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ISOPTIC CURVES OF GENERALIZED CONIC SECTIONS
IN THE HYPERBOLIC PLANE

I300OIITUYHI KPUBI Y3ATAJIBHEHUX KOHIYHUX IIEPEPI3IB
Y THIEPBOJITYHIN IJIOIIAHI

We recall the notion of generalized hyperbolic angle between proper and improper straight lines, which is only available in
Hungarian and Esperanto. Then we summarize the generalized hyperbolic conic sections.

After investigation of the real conic sections and their isoptic curves in the hyperbolic plane H?, we consider the
problem of isoptic curves of generalized conic sections in the extended hyperbolic plane.

This problem is widely investigated in the Euclidean plane E? but, in the hyperbolic and elliptic planes, there are few
results. Furthermore, we determine and visualize the generalized isoptic curves to all hyperbolic conic sections.

For our computations, we use the classical models based on the projective interpretation of hyperbolic geometry. In
this way, the isoptic curves can be visualized in the Euclidean screen of a computer.

Mmu HaragyeMo MOHSTTS y3araJIbHEHOTO TiepOONIiYHOTO KyTa MDK BIACHHMH 1 HEBIACHHMH IPSMUMH, IO Ha JaHHI
MOMEHT € JJOCTYITHHUM JIMIIIE YTOPCHKOIO MOBOIO Ta MOBOIO eciiepanTo. KpiM Toro, Mu micyMoByeMO AaHi PO y3arajabHEHi
rinepOoNiYHI KOHIYHI MEPepi3H.

ITicrst BUBYEHHS! QIHCHUX KOHIYHMX Iepepi3iB Ta IXHIX i300MTHYHMX KPUBHX y Timepbomiumii mmommai H? mu pos-
IIISAEMO 3314y i300NTHYHUX KPUBHX JUIS y3araJlbHEHHX KOHIYHHX Iepepi3iB y po3IIMpeHii rinepOoiuHiil IIOHHI.

s mpobneMa iHTEGHCHMBHO BHUBYA€ETHCS IS BUIAIKY E€BKIIIZOBOI IUIOMIMHH E27 poTe € Hebarato pe3yNbTaTiB It
rimepOOoMYHAX Ta STNTHYHUX TUTOMIMH. KpiM TOro, MU BCTaHOBIIIOEMO Ta Bi3yasli3yeEMO y3arajibHEHi i300NTHYHI KPHUBI IS
BCIX KOHIYHUX Iepepi3iB.

VY Hammx po3paxyHKax MH BHKOPHCTOBYEMO KJIACHYHI MoAeNi Ha 0a3i NMPOEKTHWBHOI iHTepmperawii rinepOoiiuHoi
reometpii. TakKMM YUHOM i300ITHYHI KPUBI MOXKYTh OyTH Bi3yanizoBaHi Ha €BKJIIJJOBOMY €KpaHi KOMI IOTepa.

1. Introduction. Let G be one of the constant curvature plane geometries, the Euclidean E?, the
hyperbolic H?, and the elliptic £2. The isoptic curve of a given plane curve C is the locus of points
P € G, where C is seen under a given fixed angle o, where 0 < « < 7. An isoptic curve formed
by the locus of tangents meeting at right angle is called orthoptic curve. The name isoptic curve was
suggested by Taylor in [28].

In [2, 3], the Euclidean isoptic curves of the closed, strictly convex curves are studied, using
their support function. Papers [16, 31, 32] deal with Euclidean curves having a circle or an ellipse
for an isoptic curve. Further curves appearing as isoptic curves are well studied in Euclidean plane
geometry E2, see, e.g., [18, 30]. Isoptic curves of conic sections have been studied in [13, 26].
There are results for Bezier curves as well, see [15]. A lot of papers concentrate on the properties of
the isoptics, e.g., [19, 20, 23] and the references given there. There are some generalization of the
isoptics as well, e.g., equioptic curves in [24] or secantopics in [27].

In the case of hyperbolic plane geometry there are only few results. The isoptic curves of the
hyperbolic line segment and proper conic sections are determined by the authors in [5—7].

The isoptics of conic sections in elliptic geometry £2 are determined by the authors in [7].

In the papers [10] and [11], K. Fladt determined the equations of the generalized conic sections
in the hyperbolic plane using algebraic methods and, in [21], E. Molnar classified them with syn-
thetic methods. This topic has a wide literature, numerous works consider the classification of the
hyperbolic conic sections, e.g., [17].
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Our goal in this paper is to generalize our method described in [7], that is based on the projec-
tive interpretation of hyperbolic plane geometry, to determine the isoptic curves of the generalized
hyperbolic conics and visualize them for some angles. Therefore we study and recall the notion of
the angle between proper and nonproper straight lines using the results of the papers [1, 12, 29].

2. The projective model. For the 2-dimensional hyperbolic plane H? we use the projective
model in Lorentz space E?! of signature (2,1), i.e., E>! is the real vector space V? equipped with
the bilinear form of signature (2,1)

(x,y) = a'y! + 2%y — 2%y, (1)
where the non-zero vectors x = (2!, 22, 23)7 and y = (y',%2,94%)7 € V3 are determined up to real
factors and they represent points X = xR and Y = yR of H? in P?(R). The proper points of H?
are represented as the interior of the absolute conic

AC = {xR € P?| (x,x) = 0} = 9H? )

in real projective space P?(V3, V3). All proper interior point X € H? are characterized by (x, x) <
< 0. The points on the boundary 9H? in P? represent the absolute points at infinity of H?. Points
Y with (y,y) > 0 are called outer or nonproper points of H2.

The point Y = yR is said to be conjugate to X = xR relative to AC when (x,y) = 0.

The set of all points conjugate to X = xR forms a projective (polar) line

pol(X) := {yR € P? ‘ (x,y) = O}. 3)

Hence the bilinear form to (AC) by (1) induces a bijection (linear polarity V3 — V) from the
points of P? onto its lines (hyperplanes in general).

Point X = xR and the straight line © = Ru are called incident if the value of the linear form w
on the vector x is equal to zero, i.e., ux = 0 (x € V3\ {0}, u € V3\ {0}). In this paper, we set
the sectional curvature of H?, K = —k?, to be k = 1. With this assumptions the (AC) will be the
base circle of the Cayley — Klein model.

The distance d(X,Y) of two proper points X = xR and Y = yR can be calculated with
appropriate representing vectors by the formula (see, e.g., [22])

_<X7y>

Vi x)(y.y)

The pole of a straight line is the only point which is conjugate to all point on the line. For the
further calculations, let us denote by u the pole of the straight line u = Rw. It is easy to prove
that if w = (u1,ug,us), then u = (uy,uz, —us), and follows that if v = Ru and v = Rw, then
(u,v) = (u,v).

2.1. Generalized angle of straight lines. Having regard to the fact that the majority of the
generalized conic sections have ideal and outer tangents as well, it is inevitable to introduce the
generalized concept of the hyperbolic angle. In the extended hyperbolic plane there are three classes
of lines by the number of common points with the absolute conic AC' (see (2)):

1. The straight line v = Ru is proper if card(u N AC) =2 < (u,u) > 0.

2. The straight line u = Ruw is nonproper if card(u N AC) < 2:

(a) if card(un AC) =1 & (u, u) =0, then u = Ru is called boundary straight line;

coshd(X,Y) = 4)
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1686 G. CSIMA, J. SZIRMAI

(b) if card(uN AC) =0 < (u,u) <0, then u = Ru is called outer straight line.
We define the generalized angle between straight lines using the results of the papers [1, 12, 29] in
the projective model.

3

_aL _3b

(a) both v and v are real line, (b) both w and v are real line, outer (c) both w and v are outer line
proper intersection intersection

N
.

=)/

S (
v

(d) line u is real but v is outer (e) line w is boundary

Fig. 1. Generalized angle of straight lines © = Ru and v = Rw.

Definition 2.1. 1. Suppose that w = Ru and v = Rv are both proper lines.
@) If (u,u){v,v) —(u,v)? > 0, then they intersect in a proper point (see Fig. 1(a)) and their
angle a(u,v) can be measured by
+(u, v)

Ccos&x = W (5)

(b) If (u, u){v,v) — (u,v)? <0, then they intersect in a nonproper point (see Fig. 1 (b)) and
their angle is the length of their normal transverse and it can be calculated using the formula
+(u,v)

cosha = m (6)

©) If {(u,u)(v,v) — (u,v)? =0, then they intersect in a boundary point and their angle is 0.

2. Suppose that u = Ru and v = Ruv are both outer lines of H? (see Fig. 1(c)). The angle of
these lines will be the distance of their poles using the formula (6).
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3. Suppose that v = Ru is a proper and v = Rw is an outer line (see Fig. 1(d)). Their angle is
defined as the distance of the pole of the outer line to the real line and can be computed by

(7

sinha =

4. Suppose that at least one of the straight lines w = Ru and v = Rv is boundary line of H?
(see Fig. 1(e)). If the other line fits the boundary point, the angle cannot be defined, otherwise it is
infinite.

Remark2.1. In the previous definition we fixed that except case 1 (a) we use real distance type
values instead of complex angles which arise in other cases. The 4 on the right-hand sides are
justifiable because we consider complementary angles, i.e., & and m — « together.

3. Classification of generalized conic sections on the hyperbolic plane in dual pairs. The
literature of the hyperbolic conic section classification is very wide and it goes back until 1902 when
it was first given by Liebmann (see [17]). We also note that there is a detailed theory of conic
sections in the work of both Cooligde and Kagan (see [4, 14]). There are numerous other works in
this topic (see [9, 25]), but in this section we will summarize and extend the results of K. Fladt (see
[10, 11]) about the generalized conic sections on the extended hyperbolic plane.

Let us denote a point with x and a line with . Then the absolute conic (AC) can be defined as
a point conic with the x”ex = 0 quadratic form where e = diag{1,1,—1} or due to the absolute
polarity as line conic with uEu? = 0, where E = e¢* :7diag{1, 1,—1}.

Similarly to the Euclideangometry we use the well-known quadratic form

XTQX = anxlxl + a22x2:c2 + a33x3x3 + 2a23x2x3 + 2a13x1x3 + 2a12x1:p2 =0,

where det a # 0 for a nondegenerate point conic, and
ué’uT = AMuquy + A2ugus + A usgus + 24%u0us + 2ABuug + 24 uus = 0,

where A = gfl for the corresponding line conic defined by the tangent lines of the previous point
conic. With the polarity x = éuT and u’ = ax follow since ux = 0.
Consider a one parameter conic family of our point conic with the (AC), defined by

x”(a + pe)x = 0.

Since the characteristic equation A(p) := det(a + pe) is an odd degree polynomial, this conic
pencil has at least one real degenerate element (p;), which consists of at most two point sequences
with holding lines p} and p? called asymptotes. Therefore, we get a product

x"(a+ pre)x = (pix)" (pix) = x"((p})"P})x =0

with occasional complex coordinates of the asymptotes. Each of these two asymptotes has at most
two common points with the (AC) and with the conic as well. Thus, the at most 4 common points
with at most 3 pairs of asymptotes can be determined through complex coordinates and elements
according to the at most 3 different eigenvalues p;, p2, and ps.

In complete analogy with the previous discussion in dual formulation we get that the one param-
eter conic family of a line conic with (AC) has at least one degenerate element (o) which contains
two line pencils at most with occasionally complex holding points fi and f; called foci
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1688 G. CSIMA, J. SZIRMAI
u(A+ alé)uT = (uf])(uf))? = u(fll(fQI)T)uT =0.

For each focus at most two common tangent line can be drawn to AC' and to our line conic.
Therefore, at most four common tangent lines with at most three pairs of foci can be determined
maybe with complex coordinates to the corresponding eigenvalues o', o2, and o>.

Combining the previous discussions with [10, 21] the classification of the conics on the extended
hyperbolic plane can be obtained in dual pairs.

First, our goal is to find an appropriate transformation, so that the resulted normal form character-
izes the conic, e.g., the straight line ! = 0 is a symmetry axis of the conic section (a3; = a2 = 0).
Therefore we take a rotation around the origin O(0,0,1)7 and a translation parallel with 2% = 0.

As it used before, the characteristic equation

aiy +p a12 a3
A(p) = det(g + pg) = det ag1 asg + p a23 =0
agi aso ass — p

has at least one real root denoted by p;.
This is helpful to determine the exact transformation if the equalities p; = p2 = p3 not hold.
That case will be covered later. With this transformations we obtain the normal form

plxlxl + agr’z® + 2a23x2x3 + a33x3x3 =0. ®)

In the following we distinguish 3 different cases according to the other two roots:

1. Two different real roots. Then the monom x?z3 can be eliminated from the equation above,
by translating the conic parallel with 2! = 0. The final form of the conic equation in this case, called
central conic section:

plxlxl =+ p2x2x2 - p3x3x3 =0.

Because our conic is nondegenerate, therefore p3x® # 0 follows and with the notations a = Py
P3
and b = 22 our matrix can be transformed into a = diag{a,b, —1}, where a < b can be assumed.

P3
The equation of the dual conic can be obtained using the polarity £ respected to (AC) by E'A E‘l =

11
= diag{ e -1 } By the above considerations we can give an overview of the generalized central
a

conics with representants:
Theorem 3.1. If the conic section has the normal form ax?+by? = 1, then we get the following
types of central conic sections (see Figs. 2—4):
(a) absolute conic: a =b=1;
(b) 1) circle: 1 < a =1,
i) circle enclosing the absolute: a = b < 1;
(c) 1) hypercycle: 1 =a < b,
il) hypercycle enclosing the absolute: 0 < a < 1 = b;
(d) hypercycle excluding the absolute: a < 0 < 1 = b;
(e) concave hyperbola: 0 < a <1 < b;
(f) 1) convex hyperbola: a <0 <1 < b,
il) hyperbola excluding the absolute: a < 0 < b < 1;
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(g) 1) ellipse: 1 <a <b,
i) ellipse enclosing the absolute: 0 < a < b < 1;
(h) empty: a <b <0,

. . 1
where either the conic and its dual pair lies in the same class or i) and ii) are dual pairs with o' = —
a
1
and b = —.
b
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Fig. 2. Domains for concave hyperbola with notations of Definition 2.1 (left) and concave hyperbola (right):
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Fig. 3. Hyperbola excluding the absolute (left): ¢ = 0.5, b = -2, a = g and convex hyperbola (right):
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Fig. 4. Ellipse (left): a =2, b =3, a = % and ellipse enclosing the absolute (right): a = 0.45, b = 0.8,

21 1 2

Fig. 5. Elliptic parabola (left): a =2, b= 1.5, a = g and parabola enclosing the absolute (right): a = —2.5,

T
b=—5 a= .
T

2. Coinciding real roots. The last translation cannot be enforced but it can be proved that
Py = p3 = 933 922 follows. With some simplifications of the formulas in [10] we obtain the
normal form of the so-called generalized parabolas.

Theorem 3.2. The parabolas have the normal form ax® + (b + 1)y?> — 2y = b — 1 and the
following cases arise (see Figs. 5—17):

(a) 1) horocycle: 0 < a =b,

il) horocycle enclosing the absolute: a = b < 0;
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(b) 1) elliptic parabola: 0 < b < a,

i1) parabola enclosing the absolute: b < a < 0;
(c) 1) two sided parabola: a < b < 0,

il) concave hyperbolic parabola: 0 < a < b;
(d) 1) convex hyperbolic parabola: a < 0 < b,

il) parabola excluding the absolute: b < 0 < a,

2
where all i) and ii) are dual pairs with parameters a' = —— and V/ = —b.
a
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Fig. 6. Two sided parabola (left): a = —5, b = =2.7, a = g and concave hyperbolic parabola (right):
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Fig. 7. Convex hyperbolic parabola (left): a = =2, b = 1.5, a = g and parabola excluding the absolute
(right): a = 0.8, b= —0.4, a = g
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Fig. 8. Semihyperbola: a = 1.4, b= 0.5, a = 1 (left) and a = 18 (right).
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Fig. 9. Osculating parabola: a = 0.4, a = % (left) and o = 2?77 (right).

3. Two conjugate complex roots. Then the last translation cannot be performed to eliminate the
monom 223 but we can eliminate the monom 323 by an appropriate transformation described in
[10]. Shifting to inhomogeneous coordinates and simplifying the coefficients we obtain the following
theorem.

Theorem 3.3. The so-called semihyperbola has the normal form ax?® + 2by* — 2y = 0, where

|b| < 1 and its dual pair is projectively equivalent with another semihyperbola with o' = — and
a
b = —b (see Fig. 8).

4. Overviewing the above cases only one remains, when the conic has no symmetry axis at all
and p; = p2 = p3. Ignoring further explanations we claim the following theorem.
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Theorem 3.4. If the conic has the normal form (1—x2—y?)+2ay(z+1) = 0, where a > 0, then
it is called osculating parabola. Its dual is also an osculating parabola by a convenient reflection
(see Fig. 9).

4. Isoptic curves of generalized hyperbolic conics. 4.1. Isoptic curves of central conics.
In this section, we will extend the algorithm for determining the isoptic curves of conic sections
described in [7] for generalized hyperbolic conic sections. We have to apply the generalized notion
of angle, therefore the equation of the isoptic curve will not be given by a implicit formula but the
isoptic curve consist of some piecewise continuous arcs that will be given by implicit equations.

First, we determine the equations of the tangent lines through a given external point P to a given
conic section C. We will use not only the point conic but the corresponding line conic as well. The
algorithm do not need the points of tangency but of course they can be determined from the tangents.
This strategy provides a general simplification in the other cases as well without all details in this
work.

Let the external point P be given with homogeneous coordinates (x,%,1)”. If a central conic
is given by a, then the corresponding line conic is defined by A, where ¢! = A. Now, we know
that P fits on the tangent lines © = Ru and v = Rov where u = (uy,ug,1) and v = (v, va, 1),
furthermore, v and v satisfy the equation of the line conic

urx +ugy +1=0,

2 2
G5 gy,
a b

ﬁ+i§_1:0
b

Solving the above systems we obtain the coordinates of the straight lines « and v:

az + /aby? (az? + by? — 1)

= ax? + by? ’
—by? + z+/aby? (ax? + by? — 1)
Uy = - ,
2 az?y + by?
)
—azx + +/aby? (az? + by? — 1)
V1 = ) 2 )
ax? + by
by? + z+/aby? (az? + by? — 1)
Vo = — .

ax?y + by3

Of course, aby? (a:UQ + by? — 1) > 0 must hold otherwise P(z,y,1)7 is not an external point.

We get the exact formula of the more parted isoptic curve related to the central conic sections
(see Theorem 3.1) using the definition of the generalized angle (see Definition 2.1). The compound
isoptic can be given by classifying the straight lines © = Ru and v = Rw according to their poles.
We summarize our result in the following theorem.
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Theorem 4.1. Let a central conic section be given by its equation ax® 4 by?> = 1 (see Theo-
rem 3.1). Then the compound a-isoptic curve (0 < oo < ) of the considered conic has the equation

(a ((b+1)2% = 1) + (a + 1)by? — b)
(a— 12024 +2(a — Db (b+a((b—1)22 — 1)) y2 + (a(b— 1)22 + a — b)?

cosh?(a), aby? (az? +by? —1) > 0 A
(17u%7u%)(171}%703) >0A
z2 +y2 > 1,

= < cos?(a), aby? (az:2 + by? — 1) >0A

z2 +y2 <1,

sinh?(a), aby? (az? +by? —1) > 0 A

(17u%7u%)(171}%71}%)<0,

where u1 2 and vy 2 are derived by (9).

In Figs. 2 —4 we visualize the isoptic curves of central conic sections. The foremost figure shows,
how different types of isoptics arise due to common tangents. We indicated the Cayley —Klein model
circle with black, the conic with dashed line and the isoptic is shaded.

4.2. Isoptic curves of parabolas. We study the isoptic curves of the generalized parabolas given
by their equations in Theorem 3.3.

The algorithm described in the previous subsection can be repeated for further conics as well.
The difference is only in the equation of the compound isoptic is because of the different conic
equation.

It is clear that the coordinates of the tangent line u = (u1,u2,1) and v = (v1,ve,1) will be
different from (8)

_ar*(b+y—1) +yy/ab?a? (a? +b(y2 —1) + (y — 1))

= a(b—1)z3 + b2zy? ’
az® — vy —\Jab?a? (ax? + b (y2 — 1) + (y — 1)?)
v = a(b—1)z2 + b?y? ’
(10)
o —az?(b+y —1) +yy/ab?x? (az? + b (y2 — 1) + (y — 1)?)
' a(b—1)a3 + b2xy? ’
az? — b%y + y/ab22? (az2 + b(y2 — 1) + (y — 1)?)
vg = :

a(b—1)a? 4 b%y?

ISSN 1027-3190. Vkp. mam. scypn., 2019, m. 71, Ne 12



ISOPTIC CURVES OF GENERALIZED CONIC SECTIONS IN THE HYPERBOLIC PLANE 1695

Theorem 4.2. Let a parabola be given by its equation ax® + (b+ 1)y> — 2y = b — 1 (see
Theorem 3.3). Then the compound «-isoptic curve (0 < « < ) of the considered conic has the
equation

(@b +y* = 1)+ (- D)+ (1> 1)) |(y— 1) ((y + 1)~
—2a (20 + 4 + by + 1) = 1) ® +a ((y — 1) + B2 (y+ 1)2 + 26 (22 + 4> — 1)) =
(cosh?(a), ab?a? (az? +b(y*> —1) + (y — 1)?) >0 A
(1 —uf —u3) (1—vf—v3) > 0A
22+ y? > 1,
= {cos?(a),  ab%a? (ax? +b(y? 1) + (y— 1)?) >0 A
22 +y? < 1,

sinh?(@), ab®2? (az® +b(y?> — 1)+ (y—1)%) >0 A

(l—u%—u%) (1—1}%—0%)<0,

\

where uy o and vi o are derived by (10).

The isoptic curves of the parabolas can be seen in Figs. 5—7. The same convention has been
used as on the previous figures.

4.3. Isoptic curves of semihyperbola.

Theorem 4.3. Let the semihyperbola be given by its equation ax® + 2by?> — 2y = 0, where
|b| < 1 (see Theorem 3.2). Then the compound a-isoptic curve (0 < oo < ) of the considered conic
has the equation

(2a (b (2> + %) —y) +v° = 1)? |y + 40 (2® + %) (0 = 1) 2® + (by — 1)?) —
—da(y— 22+ ) y+b (' + (@2 1)y’ +a?)) 20+ 1| =
cosh?(a), az?(a+ 2y(by — 1)) > OA
(1—u2—ud) (1—0v2—v3) > 0A
2?4y > 1,
=< cos?(a), ax®(a+2y(by —1)) > 0A
2?2 +y? <1,

sinh?(a), az?(a + 2y(by — 1)) > OA

(1w~ u3) (10} — ) <0,

where

" az + /a (az? + 2y(by — 1))
1= — )
Yy
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az? —y + z\/a (az? + 2y(by + 1))

uy = /2 :
oy = O +/a (ax? + 2y(by — 1))
)
vy = Y= z/a (a;c2 +2y(by + 1))
Yy

The isoptic curve of the semihyperbola can be seen in Fig. 8.
4.4. Isoptic curves of the osculating parabola.

Theorem 4.4. Let the osculating parabola be given by its equation (1 —z? —y2) +2a(x+1)y =
= 0 (see Theorem 3.4). Then the compound a-isoptic curve (0 < o < ) of the considered conic
has the equation

(=2 (22 + y% — 1) + 2a(z + Dy + a®(z + 1)2)°
la?(z + 1) (4(1 = 2) + day + a*(z + 1))

cosh?(a), (22 +y*—1—2a(z+1)y) > 0A
(l—ul—u2) (1—0%—1}%) > 0N
z? +y? > 1,

=qcos?(a), (2*+y*—1—2a(z+1)y) > 0A

24y <1,

sinh?(), (22 +y% —1—2a(z + 1)y) > 0A

(l—ul—uz) (1—@1—U§)<0,

where

—(1+ay) (= — ay) + /v (22 + 4> — 1 — 2a(x + 1)y)
(22 +y?) — 2azy + a®y?

uy = ’

y? —ar(z+ 1)y + a*(z + Dy? + /92 (22 + 2 — 1 — 2a(z + 1)y)

Uy = — ,
? y (22 + y?) — 2azy + a?y?)
- (A Fay)(@—ay) +Vy? (@ +y° — 1 - 2a(x +1)y)
e (22 + y?) — 2axy + ay? ’
y* —ax(z+ )y +a’ (@ +1)y* —a/y? (2% + 42 — 1 - 2a(z + 1)y)
Vy = — .

y (22 +y?) — 2azxy + a’y?)

Fig. 9 shows some cases of the isoptic curve for the osculating parabola.
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Our method is suited for determining the isoptic curves to generalized conic sections for all

possible parameters. Moreover with this procedure above we may be able to determine the isoptics
for other curves as well. Authors now turn attention toward 3D generalization. Already, some results
in the Euclidean space can be seen in [8].

Acknowledgment. The authors would like to thank Professor Emil Molnar for his very helpful

discussions, instructions and comments to this paper, especially his constructive suggestions to the
classification.
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