=1,...,n
= 1+7l ) M MRS
p 2

ISSN 1027-3190.  Vkp. mam. scypn., 2014, m. 66, Ne 8



1054 T. S. GADIJIEV, N. Q. BAYRAMOVA

> Xiz)p“ida. (49)

v =1

—

capr, (Ep1 (7)) = v ' Csp™?

£
P

[V

On the other side, arguing the same, as well as in the proof of Lemma 10 we came lead to the
inequality
Ai(z) < Cro (ayn) (R+ p)*, ree, s(y), i=1,...,n. (50)

145

Now, it is sufficient to take into account that

> (4 5) e 3 [+ ()] (Z(R))

i=1

and from (49), (50) follows the required estimation (48).
Corollary 3. If conditions (1), (2) y # 0, be fulfilled, then at x € €d|y|d71(y), x # y for the
Sfundamental solution G(x,y) the estimation

(@)

(Jz —ylo)* "%
G(.Z'7 y) > CQO (’Ya «, Tl) o (51)
1+ Z” ( ¥]a )
i=1 |:U - y|a
is true. 1
If y = 0, then estimation (51) is true for all x # 0. Here d = 5
n22+a
For proving, at first let’s show, that if y # 0, then y ¢ €4y, 2(0). Really, as
n 2
Yl = D lyil a7, (52)
i=1

then there exists ig, 1 < ig < n, such that

2
lyo| o0 > %
n
Thus ’ 2| )
(‘y|a)alo — n2+ai :
There b

’ & 2 2 dly|.)? 4(d|yl,)?
Voo B [l 4l

i=1 (d|y’a)0‘z - (d|y’a)ai0 — (dn)2+aio <2ﬁdn>2+ai0'

_2 2
Now, it is sufficient to note that 22+ dn < 22+edn = 1 and the required assertion is proved. On
the other side from (52) it follows that for all 7, 1 < i < n,

_2
lyil>ei < [ylq
1.e.,
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n

S ()
(yl)™ — o

i=1

So, we’ll show that €, 7(0), if only y # 0.
Let now, for y #£ 0, x € 5d|y‘d,1(y) and x # y. Denote by |z — y|, the p. It is easy to see that
there exists 71, 1 < 77 < n, such that

2
e < P
@iy — yiy[7Ton = e
Hence, it follows that
n 2 2
Z (i — i) > (i, — ¥in) > P > p?
pYi - P — p2tain T p2+a’

i=1

Thus = ¢ €4, (y), where dy = ———= o . Analogously, it is proved that z € €, 7 (y). Now, the required

estimation (51) at y # 0 follows from (27) and Corollary 1 from Lemma 10. If y = 0, then (51), it
immediately follows from (27) and Lemma 7.

Let F(z,y) be a positive function, determined in E, x E,, continuous at z # y, moreover
lim,_,, F'(z,y) = oo (condition (A)).

Further, let £ C FE,, be some compact. Let’s call the measure p on E [F] admissible, if

suppp C E and Vf(:c) = / F(z,y)du(y) <1, for x € sup ppu.
E

The value sup p(E) = capp)(£), where an exact upper boundary is taken by all [F] admissible
measures, is called [F']-capacity of the compact F.

Theorem 2. Let relative to the coefficients of the operator L conditions (1), (2) be fulfilled. Then
for removability of the compact E C D relative to the first boundary-value problem for the operator
L in the space M(D) it is sufficient that

caps (E) = 0, (53)
where

-1
‘y’ 2-—n—i2
B 1+§Z(x_y,) ] (e = yl,)* "%

Proof:  'We’ll use the following assertion, which is proved in [10]. Let the function F'(x,y)
be satisfied condition (A), the compact E has zero [F'|-capacity, ; zero measure concentrated on
E. Then, there exists the point £° € sup pu, such that V#E (z°) = oo. At this the potential of the
measure sup py can’t be bounded on any portion B, i.e., for any open set B at £’ € sup pu cap B,
the potential VHE/(x) is not bound B. In particular, if B is n arbitrary neighborhood of the point x°
that VHE/ (x°) = o0.

Let the condition (53) be fulfilled, i be an arbitrary measure, concentrated on F, x° € sup pu is a
point, corresponding to the above-stated assertion at F' = Fj. Let’s assume at first, that 2° # 0. Then
|°|,, = v > 0. Further, let B be such small neighborhood of the point z°, that if £/ € sup pucap B,
then

sup [yl, < (L+¢e)r, inf |y|, > (1+e)r,
yeR' yeE
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where the number ¢ > 0 will be chosen later. Let’s consider the ellipsoids e, 1(y) at y € E".
Let’s choose ¢ such small, than z° € Edlyl, 1(y) for all y € E'. Then according to Corollary 2 from

Lemma 7 we obtain
/G 0. y) du(y /G O.y) duly) >

> 020/ ( ,y) d,LL( ) CgovyE (.’EO) = 00.
E

Hence, it follows that any zero measure 41, concentrated on E can’t be £ admissible. Thus cap,(E) =
= 0 and the required assertion is follows from Theorem 1.

Let now z° = 0. Then, using the equality G(x,y) = G (y, ) and Corollary 2 from Lemma 7 we
conclude

/GOydu /Gy, du()>C20/F1(ya 0) du(y) =

E

— / Fy (0,y) du(y) = CaoVF(0) = oo,
E

Theorem 2 is proved.

Remark. Let conditions of the real theorem be fulfilled, and the compact ¥ C D is removable
relative to the first boundary-value problem for the operator £ in the space M (D). Then mes(E) = 0.

At first, let’s note for proofing that the discussion are the same, as at conclusion of estimation (51),
we can show that at « € 4y, 1(y), * # y (y # 0) and at z # y (y = 0) the estimations

(@)

G(QE, y) S C21 (77 «, n) (|.CU - y|d)2_n_T (54)
are true.
Further, analogously to Theorem 6, it is shown that if the compact F is removable, then according
i)
to cap(_p,)(E) = 0, where Fy(z,y) = (lz —y|,)* "2 .

Hence, it follows that if mes(E) > 0, then there exists the point 22 € E, such that V¥ (xl) = o0,
where
Plz) = /Fz(w, y)dy
E

Moreover, if B’ is an arbitrary neighborhood of the point £’ = B’ cap E, then the potential V7' (z)
is not bounded on E’. Let’s consider the case 2! # 0. Choose small neighborhood B’ of the point
xl, thatatall z € E', y € E’ the inequality |z; —y;| < 1,i=1,...,n, are fulfilled. For x € E’ we
have

) 9 g fa)

n 2-n—"5" n —n—-3"
2
o x)Z/(lei—yzl”fﬂ) dyS/(ZI%—.wI) dy <
=1 E =1

El
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(o) ()
< / o~y ay < / 222 ay,
E/ B//

where B” is a ball of the radius \/n with the center origin of the coordinate. Now, it is sufficient to

note that according to condition (2) 3

10.

() _

3 . .
] < 3 and the assertion the corollary is proved.
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