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ON A CLASS OF NONUNIFORMLY NONLINEAR SYSTEMS
WITH DIRICHLET BOUNDARY CONDITIONS

PO OJINH KJAC HEOJHOPIJTHO HEJITHIMHUX CUCTEM
3 'PAHUYHUMHU YMOBAMMU TUITY OIPIXJIE

The existence and multiplicity of weak solutions for some nonuniformly nonlinear elliptic systems are obtained by using
the minimum principle and the Mountain pass theorem.

IcHyBaHHS Ta KpaTHICTH CTA0KMX PO3B’SI3KIB JACIKUX HEPIBHOMIPHO HENIHIHHHUX CNMINTUYHUX CHUCTEM JOCIIKEHO 3a JIOT0-
MOTOI0 IPUHLHUIY MiHIMyMy Ta TEOPEMH IO TipChKuUil mepeBa.

1. Introduction. We study the nonuniformly nonlinear elliptic system

—Apu — div(hy (|Vul?)|VulP~>Vu) = Fy(z,u,v) in  Q,
—Agv — div(ha(|Vo]|1)|Vo|? V) = Fy(z,u,v) in (1.1)

u=v=0 in 0,

where (2 is a bounded smooth open set in RY, —A,u = div(|Vu|P~2Vu) is the p-Laplacian of u,
t
2<p<gqgandhy, ho € CL(R,R). If h1(t) = ho(t) = 1+ ——, t > 0, then (1.1) is called a
p<q 1, h2 € C4(R,R) 1(t) = ha() N (1.1)

capillarity system. Capillarity can be briefly explained by considering the effects of two opposing
forces: adhesion, i.e., the attractive (or repulsive) force between the molecules of the liquid and those
of the container; and cohesion, i.e., the attractive force between the molecules of the liquid. The study
of capillary phenomena has gained some attention recently. This increasing interest is motivated not
only by fascination in naturally-occurring phenomena such as motion of drops, bubbles, and waves
but also its importance in applied fields ranging from industrial and biomedical and pharmaceutical
to microfluidic systems, see [11, 12].

It should be noticed that the proof of the existence results for nonlinear elliptic systems is a
long-standing question, see [7] and the references therein. To our knowledge, elliptic equations of
(1.1) type has been firstly investigated by J. M. Bezerra do O [13], in which the author extended the
existence results by D. G. Costa et al. [4] (for the p-Laplacian) to a more general class of operators.
He also achieved a multiplicity result using Morse theory. On this topic, we refer to recent interesting
papers [5, 6, 8—10, 15]. There, the authors have used different methods to prove the existence of a
nontrivial solution or the existence of infinitely many solutions. In [1, 16], the authors studied the
existence of a solution for (1.1) using the minimum principle. The purpose of this note is to deal
with the multiplicity of solutions for system (1.1) by using the minimum principle combined with the
mountain pass theorem. Thus, our result is a natural extension from the previous ones [1, 13, 16].
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Through this paper for (u,v) € R?, denote |(u,v)|?> = |u|?+|v|?. We assume that F': QxR? — R

F OF
is of C! class such that F'(x,0,0) = 0 for all z € Q and (F,, F,) = <g (?) > F, and F, are

Carathéodory functions satisfying the following growth conditions:

Ll 1 1 re) : F, 5 Wy
(H1) im0 W = 0, uniformly in (z,v) € Q x R, limy|_,q W =0,
uniformly in (z,v) € Q x R;
(2, u,0)| : |F (2, u,0)| . .
(Hz) 1imj(y,4)—0 W = 0, lim|(y,)| 00 W = 00, uniformly in z € Q x R,
0+1 1
where §,v > 0, L—Fizl;

q
(H3) let hy and hy € C (R, R); we assume that h; and hy are the continuous and nondecreasing
functions satisfying the following growth conditions: there exist a1, g, 81 and B2 € R such that

0 <a; <hi(t) < B,

0 < ag < ha(t) < Ba.

The main result of this paper is given by the following theorem:

Theorem 1.1. Suppose that (Hy)—(Hs) hold. Then system (1.1) has at least two nontrivial
weak solutions.

This paper is organized as follows. In Section 2, we present some notations and relevant lemmas.
We reserve the Section 3 for the proof of the main result.

2. Notations and preliminary lemmas. Let the product space H = Hy”() x Hy(2) with
the norm

q
[0l =+ olg = | [ 1Valde |+ [ [ 1vulrds
Q

1 1
:/]Vu|pdac—|—/]VU|qu
p q
Q Q

(J1 (u,v) / (|VulP~2VuVE + |Vo|T2VoVn) dz
Q

Let us define the mappings

and J{: H — H* by

for any (u,v), (¢,7) € H.
Let us define the mappings

1 r 1 f
h(u,v) = /hl(s) ds—i—/h2(8) ds, Ja(u,v) :/h(|Vu|p,|Vv]q)d:U
P 73 Q
and J5: H — H* by
(J5(u, ) / hi(|VulP)|VulP2VuVE 4 ho(|Vo|?) | V]9~ 2vvvn} dx
Q

for any (u,v), (&,n) €
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Let us define the mapping

W(u,v) = /F(x,u,v) dz
Q

and W': H — H* by

(" (u,0), (€)= [ [Fulav0)€ + (o, 0)q] do
Q

for any (u,v), (¢,1) € H.
We need certain properties of the functional J = J; + J2: H — R defined by

[Vul? |Vl
1 1 1 1
J(u,v):p/|Vu|pdx—|—q/\Vv\qu+p/ / hl(s)ds—l—q/ / ho(s) ds
Q Q Q 0 Q 0

for all (u,v) € H.
Definition 2.1. We say that w = (u,v) is a weak solution of system (1.1) if and only if

(J'(u,v), (€,m)) = (W'(u,v), (&, 1))

for any (&,m) € H.

Definition 2.2. An operator J: H — H* verifies the (Sy) condition if for any sequence
{(un,vn)} € H such that {(un,vn)} — (u,v) weakly and

lim sup <J’(un,vn), (U, — uy vy — v)> <0

n—o0

we have that {(u,,v,)} — (u,v) strongly in H.

Lemma 2.1. The functional J is weakly lower semicontinuous.

Proof. Let (u,v) € H and € > 0 be fixed. Using the properties of lower semicontinuous function
(see [3], Section 1.3), it is enough to prove that there exists 4 > 0 such that

J(u,v) > J(ui,v1) — e, V (u,v) € H: |[(u,v) — (ug,v1)] < 0. 2.1
Using the hypothesis (H3), it is easy to check that J is convex. Hence, we have
J(u,v) > J(ug,v1) + (J' (ur,v1), (u —u,v —v1)) V(u,v) € H.

Using condition (H3) and Holder’s inequality we deduce there exists a positive constant ¢ > 0 such
that

J(u,v) > J(ug,v1) — / |Vur P72 Vuy | |[Vu — V| dz—
Q

—/\Vv1]q2\Vv1] |Vv — V| de—
Q
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—/\hl(\vulyp)y Vo P2 V| [V — Vs |da—
Q

_ / o ([V01]9)] V02| Vn | [V — Vor|da >
Q

-1 -1
> J(ur,v1) = (B + D[l = wallip = (B2 + Dllvallfg o = villig >
> J(uy,v1) —cl|(u—up,v—v1)||lg V(u,v) € H.

It is clear that taking § = € telation (2.1) holds true for all (u1,v1) € H with ||(u,v) — (u1,v1)||g <
c

< 4§. Thus we proved that J is strongly lower semicontinous. Taking into account the fact that J is
convex then by [2] (Corollary I11.8) we conclude that J is weakly lower semicontinous.

Lemma 2.1 is proved.

Lemma 2.2. The functional W is weakly continuous.

Proof. Let {w,} = {(un,v,)} be a sequence that converges weakly to w = (u,v) in H. We
will show that

n—o0

lim | F(x,up,v,) dx = /F(m,u, v) dx. (2.2)
Q Q

From (H;) and the continuity of the potential F, for any ¢ > 0, there exists a positive constant
M = M (e) such that
|Fu(z,u,v)| < elulP™' + M, |Fy(,u,0)] < o] + M, (2.3)

for all (z,u,v) € Q x R?. Hence,

= /Fu(x, u+ 6 p(un —u), v+ 025 (v, —v)) (up — u) de+
Q

+ / Fo(,t+ Ot — 1), 0+ O30 (0 — 0)) (v — 0) e,
Q

where 6, = (01,,602,) and 0 < 6y ,(z), O2.,(z) < 1 for all z € Q. Now, using (2.3) and Holder’s
inequality we conclude that

/{F(xaunvvn) — F(z,u,v)]dx| <
Q
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< / ‘Fu(x,u + 01 (up, — u), v+ 02, (v, — ’U)‘ |un, — ul de+
Q

—|—/ }Fv(x,u + 601 (un — u), v+ 02, (v, — v)‘ lop, — v| dz <
Q

< / (€ Ju + 1t — )P~ + M) — ] dat
Q

+/ (v + 01y (vn — )97 + M) |vp — v]da <
0

p=1 _
< MJQ| P luy — UHLP(Q) + ellu+ 01,5 (un — u)”ip(lﬂ) [|un — U||LP(Q)+

=1 _
+M|Q 4 |lv, — UHL‘I(Q) + €llv + 2.0 (vn — U)H%q(lg) [[vn, — UHL‘J(Q)- (2.4

On the other hand, since H < L(Q) x L’(f2) is compact for all i € [p,p*) and j € [p,p*) the
sequence {wy,} converges to w = (u,v) in the space LP(£2) x L1(Q), i.e., {u,} converges strongly
to w in LP(Q2) and {v, } converges strongly to v in L(€2). Hence, it is easy to see that the sequences
{llu+ 015 (un —u)|| ey} and {||v + 02,5 (vn — v) || La(q) } are bounded. Thus, it follows from (2.4)
that relation (2.2) holds true.

Lemma 2.2 is proved.

Lemma 2.3. The functional J': H — H* verifies the (S4) condition.

Proof. Assume that (u,,v,) — (u,v) in H and

limsup (J' (tn, vn), (un —u, v, — v)) <O0. (2.5)
n—oo
Since {(un, vy)} is weakly convergent to (u,v) in H it follows that {(uy, v, )} is bounded in H. By
the condition (H3) we have

1
Tty v) < (B2 + 1) / Vol do 2 (52 + 1) / V1 de
Q 9]

1
p

So {J(un,vy)} is bounded. Then we may assume that J{(uy,v,)} — «. Using Lemma 2.1, we
find
J(u,v) < liminf J(u,, vy,) = .

n—oo
Since J is convex the following inequality holds true:
J(u,v) > J(tn, vy) + (J (tn, vp), (W — tn,v —vy,)) forall n. (2.6)
Using (2.5), (2.6), we have

J(u,v) —limsup J(up, v,) = liminf(J(u, v) — J(tn, vn)) >

n—00 n—00
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> hrr_l)inf(J’(un, Un)y (U — Up, v —vy)) =

= — limsup<J/(un, Un), (un — U,V — U)) >0,
n—o0

which implies that J(u,v) > « and thus J(u,v) = a.

We also have (un;— u, U"; Y

deduce that

) converges weakly to (u,v) in H. Using again Lemma 2.1 we

n—00 2 ’ 2

a = J(u,0) glimian<“”+“ “”J”’). 2.7)

If we suppose that {(u,, v,,)} does not converges to (u,v), then there exists ¢ > 0 and a subsequence
{(unk’vnk)} such that H(unk — U, Uny, — V)| = Hunk - UHHSW + ank - UHHé,q > €.

1 . . .
If |Jup, — ull 10 > % we know that T} (u) = / |VulP dx is p-uniformly convex, i.e., there
0 P Ja

exists a positive constant k1 > 0 such that

u—+v 1 1
T1 < B) > S §T1(u) + iTl(U) —k1||u—v||1201,p.

Hence, we have

1 1 1 Vu+ Vu
_ Pd _ e |Pdx — = - T Mk
Zp/]Vu\ x+2p/]Vuk] x p/' 5

Q Q Q

p
dx > ky / |Vu — Vuy, |P de.
Q

That fact and convexity of Ja, || - || 1.« imply
0
1 1 Up, +U Uy, +V
§J(u,v) + §J(unk,vnk) —J 5 3 =
1 1 1 Vu + Vuy,, [P
= %/]Vu\pdx—l—%/]Vunk]pda:—p/‘2% dz+
Q Q Q
1 1 1 Vv + Vo, |?
+2q/|Vv|qu+2q/|ank|qu—q/’2”’“ dx+
Q Q Q

1 1 + +
+2J2(u,v)+2J2(unk,vnk)—J2(unk v O ”)z

2 ’ 2
>k / |Vu — Vuy, |P de > k (%)p.
Q

Letting k — oo we find

lim sup J (u"’“ U Uy +U> <a-k (%)p

n—oo 2 72

which contradicts (2.7).
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1 . .
If ||vp, — vl y1a > % we know that Th(v) = / |Vul? dz is g-uniformly convex. That fact
0 qa.Ja

and convexity of Ja, || - || ;;1.,» imply that

2

lim sup J <un’“ +u, Un +v) <a-k (E)q,
n—00 2 2 2

which contradicts (2.7).

Similarly if ||y, || L > % and ||vy| L > % we obtain contradictions.

Lemma 2.3 is proved.

In our proof, we use the mountain pass theorem stated in [2]. For the reader’s convenience, we
recall it as follows.

Definition 2.3. Let (X, | - ||) be a real Banach space, J € C*(X,R). We say that J satisfies the
(PS) condition if any sequence {un,} C X such that J(uy,) — ¢ and J' (uy) — 0 as m — oo has
a convergent subsequence.

Proposition 2.1 (see [2]). Let (X,|| - ||) be a real Banach space, J € C'(X,R) satisfies the
(PS). condition for any ¢ > 0, J(0) = 0 and the following conditions hold:

(i) There exists a function ¢ € X such that ||¢|| > p and J(p) < 0

(if) There exist two positive constants p and R such that J(u) > R for any u € X with ||u|| = p.
Then the functional J has a critical value ¢ > R, i.e., there exists uw € X such that J'(u) = 0 and
J(u) =c.

3. Proof of the main theorem. In this section we give the proof of Theorem 1.1. Let

J(u,v) = / h(|]Vul?, |Vv|?) dz as in Section 2, and let the energy E': H — R given by
Q

E(u,v) = J(u,v) — /F(az,u, v)dx
Q

for any (u,v) € H. Then weak solutions of system (1.1) are exactly the critical points of E(u,v) in
H. Lemmas 2.1 and 2.2 imply that E' is weakly lower semicontinous.
By Holder’s inequality, (2.4), we have

S

F(m,u,v):/aaF(x s,v)ds + F(z,0,v) =
0

u

0
= F
/889531) / (2,0,s)ds + F(x,0,0) <

0

[e=]

v

< /(e|u]p_1 + M)ds + /(e\v|q_1 + M) ds =
0 0

= E|u|p + Mou+ E]v|q + M.v,
p p
S
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/F(m,u,v)dx S/\F(x,u,vﬂdmg
Q Q

1 1
<e /|u|pdx+/|v|qu + M. /Ud$+/vd$ <
p q
0 0

Q Q

< ; SP /|Vu|pdx+; sS4 /|Vqu:c+
Q Q

p

q

p—1 1
+M|Q| P S, /\Vu|pdx + M|Q| 7 Sy /|Vv\qd:v <
Q Q

€ €
< 8 Nullip + - S5 ol + A (g + o)

where S, Sy are the embedding constants of Hy”(Q) < LP(), Hy(Q) — LY(Q) and A =
1

p=1 =1
:maX{M€|Q] PSy, M.|Q| @ 52}.

Hence
1 P 1 q
E(u,v) > —(a1 +1—-€S7) [ [VulPde+ —(a2 +1—€53) [ |Vv|Tde — A||(u,v)| H-
P Q 1 Q
1 1 1
Letting € = 3 min { 041;}1; , azs;: } Note that
1 17
] p q
/!Vu\p dr + / |Vol?dx > > /]Vu\p de | + /Vv[q dx -1
Q Q Q Q

Since p < ¢, we obtain that
1. 1 )
B(u0) 2 oo minfas + 1,02+ 1} x | 35 o)y = 1] = Al )
It follows that E is coercive in H. By (H1), (Hs), E is continuously differentiable on H and
(E'(u,v),(e,n)) =

= / |1 (IVul?) [Vl "2VuVe + ha(IVo]") [Vl 2V0Tn — Fy(w, u,0)6 = Fy(z,u,0)n] do =
Q

= (J'(w.v), (e;m) = (W'(wv). (e.m))
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for any (u,v) € H. By Lemmas 2.1, 2.2 and the coercivity of E, applying the Minimum principle
(see [14, p. 4], Theorem 1.2), the functional E has a global minimum and system (1.1) admits a weak
solution w; = (u1,v1) € H. Moreover, we shall prove that E'(w;) < 0.

Indeed, let o be first eigenfunction of —A,, associated with first eigenvalue A\ and 1; be first
eigenfunction of —A, associated with first eigenvalue y;. In view of (H3), we get for M > 0 and

t > 0 sufficiently large,
1 1
E (tpsf?l,tq%) <

A 1 1
< pl (/31+1)/‘901‘pd$+21 (62+1)/|w1|‘1dx t—/F(x,tpsol,t%) dx <
Q Q

Q

A o+1  y+l
<2+ [1aP i+ By [t |- a0 [ et
Q Q

Letting

A

Moan) [l de+ 2 @) [l
p Q q Q

M =
/’%’(SHWHWH dx
Q

1 1
we have E(ug,vg) < 0, where wog = (ug,vo) = (tp gpl,tqwl). This means that

—00 < E(wy) = inf{E(u,v): (u,v) € H} <0 3.1

and w; # 0.

In the next parts, we shall show the existence of the second weak solution wy = (ug,v2) € H
(wg # wy) of system (1.1) by applying the Mountain Pass theorem in [2]. To this purpose, we first
show that J has the geometry of the Mountain Pass theorem.

It is clear that £(0,0) = 0. By using Young’s inequality, (H2) we get for ¢ > 0

1

1
Blu,v) 2 (o1 +1) /\Vu|pd:v+ (o + 1) /|W|ng;—

epSY / €qS4 /
————— [ |Vu|P dz — ——=— [ |Vu|%dx =
CR Ve (v + D J v+l

1 epSy 1 equ
= (= 1) — —221 ) [ | Vufp 1 Vol|ldz.
<p(oq+ ) — (5+1)\1>/| ul dx—i—( (g +1) — S /| v|%dx

(a1 +1D)(6+1) pr(ag+1)(y+1)
P P

1
Letting 0 < € < 3 min{ } . Hence there exists r > 0 small

enough and such that
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inf  E(u,v) > 0= E(u,v).

l[(wv)|=r
1 1
On the other hand, by (3.1) there exists ¢ > 0 (large enough) that for wg = (tp p1,t4 d)l) € H we
have both ||wo||g > r and E(wp) < 0.
In order to verify the (P.S). condition we proceed as follows. Let {(uy,v,)} € H be a sequence
satisfying

E(up,v,) = ¢, HE’(un,vn — 0.

M-

Since F is coercive, it follows that the sequence i(\“”’ vy )} is bounded in H. Up to a subsequence,
(U, vp) = (u,v) weakly in H. From E' = J" — W' we get

(J" (tn,vn), (tn — uyvp —0)) = (B (un, vp), (un —u, v —v))+

+/ [Fu(:v, Upy Vn ) (U, — w) + Fy(, U, vn) (v — v)] dx. (3.2)
Q
Since HE’(un, vn)HH — 0 and {(un — U, vy — v)} is bounded in H, by the inequality

‘<E’(un,vn), (U, — u, vy — v)>} < HE’(un,vn

)HH* (un — U,V — U)HH

it follows that
<E’(un, Un),y (Up, — u, vy — v)> — 0.

By (2.3), (3.2) we get

/ (1Bt ) — ]+ 1B 2t 00 [0 — 0] ) <
Q

p—1
-1 £
< €Hun”ip(g) l|n — UHLP(Q) + M|Q| P |u, — UHLP(Q)“‘

qg—1
-1 q—->
Fellval %ty o = vll oy + M| llon = vl agay-

Since (up, vy,) — (u,v) strongly in LP(2) x LI(Q2), we get

lim <|Fu(;v, Uy Op)||tn, — u| + | Fy (2, tp, vp)||vn, — v|>d;v = 0.

n—oo

Q

In conclusion, relation (3.2) implies

limsup {J' (tn, vp), (Un — u, v, —v)) < 0.

n—oo

Then applying Lemma 2.3 we deduce that {(u,,v,)} converges strongly to (ug,vs) in H. Set

¢=inf max FE(w),
x€l wex([0,1])
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ON A CLASS OF NONUNIFORMLY NONLINEAR SYSTEMS ... 1165

where I' := {x € C([0,1], H): x(0) = 0,x(1) = wo}. We know that all assumptions of Proposi-
tion 2.1 are satisfied. Therefore, there exists 0 # we € H such that E(w2) = ¢and (E'(w2), (§,7)) =
= 0 for all ({,n) € H or wy is a weak solution of (1.1). Moreover wg # w; since E(wg) =¢ > 0 >
> E(wl)

11.

12.

13.

14.
15.

16.

Theorem 1.1 is proved.
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