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VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS *
MO JAHUX TA €IMHICTD HITAX ®YHKIII

We study the uniqueness of entire functions sharing a nonzero value and obtain some results improving the results due to
Fang, J. F. Chen, X. Y. Zhang and W. C. Lin et al.

BuBuaeThcs €1uHICTD MITMX (QYHKIIIH, [0 MOAIIAIOTH HEHYIbOBE 3HaYCHHSA. OTpUMaHO JesIKi pe3yabTaTH, 10 MOJIMIIYIOTh
pesynsratu Panra, k. @. Yena, C. U. XKanra, B. 11. Jlina Ta iHmHX.

1. Introduction and main results. In this paper, a meromorphic function will mean meromorphic
in the whole complex plane. We will use the standard notations of Nevanlinna’s value distribution
theory such as T'(r, f), N(r, f), N(r, f), m(r, f) and so on, as explained in Hayman [1], Yang [2]
and Yi and Yang [3]. We denote by S(r, f) any function satisfying S(r, f) = o(T'(r, f)), as r — o
possibly outside a set r of finite linear measure.

Let a be a finite complex number, and k be a positive integer. We denote by Ejy(a, f) the set of
zeros of f — a with multiplicities at most k, where each zero is counted according to its multiplicity.
We denote by Ek) (a, f) the set of zeros of f — a with multiplicities are not greater than k, where

1 — 1
each zero is counted only once. In addition, we denote by N <7“, f> <or Nk <7" 7 >> the
—a —a

counting function with respect to the set Ey,(a, f) (or Ey)(a, f)).

Set
Ny, <r’fia> :N<T’fia) +N(2(r’fia> —l—...—l—ﬁ(k <r’fia>'

We define
and

Let f and g be two nonconstant meromorphic functions, a be a finite complex number. We say
that f, g share the value « CM (counting multiplicities) if f, g have the same a-points with the same
multiplicities and we say that f, g share the value a IM (ignoring multiplicities) if we do not consider

the counting function for a-points of both f and g

the multiplicities. We denote by N, (r,

about which f has larger multiplicity than g , with multiplicity not be counted. Similarly, we have

. Next we denote by Ny(r,1/F") the counting function of those zeros of

F’ that are not the zeros of F'(F — 1).

the notation N, <r,
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1706 CHUN WU

Definition 1.1. Let k be a positive integer. Let f and g be two nonconstant meromorphic
functions such that f and g share the value 1 IM. Let zy be a 1-point of [ with multiplicity p and

— 1
a l-point of g with multiplicity q. We denote by N s~y | r, p— the reduced counting function of
g—

f
Definition 1.2. Let f and g satisfy Ey(1, f) = E,)(1,g), where p > 2 is an integer. We denote

by N(pi1(r,1; flg # 1) the reduced counting function of those 1-points of f with multiplicities at

— 1
those 1-points of f and g such that p > q = k. N g, (r, 1) is defined analogously.

least p + 1, which are not the 1-points of g. Also N,4(r, 1; glf # 1) is defined analogously.

In [4], Fang got the following results.

Theorem A. Let f and g be two nonconstant entire functions and n, k be two positive integers
withn > 2k +4. If (f*)*) and (g™)*) share 1 CM, then either f(z) = c1e%, g(z) = coe™%*, where
c1,c2 and c are three constants satisfying (—1)*(c1c2)"(nc)?* = 1 or f = tg for a constant t such
that t" = 1.

Theorem B. Let f and g be two nonconstant entire functions and n, k be two positive integers
with n > 2k + 8. If (f™(f — 1))(k) and (9" (g — 1))(k) share 1 CM, then [ = g.

In 2008, J. F. Chen, X. Y. Zhang [5] improved the above result and obtained the following result.

Theorem C. Let f and g be two nonconstant entire functions and n, k be two positive integers
with n > 5k + 7. If (f")*) and (¢g")*¥) share 1 IM, then either f(z) = c1e%, g(z) = coe™ %, where
c1, ¢y and c are three constants satisfying (—1)*(c1c2)"(nc)?* = 1 or f = tg for a constant t such
that t" = 1.

Theorem D. Let f and g be two nonconstant entire functions and n, k be two positive integers
with n > 5k + 13. If (f"(f — 1))(k) and (9" (g — 1))(k) share 1 IM, then f = g.

In 2008, X. Y. Zhang, J. F. Chen and W. C. Lin [6] extended the above result by proving the
following result.

Theorem E. Let f(z) and g(z) be two entire functions, n, m and k be three positive integers
with n > 3m + 2k + 5, and P(2) = apmz™ + am_12™"1 + ...+ a1z + ag or P(z) = C, where
ap # 0,a1,...,am-1,am # 0,C # 0 are complex constants. If [f"P(f)] ®) and [g”P(g)](k)
share 1 CM, then either f(z) = c1e™?, g(z) = e %, where M1, \a, \ are three constants satisfying
(=) (M A2)"(nN)2FC? = 1, or f(2) and g(2) satisfy the algebraic equation R(f,g) = 0, where
R(w1,w2) = wi'p(wr) — wip(wa).

In this paper we always use L(z) denoting a arbitrary polynomial of degree n, i.e.,

L(2) = an2" + an 12" V. Fag=an(z — ) (2 — )2 ... (2 — o)l (1.1)
where a;, 7 = 0,1,...,n,a, # 0and ¢;, j = 1,2,...,s, are finite complex number constants, and
c1,C2,...,cs are all the distinct zeros of L(z), l1,1la,...,ls, s,n are all positive integers satisfying

Lh+lb+...+ls=n and let [ = max{lj,la,...,ls}. (1.2)

Corresponding to the above results, some authors considered the uniqueness problems of entire
functions that have fixed points, see M. L. Fang and H. Qiu [7], W. C. Lin and H. X. Yi [8], J. Dou,
X. G. Qi and L. Z. Yang [9]. In this paper, we consider the existence of solutions of [L(f)]*¥) — P
and the corresponding uniqueness theorems, and we obtain the following results which generalize the
above theorems.
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VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS 1707

Theorem 1.1. Let f be a transcendental entire function. If n > k + s, then [L(f)]*®) = P has
infinitely many solutions, where P % 0 is a polynomial.

Remark 1.1. 1t is easy to see that a polynomial Q(z) — P(z) has exactly max{m,n} solutions
(counting multiplicities), where deg) = m, degP = n, but a transcendental entire function may have
no solution. For example, let f(z) = e*(*) 4 P(2), then function f(z) — P(z) has no any solution,
where a(z) is an entire function.

Theorem 1.2. Let f(z) and g(z) be two nonconstant entire functions and n, k, | and p(> 2) be
four positive integers satisfying 51 > 4n + 5k + 7. If E,; (1, (L(f))(k)> =E, <1, (L(g))(k)>, then
either f = bie® + ¢, g = bpe " 4 c or f and g satisfy the algebraic equation R(f,g) = 0, where
b1, by, b are three constants satisfying (—1)F(b1b)"(nb)?* = 1 and R(wi,ws) = L(w1) — L(ws).

Corollary 1.1. Let f(z) and g(z) be two nonconstant entire functions and n, k and | be three
positive integers satisfying 51 > 4n + 5k + 7. If [L(f)] ) and [L(g)] ) share 1 IM, then either
f=0b1e" 4 c,g =bye P 4+ cor f and g satisfy the algebraic equation R(f,g) = 0, where by, by, b
are three constants satisfying (—1)*(b1b2)"(nb)** =1 and R(w1,wq) = L(w1) — L(w2).

Remark 1.2. Whenl =n,l =n—1,c= 0, from Corollary 1.1 we can easily get Theorems C, D.

Corollary 1.2. Let f(z) and g(z) be two nonconstant entire functions and n, k and | be three
positive integers satisfying 2l > n + 2k + 4. If [L(f)](k) and [L(g)](k) share 1 CM, then either
f=01e" + ¢, g =bye ¥ 4 cor f and g satisfy the algebraic equation R(f,g) = 0, where by, by,
b are three constants satisfying (—1)*(bybo)" (nb)?* = 1 and R(w1,ws) = L(w1) — L(ws).

Remark 1.3. When | = n, ¢ = 0, from Corollary 1.2 we can easily get Theorem A. When
l=n—-1,1l=n—m,c=0, Corollary 1.2 promotes Theorems B, E.

Remark 1.4. 1f L(f) = L(g), we obtain

anf" +an1 [P af = apg” Fana1g" T L+ arg.
Let h = f/g. If h is a constant, then substituting f = gh into above equation we deduce
ang"(h" — 1)+ ap_1g" 1 (A" P = 1) + ... +aig(h—1) =0,

which implies h¢ =1, d = (ny...,n—i,...,1),ap—; # 0 forsomei =0,1,...,n—1. Thus f = tg
for a constant ¢ such that t* = 1. If h is not a constant, then we know by above equation that f and
g satisfy the algebraic equation R(f, g) = 0, where R(w;,w2) = L(w;) — L(wa).

Remark 1.5. Moreover, let L(z) is a generic polynomial of degree at least 5. Then from the
equation L(f) = L(g), one can conclude that f = g and no other nonconstant meromorphic solutions
fand g. In[15] Yang and Hua exhibits some classes of such polynomials. And some related definitions
and results, we refer the reader to [16, 17].

2. Some lemmas.

Lemma 2.1 (see [1]). Let f(z) be a nonconstant meromorphic function and a,(z), a2(z) be two
meromorphic functions such that T'(r,a;) = S(r, f), i = 1,2. Then

T(r, f) < N(r, f) +N<f _1a1> +N<r, f_1a2> + 50 f).
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1708 CHUN WU

Lemma 2.2 (see [1]). Let f be a nonconstant meromorphic function, k be a positive integer,
and c be a nonzero finite complex number. Then

T(r,f) < N(r, f) +N(r, ch> + N <T, f(’f)l—c> — N(r, f(klﬂ)> +S(r, f) <

S N(Taf) +Nk‘+1 (Tv }) +N<r7f(k)1_c> - N()(T’f-(kl_,’_l)) +S(’I",f),

where Ny | r, D) denotes the counting function which only counts those points such that
FEED =0 bur f(f*) —¢) #0.
Lemma 2.3 (see [11]). Let an(# 0),an—1,...,a0 be constants and f be a nonconstant mero-

morphic function, then
T(r,anf™ + 1 f" N+ ag) =nT(r, f).

Lemma 2.4 (see [12]). Let f(z) be a nonconstant meromorphic function, s, k be two positive
integers. Then

N, (r, f(1k)> < EkN(r, f) + Ngyp <r, }) + S(r, f).

— 1 1
Clearly, N(r, f(k)) =N <r, f(k)>

Lemma 2.5 (see [13]). Let f be a nonconstant meromorphic function, k(> 1) be a positive
integer and let p(% 0,00) be a small function of f. Then

T(r,f) < N(r,f)+ N (7‘, ]1£> + N<r, f(k)l—go) — N(r, M) + S(r, f). 2.1

Lemma 2.6 (see [14]). Let f(z) be a nonconstant meromorphic function and k be a positive
integer. Suppose that f*) 20, then

N( f(k)> N( })JrkN(r,f)JrS(r,f).

Lemma 2.7 (see [18]). Let f, g share (1, 0). Then
O Nt (r 7)< W (s ) SR f) = Mo g, ) +5(01)

N — 1

(i) Ng>1< _1>§N( + N(r,g) — N0<r,g>+5(r,g).

Lemma 2.8. Let f(z) and g(z ) be two nonconstant entire functions, k,p(> 2) be two positive
integers. If (1, 1,k )):F)(l *)) and

A = 2041(0,9) + 6x41(0, ) + 0x12(0, 9) + dp42(0, f) > 4

1 bg™®) +a —b
then =2 ta , where a, b are two constants.

f) —1 gk) —1
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VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS 1709

Proof. Let

f(k+2) .y f(lc+1) B g(k+2) g(lc+1)
f(k+1) f(k) -1 g(k+1)

d(z) = (2.2)

Clearly m(r,®) = S(r, f) + S(r, g). We consider the cases ®(z) # 0 and ®(z) = 0.
Let ®(z) # 0, then if 2y is a common simple 1-point of f (k) and ¢(*), substituting their Taylor
series at zp into (2.2), we see that 2 is a zero of ®(z). Thus, we have

1
Nll <T, f’(k))_l) =

N<r, ;)) <T(r,®)+0(1) < N(r,®) + S(r, f) + S(r, g). (2.3)

1
=N
11 (T, g(k) — 1>

Noting that Ep)(l, fH)y = Ep)(l, g™, we deduce from (2.2) that

IN

N, ®) < N (1.1 fP1g® # 1)+ N (. 1g®1 9 #1) 4

— 1 1 1
)+ el ) 30 (1 ) 20 (e )

_ 1 - 1
+N, <7«, 1 1) +Ny, (r, o 1). 2.4)

1
Here Ny (r, f(k+1))has the same meaning as in Lemma 2.2. From Lemma 2.2, we obtain
1 — 1 1
T(r,g9) < Nigq1 73; +N{r, 9(1{3)7_1 — No| 7, W + S(r, 9). (2.5)
Since
_ 1 1 — 1
N<T’ g®) — 1> =N (T’ g — 1> +Ne (T’ 7R — 1> +
_ 1 _
+N )51 <7“a f(’f)—1> + N (r, 1, g8 f®) £ 1), (2.6)

Thus we deduce from (2.3)—(2.6) that

_ _ 1
T(r,g) < N (T, 1; f0) | g®) £ 1) +2N (1 (r, 1590 | f0) £ 1) + Nita (r, g) +

- 1 1 1 1
)+ o ) + e )+ ¥ ) ¢

— 1 — 1 — 1
+NL<T’f(k)—1> +NL<7°; g(k)—1> + Ny (7“: f(’“)—l) +8(r f)+5(rg).  @27)
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From the definition of N <r we see that

1
amv

1 — 1 1 — 1 1
ol e ) Ve ) e () <ol ) < (5 )

The above inequality and Lemma 2.6 give

1 - 1 1 1\ - 1
ol ) + (Tv -1 1> < N(ﬂ f<k+1>) e ) Vel ) <

1 1 — 1
Substituting (2.8) in (2.7), we get

T(r,g) < Nips1 (T, 1; f) | gtk) 2 1) +2N (i1 (7’, 1,98 | f®) £ 1) + N1 <7“, ;) +

_ 1 1Y |~ 1
o m) + el ) ¥ () + e =)

_ 1 — 1
+NpL (7“, g(k)—1> + N1 (r’f(k)—l> +S(r, f) + 5(r,g). 2.9)

Since E,,)(1, fH)y = By (1, g¥), we have

_ — 1 1 — 1
o) | (k) - —
pN(p+1<r,1,g | f ;él)—i—NL(r, g(k)_1> §N<r, g(k)_1> N(r, g(k)_1>.

From Lemma 2.6, we obtain

1 — 1 1 — 1
¥rqm3) —N<7*g<k>_1) N {ngw) ()
_ 1 1 1

1 — 1 — 1 — 1
N(rgm =) = g =) < gm) - o ()
Therefore,

— — 1 — 1 — 1
s 1) 5. ) <3 ) )

From this, we have

This shows

_ — 1
N (19170 £1) + Wy ( gw)_l) =

ISSN 1027-3190.  Yxp. mam. ocypu., 2014, m. 66, Ne 12



VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS 1711

SN(T’,:l) < NkJrl (T’,1> +S(’I“,g) (210)
g® g

Because

_ — 1 — 1
Np1 (7", 1; f ) |g®) 2 1) + N (7", f(k)l) < Ne (7"7 f(k)1> <

(w kD)
SN T’W +S(’I",f)§T T, f(k) +S(T7f)§

f(k+1) L 1
<N|r=——|+S0rf)<N(r,— | +S(rf). (2.11)
fk) )
Combining (2.9)—(2.11), Lemmas 2.4 and 2.7, we get

T(r.g) < 2Nit1 (r, ;) + Negs (r, }) + Nigs (r, ;) + Nigo (r, }) +8(r, ) + S(r, g).

Without loss of generality, we suppose that there exists a set / with infinite measure such that
T(r,f) <T(r,g) for r € I. Hence

T(Tv g) < {2[1 - 5k+1(079)] + [1 - 6/@—4—1(07 f)]+

(1= 62(0,9)] + [1 = 642(0, )] + ¢ }T(r,9) + S(r, 9)

forreITand0 <e < A—4, thatis {A—4—¢e}T(r,g) < S(r,g),1e, A—4<0or A <4, which
is a contradiction to our hypotheses A > 4.
Hence, we get ®(z) = 0. Then by (2.2), we have

Flk+2) B 9 f(k+1) _ gkt - 2g(k+1)
FOED) TR 1 T gD gk 1

By integrating two sides of the above equality, we obtain

1 _bg(k)+a—b
[k -1 gk —1 7

(2.12)

where a(# 0) and b are constants.

Lemma 2.8 is proved.

Lemma 2.9. Let f(z) and g(z) be two nonconstant entire functions, k be a positive integer. If
%) and ¢\¥) share a nonzero polynomial 1 1M and

A = 5142(0, 9) + 0k+2(0, ) + 0k41(0, ) + 2041(0, g) > 4,

1 bg*) 44 —b
F® 17 gm 1

Proof. Since f*) and ¢g(*) share the value 1 IM, we have W(Hl(r,l;g(’“) | fB) £ 1) = 0.
Proceeding as in the proof of Lemma 2.8, we obtain conclusion of Lemma 2.9.

then , where a, b are two constants.
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Lemma 2.10. Let f(z) and g(z) be two nonconstant entire functions, k be a positive integer. If
%) and ¢\®) share a nonzero polynomial 1 CM and

A = 6p42(0,9) + 0p42(0, f) > 1,

1 _bg(k)+a—b
fk) —1 gk —1

— 1 — 1
Proof. Since f(k) and g(k) share the value 1 CM, we have N, <r, F—l) =Ny, (r, G—1> =

then , where a, b are two constants.

= 0 and W(pﬂ <r, l;g(k)]f(k) =+ 1) = 0. Proceeding as in the proof of Lemma 2.8, we obtain
conclusion of Lemma 2.10.

Lemma 2.11 (see [19]). Let f(z) be a nonconstant entire function and k(> 2) be a positive
integer: If ff%) £ 0, then f = %t where a # 0, b are constants.

3. Proof of theorems. 3.1. Proof of Theorem 1.1. Because f is a transcendental entire, we
get T'(r, P) = o(T'(r, f)). Suppose that z9 & {z: P(z) = 0} is a zero of L(f) with its multiplicity
1 >k + 2, then 2 is a zero of (L(f)*)/P)’ with its multiplicity | — k — 1 > 1. From Lemmas 2.3
and 2.5, we have

nT(r, f) =T(r, L(f)) + 5 f) <

< N<r, L(lf)> +N<7~, L(f)(i)_P> —N(r, W) +5(r,f) <
< Njpi1 (rL(lf)> +N<r, IW) - No (7’, (L(f)<1k)/P)'> +8(r, f) <

1 1 — 1
< Nit1 (7“, 7(]0 — Cl)l1> + ...+ Ngp <T‘, 7(f — Cs)l-§> +N<’I", 7[,(]‘7)(’“) — P) —1—5(7“, f) <

< (k+s)T(r f)+ N(r, L(f)(i)_P> +S(r, f)-

Thus, we get

(n—k—98)T(r, f) < N(r, 7

1
(f)(k)—P> +S(T, f)

Noting that n > k + s, we get [L(f)]®)] = P has infinitely many solutions.
3.2. Proof of Theorem 1.2. Let L(z) and [ be given by (1.1), (1.2), respectively. Without loss of
generality, we suppose that a,, = 1, [ = [1, and ¢ = ¢;, we get

00, L(f)) =1— nmN(T’L(lf)> >1— mzj:lN(T,flCﬂ) > 1

s
r—00 T(r,L(f)) - r—00 nT'(r, f) n
o -1
Similarly, we have ©(0, L(g)) > —.

n
Moreover, we have

ISSN 1027-3190.  Yxp. mam. scypu., 2014, m. 66, Ne 12



VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS 1713

=170 AT ) .
>1_ Tm (s—=1T(r,f)+ (k+1)T(r,f)+S(r f) >
i WT(r. f)

_s—i—kzl—k—l'
n n

>1

Similarly, we obtain

kE_l—-k-1
k41(0,L(g)) > 1 - ot = ;

n n

1 —k-2
rea(0,L(g) 21— TEEL S 1222

+k+1_1—k-2
Sk42(0, L(f)) > 1 - i > -
n n
Because 5! > 4n + 5k + 7, we get
A =20441(0,L(g)) + 6k+1(0, L(f)) + Sk+2(0, L(g)) + 6rt2(0, L(f)) > 4.

By Lemma 2.8, we can have

1 _bL(g)®) +a—b 3.0
LB -1~ Lig® -1 |
Next, we consider the following three cases:
Case 1. b= 0 and a = b. Then from (3.1) we obtain
1 bL(g)™*)

L(H® -1 L® -1

1.1 If b = —1, then it follows from (3.2) that [L(f)] " [L(g)]™
That is

(F=a(f =) (f =) ]V [g =) (g =) .. (g =) ]V =1 (33
1.1.1. When s = 1, we can rewrite (3.3)
[(f _ c)n] (k) [(g _ C)n] k) _ 1

Since 5] > 4n+ 5k + 7,1l =n,thenn > 5k + 7. So f —c # 0, g — ¢ # 0, according Lemma 2.11,
we have

Il
—_

ISSN 1027-3190.  Vkp. mam. scypn., 2014, m. 66, Ne 12



1714 CHUN WU

f= e’ + c, g = boe % + c,

where by, b, b are three constants satisfying (—1)*(bybo)™(nb)?* = 1.
1.1.2. When s > 2, we notice that 5] > 4n+5k+ 7. Hence [ > 5k + 7. Suppose that z is a [-fold

zero of f — ¢, we know that zo must be a (I — k)-fold zero of [(f —¢)'(f —c2)"2...(f — cs)lé‘](k).
Noting that g is an entire function, it follows from (3.3), which is a contradiction. Hence f — ¢ # 0,
g—c#0.Sowe get f =e*?) 4+ ¢, where a(z) is a nonconstant entire function. Thus we have

[F1]®) = [(e* + c)i](k) =pi(c,a”,... ,a(k))em, 1=1,2,...,n, (3.4

where p;, i = 1,2,...,n, is differential polynomials about o/, o, ...,a®). Obviously, p; # 0,
T(r,p;) =S(r, f),i=1,2,...,n, we get from (3.3) and (3.4) that

1
N =S .
<T’ ppen—ba 4 4 p1> (/)

According to Lemmas 2.1, 2.3 and f = e® + ¢, we get

n—=1)T(r,f —c) = T(r,pne(”_l)o‘ +...4+p)+ S f) <

<N T, L +N T, L
pre=Da 4 4 py Preln=DY 4 pae”

JEEE

1

<N
ppet=2)a 4 4 py

JEEE

<(n=2T(r, f—c)+S(rf),

which is a contradiction.
1.2. If a = b # —1, then (3.2) that can be written as

1 1
L(g)® = —-

TG CEGEDID ©3-3)

From (3.5) we get

— 1
N(“Mﬂ@—u+wm

By (3.6) and Lemma 2.2, we have
nT(r, f) =T(r,L(f)) + O(1) <

) = ¥r0) = 50 1), (3.6)

< N (n 3777+ (s )+ 500 <

< (g Zag) + Mo (o) + 50 0) <

<(k+s)T(r, f)<(k+n—1+1)T(r,f)+ S(r, f),

which is a contradiction, because 5] > 4n + 5k + 7.
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Case 2. b# 0 and a # b. We discuss the following we subcases:
2.1. Suppose that b = —1, then a # 0 and (3.1) can be rewritten as

L(H® — @ 3.7
From (3.7) we obtain
. 1 _
Nlr,———— | =N =5 . 3.8
(ror 5w ) = N =S) 65)
From (3.8), Lemmas 2.2 and 2.4, we get
1
4T (r9) = T(r.(9) + O(1) < N (1 11 ) + 5(0,0).
Next, by using the argument as in Case 1.2, we have a contradiction.
2.2. Suppose that b % —1, then (3.1) be rewritten as
b+1 —a 1
L(F)*) _ - ) 3.9
(/) b b2 L(g)*®) + (a —b)/b (39)
From (3.9), we have
_ 1 _
N =N . 3.10
(=) =79 10

From (3.10), Lemmas 2.2, 2.4 and in the same manner as in Case 1.2, we can get a contradiction.
Case 3. b=0and a # 0. Then (3.1) can be rewritten as

L(g)® = aL(f)® + (1 - a), (3.11)

L(g) = aL(f) + (1 = a)p1(2), (3.12)

where p; is a polynomial with its degp; < k. If a # 1, then (1 — a)p; # 0. This together with (3.12)
and Lemma 2.1, we get

nT(r,g) =T(r,L(g)) + O(1) < N<r, L(lg)> +N<r, L(lf)> + S(r,g) <

S L 1 s - 1
<M N N )
_; <T’g—0z’>+; <r’f_cj)+5(7"»g)_

< s[T(r,g) +T(r,f)] + S(r,9). (3.13)

Because n =1+1lo+... +ls,wegetn—Il=l+...+ls>s—1ie,n—1l>s—1,n—s>1—1.
From 50 > 4n+5k+ 7, wehave [ —1 > 4(n—1)+5k+6 > 4(s—1)+bk+6,son—s>1—1>

— b5k —2
>4(s — 1)+ 5k +6, ie, n— s > 4(s — 1) + 5k + 6, thus, s < % Thus
n — 5k —2
On the other hand, from (3.12) and Lemma 2.3, we see that T'(r,g) = T'(r, f) + S(r, g).
10k + 4
Substituting this into (3.14), we deduce that wT(r, g) < S(r,g), which is a contradiction.

5
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Thus a = 1, and so it follows from (3.12) that L(f) = L(g).
Next we consider the case when f and g are polynomials. Suppose that f — ¢ and g — ¢ have u
and v pairwise distinct zeros, respectively. Then f — ¢ and g — ¢ are of the forms

f—c=ki(z—a)™(z—a)"...(z — a,)™,
g—c=ky(z—b1)™(z— o)™ ... (2 = b,)™
so that
f = =k (2 —a)!™(z —a)™ ... (2 — ay)™, (3.15)
lg— ] = kb(z — b1)"™1 (2 — bo)!™2 .. (2 — by,)'™, (3.16)

where k1 and ko are nonzero constants, n;l > 5k + 7, m;l > 5k + 7, n;, m;, i = 1,2,...u,
7 =1,2,...v, are positive integers. Differentiating (3.12), we get

L(g)* ) = ar(f)*+h. (3.17)
From (3.15), (3.16) and (3.17), we have
(z—a)!™F Lz —ag)m2=F=1 (2 — )Rl (2) =
= (2= b))z = by) 2R (2 = by) T (), (3.18)
where £1(z) and &2(z) are polynomials deg&; = (n — 1) ijl n; + (u—1)(k+1) and deg&y =

= (n—1) Z;}:l mj + (v — 1)(k + 1). It follows that 5] > 4n + 5k + 7, we have 2l — n >

>3(n—1)+5k+7>5k+T.
Then

(2l —n)n; > bk + 7, (2l —n)m; > bk + 17, i=1,2,...,u, j=1,2,...,0.

So that
iW‘ k+1)] Zm (n—1) :Eu: [ni(20 — n) — (k+1)] > u(dk +6) > (u—1)(k +1),
i=1 i1
ie.,
Eu:[nll_(k—l—l n—lan (u—1)(k+1).
i=1
Similarly,

Z[m]l—(k—i—l n—lZmJ (v—1)(k+1).
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Thus from (3.18) we deduce that there exists zp such that L(f(z0)) = L(g(z0)) = 0, where zo
has multiplicity greater than 5k + 7. This together with (3.12), we deduce p;(z) = 0, which also
prove the claim.

Therefore from (3.11) and (3.12) we get a = 1 and so L(f) = L(g). Hence, this completes the
proof of Theorem1.2.

3.3 Proof of Corollary 1.1 (1.2). By using Lemma 2.9 (2.10) and the condition 5/ > 4n + 5k +
+7(21 > n+2k+4), proceeding as in the proof of Theorem 1.2, we can similarly prove Corollary 1.1
(1.2). We omit the details here.
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