A. Boua (Sidi Mohamed Ben Abdellah Univ., Fez, Morocco),
M. Ashraf (Aligarh Muslim Univ., India)

SOME ALGEBRAIC IDENTITIES IN 3-PRIME NEAR-RINGS ДЕЯКІ АЛГЕБРАЇЧНІ ТОТОЖНОСТІ ДЛЯ 3-ПРОСТИХ МАЙЖЕ КІЛЕЦЬ

Abstract

We extend the domain of applicability of the concept of $(1, \alpha)$-derivations in 3 -prime near-rings by analyzing the structure and commutativity of near-rings admitting $(1, \alpha)$-derivations satisfying certain differential identities.

Розширено область застосовності поняття $(1, \alpha)$-похідних для 3 -простих майже кілець, як результат вивчення структури та комутативності майже кілець, що допускають $(1, \alpha)$-похідні, які задовольняють деякі диференціальні тотожності.

1. Introduction. Throughout this paper, \mathcal{N} will denote a zero-symmetric left near-ring. A near-ring \mathcal{N} is called zero symmetric if $0 x=0$ for all $x \in \mathcal{N}$ (recall that in a left near ring $x 0=0$ for all $x \in \mathcal{N}) . \mathcal{N}$ is called 3 -prime if $x \mathcal{N} y=\{0\}$ implies $x=0$ or $y=0$. The symbol $Z(\mathcal{N})$ will represent the multiplicative center of \mathcal{N}, that is, $Z(\mathcal{N})=\{x \in \mathcal{N} \mid x y=y x$ for all $y \in \mathcal{N}\}$. For any $x, y \in \mathcal{N}$, as usual, $[x, y]=x y-y x$ and $x \circ y=x y+y x$ will denote the well-known Lie product and Jordan product, respectively. Recall that \mathcal{N} is called 2 -torsion free if $2 x=0$ implies $x=0$ for all $x \in \mathcal{N}$. For terminologies concerning near-rings we refer to G. Pilz [6].

An additive mapping $d: \mathcal{N} \rightarrow \mathcal{N}$ is said to be a derivation if $d(x y)=x d(y)+d(x) y$ for all $x, y \in \mathcal{N}$, or, equivalently, as noted in [7], that $d(x y)=d(x) y+x d(y)$ for all $x, y \in \mathcal{N}$. An additive mapping $d: \mathcal{N} \rightarrow \mathcal{N}$ is called a semiderivation if there exists a function $g: \mathcal{N} \rightarrow \mathcal{N}$ such that $d(x y)=d(x) g(y)+x d(y)=d(x) y+g(x) d(y)$ and $d(g(x))=g(d(x))$ hold for all $x, y \in \mathcal{N}$. An additive mapping $d: \mathcal{N} \rightarrow \mathcal{N}$ is called a two sided α-derivation if there exists a function α : $\mathcal{N} \rightarrow \mathcal{N}$ such that $d(x y)=d(x) y+\alpha(x) d(y)$ and $d(x y)=d(x) \alpha(y)+x d(y)$ hold for all $x, y \in \mathcal{N}$. An additive mapping $d: \mathcal{N} \rightarrow \mathcal{N}$ is called a (1, α)-derivation if there exists a function $\alpha: \mathcal{N} \rightarrow \mathcal{N}$ such that $d(x y)=d(x) y+\alpha(x) d(y)$ holds for all $x, y \in \mathcal{N}$. An additive mapping $d: \mathcal{N} \rightarrow \mathcal{N}$ is called an $(\alpha, 1)$-derivation if there exists a function $\alpha: \mathcal{N} \rightarrow \mathcal{N}$ such that $d(x y)=d(x) \alpha(y)+x d(y)$ holds for all $x, y \in \mathcal{N}$. Obviously, a two sided α-derivation is both $(1, \alpha)$-derivation as well as $(\alpha, 1)$-derivation. Also, any derivation on \mathcal{N} is a ($1, \alpha$)-derivation, but the converse is not true in general (see [5]). There are several results asserting that 3-prime near-rings with certain constrained derivations have ringlike behavior. Recently many authors (see [1, 2, 4], where further references can be found) studied commutativity of 3 -prime near-rings satisfying certain identities involving derivations, semiderivations and two sided α-derivations. Now our aim is to study the commutativity behavior of a 3 -prime near-ring which admits $(1, \alpha)$-derivations satisfying certain properties. In fact, our results generalize, extend and complement several results obtained earlier in $[1,5,8]$ on derivations, semiderivations and two sided α-derivations for 3 -prime near-rings.
2. Some preliminaries. In this section, we include some well-known results which will be used for developing the proof of our main result.

Lemma 2.1 ([4], Theorem 2.9). Let \mathcal{N} be a 3 -prime near-ring. If I is a nonzero semigroup ideal of \mathcal{N} and d is a nonzero derivation of \mathcal{N}, then the following assertions are equivalent:
(i) $[u, v] \in Z(\mathcal{N})$ for all $u, v \in I$,
(ii) $[d(u), v] \in Z(\mathcal{N})$ for all $u, v \in I$,
(iii) \mathcal{N} is a commutative ring.

Lemma 2.2 ([4], Theorem 2.10). Let \mathcal{N} be a 2-torsion free 3-prime near-ring. If $u \circ v \in Z(\mathcal{N})$ for all $u, v \in \mathcal{N}$, then \mathcal{N} is a commutative ring.

Lemma 2.3 ([3], Lemma 1.5). Let \mathcal{N} be a 3 -prime near-ring. If $\mathcal{N} \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

Lemma 2.4. A near-ring \mathcal{N} admits a $(1, \alpha)$-derivation d associated with an additive map α if and only if it is zero-symmetric.

Proof. Let \mathcal{N} be a zero-symmetric near-ring. Then the zero map is a $(1, \alpha)$-derivation d on \mathcal{N}. Conversely, assume that \mathcal{N} has an $(1, \alpha)$-derivation d associated with an additive map α. Let x, y be two arbitrary elements of \mathcal{N}. By definition of d, we have

$$
\begin{gathered}
d(x 0 y)=d(x(0 y))=d(x)(0 y)+\alpha(x) d(0 y)= \\
=(d(x) 0) y+\alpha(x)(d(0) y)+\alpha(x)(\alpha(0) d(y))=0 y+(\alpha(x) d(0)) y+(\alpha(x) \alpha(0)) d(y)= \\
=0 y+(\alpha(x) 0) y+(\alpha(x) \alpha(0)) d(y)=0 y+0 y+(\alpha(x) 0) d(y)=0 y+0 y+0 d(y) .
\end{gathered}
$$

On the other hand,

$$
\begin{gathered}
d(x 0 y)=d((x 0) y))=d(0 y)= \\
=d(0) y+\alpha(0) d(y)=0 y+0 d(y) .
\end{gathered}
$$

By comparing the last two expressions, we find that $0 y=0$ for all $y \in \mathcal{N}$, and hence \mathcal{N} is a zero-symmetric left near-ring.

Remark. The above lemma has its independent interest in the study of arbitrary left near-rings (not necessarily zero-symmetric). It can also be easily seen that it is also true in the case of right near-ring.

Lemma 2.5. Let \mathcal{N} be a near-ring and d be a $(1, \alpha)$-derivation associated with a map α. Then \mathcal{N} satisfies the following property:

$$
\begin{gathered}
(d(x) y+\alpha(x) d(y)) z= \\
=d(x) y z+\alpha(x) d(y) z+\alpha(x) \alpha(y) d(z)-\alpha(x y) d(z) \quad \text { for all } \quad x, y, z \in \mathcal{N} .
\end{gathered}
$$

Proof. From the associative law we have

$$
\begin{gathered}
d((x y) z)=d(x y) z+\alpha(x y) d(z)= \\
=(d(x) y+\alpha(x) d(y)) z+\alpha(x y) d(z) \quad \text { for all } \quad x, y \in \mathcal{N} .
\end{gathered}
$$

Also

$$
\begin{gathered}
d(x(y z))=d(x) y z+\alpha(x) d(y z)= \\
=d(x) y z+\alpha(x) d(y) z+\alpha(x) \alpha(y) d(z) \quad \text { for all } \quad x, y, z \in \mathcal{N} .
\end{gathered}
$$

Combining the above two equalities, we find

$$
\begin{gathered}
(d(x) y+\alpha(x) d(y)) z+\alpha(x y) d(z)= \\
=d(x) y z+\alpha(x) d(y) z+\alpha(x) \alpha(y) d(z) \quad \text { for all } \quad x, y, z \in \mathcal{N}
\end{gathered}
$$

which is the required result.
Lemma 2.6. Let \mathcal{N} be a 3-prime near-ring and d be a nonzero (1, α)-derivation associated with an onto map α.
(i) If $a d(\mathcal{N})=\{0\}, a \in \mathcal{N}$ and α is an onto map, then $a=0$.
(ii) If $d(\mathcal{N}) a=\{0\}$ and $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in \mathcal{N}$, then $a=0$.

Proof. (i) If $a d(\mathcal{N})=\{0\}$ and $a \in \mathcal{N}$, then $a d(x y)=0$ for all $x, y \in \mathcal{N}$. This implies that $a d(x) y+a \alpha(x) d(y)=0$ for all $x, y \in \mathcal{N}$, and, hence, $a \alpha(x) d(y)=0$ for all $x, y \in \mathcal{N}$. Since α is onto, $a \mathcal{N} d(y)=\{0\}$ for all $y \in \mathcal{N}$. By 3 -primeness of \mathcal{N} and $d \neq 0$, we obtain $a=0$.
(ii) If $d(\mathcal{N}) a=\{0\}$, then $d(x y) a=0$ for all $x, y \in \mathcal{N}$. By Lemma 2.5, we get $d(x) y a+$ $+\alpha(x) d(y) a+\alpha(x) \alpha(y) d(a)-\alpha(x y) d(a)=0$ for all $x, y \in \mathcal{N}$. By the given hypothesis, we find that $d(x) y a=0$ for all $x, y \in \mathcal{N}$, i.e., $d(x) \mathcal{N} a=\{0\}$ for all $x \in \mathcal{N}$. Since $d \neq 0$ and \mathcal{N} is 3-prime, we arrive at $a=0$.

Lemma 2.7. Let \mathcal{N} be a 2 -torsion free 3 -prime near-ring. If d is a nonzero ($1, \alpha$)-derivation associated with an onto map α such that $\alpha d=d \alpha$, then $d^{2} \neq 0$.

Proof. Suppose that $d^{2}(\mathcal{N})=\{0\}$. Then, for $x, y \in \mathcal{N}$, one can write

$$
\begin{gathered}
0=d^{2}(x y)=d(d(x y))=d(d(x) y+\alpha(x) d(y))= \\
=d^{2}(x) y+\alpha(d(x)) d(y)+d(\alpha(x)) d(y)+\alpha^{2}(x) d^{2}(y)= \\
=\alpha(d(x)) d(y)+d(\alpha(x)) d(y) \quad \text { for all } \quad x, y \in \mathcal{N} .
\end{gathered}
$$

Note that $\alpha(d(x))=d(\alpha(x))$, we find that

$$
2 \alpha(d(x)) d(y)=0 \text { for all } x, y \in \mathcal{N} .
$$

Since \mathcal{N} is 2-torsion free, we arrive at

$$
d(\alpha(x)) d(y)=0 \text { for all } x, y \in \mathcal{N}
$$

By using Lemma 2.6 and the fact that α is onto, we obtain that $d=0$ a contradiction.
3. Main results. In [2], H. E. Bell and G. Mason proved that a 3-prime near-ring \mathcal{N} must be commutative if it admits a derivation d such that $d(\mathcal{N}) \subseteq Z(\mathcal{N})$. This result was generalized by the authors in $[5,8]$. They replaced the derivation with a semiderivation or two sided α-derivation. Our objective in the following theorems is to generalize these results by treating the case of $(1, \alpha)$ derivation where α is an onto map.

Theorem 3.1. Let \mathcal{N} be a 2-torsion free 3-prime near-ring. If \mathcal{N} admits a nonzero ($1, \alpha$)derivation d associated with an onto map α such that $\alpha d=d \alpha$ and $d(\mathcal{N}) \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

Proof. Suppose that $d(\mathcal{N}) \subseteq Z(\mathcal{N})$. By definition of d, we have

$$
(d(x) y+\alpha(x) d(y)) z=z(d(x) y+\alpha(x) d(y)) \quad \text { for all } \quad x, y, z \in \mathcal{N} .
$$

This implies that

$$
\begin{gather*}
d(x) y z+\alpha(x) d(y) z+\alpha(x) \alpha(y) d(z)-\alpha(x y) d(z)= \\
=z d(x) y+z \alpha(x) d(y) \quad \text { for all } \quad x, y, z \in \mathcal{N} . \tag{3.1}
\end{gather*}
$$

Replacing z by $d(z)$ in (3.1), we get

$$
\alpha(x) \alpha(y) d^{2}(z)=\alpha(x y) d^{2}(z) \quad \text { for all } \quad x, y, z \in \mathcal{N}
$$

which reduces to

$$
\begin{equation*}
d^{2}(z) \mathcal{N}(\alpha(x) \alpha(y)-\alpha(x y))=\{0\} \quad \text { for all } \quad x, y, z \in \mathcal{N} \tag{3.2}
\end{equation*}
$$

In view of 3-primeness of \mathcal{N}, (3.2) implies that

$$
d^{2}=0 \text { or } \alpha(x y)=\alpha(x) \alpha(y) \quad \text { for all } \quad x, y \in \mathcal{N}
$$

Since $d \neq 0$, we obtain $d^{2} \neq 0$ by Lemma 2.7, and in this case the previous relation becomes only $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in \mathcal{N}$ and by (3.1) we arrive at

$$
\begin{equation*}
d(x) y z+\alpha(x) d(y) z=z d(x) y+z \alpha(x) d(y) \quad \text { for all } \quad x, y, z \in \mathcal{N} \tag{3.3}
\end{equation*}
$$

Replacing z by $\alpha(x)$ in (3.3), we obtain

$$
d(x) y \alpha(x)=\alpha(x) d(x) y \quad \text { for all } \quad x, y \in \mathcal{N}
$$

This yields that

$$
d(x) \mathcal{N}[\alpha(x), y]=\{0\} \quad \text { for all } \quad x, y \in \mathcal{N} .
$$

Since \mathcal{N} is 3-prime, we find that

$$
\begin{equation*}
d(x)=0 \quad \text { or } \quad \alpha(x) \in Z(\mathcal{N}) \quad \text { for all } \quad x \in \mathcal{N} \tag{3.4}
\end{equation*}
$$

Suppose there exists $x_{0} \in \mathcal{N}$ such that $d\left(x_{0}\right)=0$. Replacing x by x_{0} in (3.1), we get $\alpha\left(x_{0}\right) d(y) z=$ $=z \alpha\left(x_{0}\right) d(y)$ for all $y, z \in \mathcal{N}$, which implies that

$$
d(y) \mathcal{N}\left[\alpha\left(x_{0}\right), z\right]=\{0\} \quad \text { for all } \quad y, z \in \mathcal{N} .
$$

Since \mathcal{N} is 3-prime and $d \neq 0$, the last expression implies that $\alpha\left(x_{0}\right) \in Z(\mathcal{N})$, and the relation (3.4) yields $\alpha(x) \in Z(\mathcal{N})$ for all $x \in \mathcal{N}$. Now in this case (3.1) becomes

$$
d(x) \mathcal{N}[y, z]=\{0\} \quad \text { for all } \quad y, z \in \mathcal{N}
$$

Since \mathcal{N} is 3-prime and $d \neq 0$, we conclude that $\mathcal{N} \subseteq Z(\mathcal{N})$ and by Lemma 2.3, \mathcal{N} is a commutative ring.

Corollary 3.1 ([2], Theorem 2). Let \mathcal{N} be a 2-torsion free 3-prime near-ring. If \mathcal{N} admits a nonzero derivation d such that $d(\mathcal{N}) \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

Corollary 3.2. Let \mathcal{N} be a 2 -torsion free 3 -prime near-ring. If \mathcal{N} admits a nonzero semiderivation d associated with an onto map α such that $d(\mathcal{N}) \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

Theorem 3.2. Let \mathcal{N} be a 2-torsion free 3-prime near-ring which admits a nonzero ($1, \alpha$)derivation d associated with an onto map α. Then the following assertions are equivalent:
(i) $d([x, y])=0$ for all $x, y \in \mathcal{N}$,
(ii) \mathcal{N} is a commutative ring.

Proof. It is easy to verify that (ii) \Rightarrow (i).
(i) \Rightarrow (ii) Suppose that $d([x, y])=0$ for all $x, y \in \mathcal{N}$. Replacing y by $x y$, we get

$$
\begin{gathered}
0=d([x, x y])=d(x[x, y])= \\
=d(x)[x, y]+\alpha(x) d([x, y]) \quad \text { for all } \quad x, y \in \mathcal{N} .
\end{gathered}
$$

This implies that

$$
\begin{equation*}
d(x) x y=d(x) y x \quad \text { for all } \quad x, y \in \mathcal{N} . \tag{3.5}
\end{equation*}
$$

Replacing y by $y t$ in (3.5) and using it again, we get

$$
\begin{gathered}
d(x) y t x=d(x) x y t= \\
=d(x) y x t \quad \text { for all } \quad x, y, t \in \mathcal{N},
\end{gathered}
$$

which reduces to

$$
d(x) \mathcal{N}[x, t]=\{0\} \quad \text { for all } \quad x, t \in \mathcal{N} .
$$

By 3-primeness of \mathcal{N}, we obtain

$$
\begin{equation*}
d(x)=0 \text { or } x \in Z(\mathcal{N}) \quad \text { for all } \quad x \in \mathcal{N} . \tag{3.6}
\end{equation*}
$$

Suppose there exists $x_{0} \in \mathcal{N}$ such that $d\left(x_{0}\right)=0$. Then by hypothesis, we have $d\left(x_{0} y\right)=d\left(y x_{0}\right)$ for all $y \in \mathcal{N}$. Since \mathcal{N} is zero-symmetric by Lemma 2.5 , the last equation implies that

$$
\begin{equation*}
\alpha\left(x_{0}\right) d(y)=d(y) x_{0} \quad \text { for all } \quad y \in \mathcal{N} . \tag{3.7}
\end{equation*}
$$

Taking $y t$ instead of y in (3.7) and using Lemma 2.5 together with the fact that $d\left(x_{0}\right)=0$, we find that

$$
\alpha\left(x_{0}\right) d(y) t+\alpha\left(x_{0}\right) \alpha(y) d(t)=d(y) t x_{0}+\alpha(y) d(t) x_{0} \quad \text { for all } \quad y, t \in \mathcal{N} .
$$

By (3.7) the above expression implies that

$$
d(y) x_{0} t+\alpha\left(x_{0}\right) \alpha(y) d(t)=d(y) t x_{0}+\alpha(y) \alpha\left(x_{0}\right) d(t) \quad \text { for all } \quad y, t \in \mathcal{N} .
$$

Putting $[u, v]$ instead of t in the last expression, we get

$$
\begin{equation*}
d(y) x_{0}[u, v]=d(y)[u, v] x_{0} \quad \text { for all } \quad u, v, y \in \mathcal{N} . \tag{3.8}
\end{equation*}
$$

Replacing y by $y t$ in (3.8) and using it again, we obtain

$$
\begin{gathered}
d(y) t x_{0}[u, v]+\alpha(y) d(t) x_{0}[u, v]= \\
=d(y) t[u, v] x_{0}+\alpha(y) d(t)[u, v] x_{0} \quad \text { for all } \quad y, t \in \mathcal{N},
\end{gathered}
$$

which reduces to

$$
d(y) \mathcal{N}\left(x_{0}[u, v]-[u, v] x_{0}\right)=\{0\} \quad \text { for all } \quad y, u, v \in \mathcal{N} .
$$

Since $d \neq 0$, by 3-primeness of \mathcal{N}, we get $x_{0}[u, v]-[u, v] x_{0}=0$ for all $u, v \in \mathcal{N}$ in this case (3.6) becomes $[u, v] \in Z(\mathcal{N})$ for all $u, v \in \mathcal{N}$ and by Lemma 2.1, we conclude that \mathcal{N} is a commutative ring.

Corollary 3.3 ([1], Theorem 4.1). Let \mathcal{N} be a 2-torsion free 3-prime near-ring. If \mathcal{N} admits a nonzero derivation d such that $d([x, y])=0$ for all $x, y \in \mathcal{N}$, then \mathcal{N} is a commutative ring.

Corollary 3.4. Let \mathcal{N} be a 2 -torsion free 3 -prime near-ring. If \mathcal{N} admits a nonzero semiderivation d associated with an onto map α such that $d([x, y])=0$ for all $x, y \in \mathcal{N}$, then \mathcal{N} is a commutative ring.

Theorem 3.3. Let \mathcal{N} be a 2-torsion free 3-prime near-ring. Then there exists no nonzero $(1, \alpha)$-derivation d associated with an onto map α such that $d(x \circ y)=0$ for all $x, y \in \mathcal{N}$.

Proof. Assume that $d(x \circ y)=0$ for all $x, y \in \mathcal{N}$. Replacing y by $x y$, we get

$$
\begin{gathered}
0=d(x \circ x y)=d(x(x \circ y))= \\
=d(x)(x \circ y)+\alpha(x) d(x \circ y) \quad \text { for all } \quad x, y \in \mathcal{N} .
\end{gathered}
$$

This implies that

$$
\begin{equation*}
d(x) x y=-d(x) y x \quad \text { for all } \quad x, y \in \mathcal{N} \tag{3.9}
\end{equation*}
$$

Replacing y by $y t$ in (3.9) and using it again, we get

$$
\begin{aligned}
d(x) y t x & =-d(x) x y t=d(x) x y(-t)= \\
=(-d(x) y x)(-t) & =d(x) y(-x)(-t) \quad \text { for all } \quad x, y, t \in \mathcal{N}
\end{aligned}
$$

This can be rewritten as

$$
d(x) \mathcal{N}(-t(-x)+(-x) t)=\{0\} \quad \text { for all } \quad x, y, t \in \mathcal{N}
$$

By 3-primeness of \mathcal{N}, the latter equation becomes

$$
\begin{equation*}
d(x)=0 \quad \text { or } \quad-x \in Z(\mathcal{N}) \quad \text { for all } \quad x \in \mathcal{N} \tag{3.10}
\end{equation*}
$$

Suppose there exists $x_{0} \in \mathcal{N}$ such that $d\left(x_{0}\right)=0$. Then by hypothesis, we have $d\left(x_{0} y\right)=-d\left(y x_{0}\right)$ for all $y \in \mathcal{N}$. Since \mathcal{N} is zero-symmetric, by definition of d the last equation implies that

$$
\begin{equation*}
\alpha\left(x_{0}\right) d(y)=-d(y) x_{0} \quad \text { for all } \quad y \in \mathcal{N} \tag{3.11}
\end{equation*}
$$

Taking $y t$ instead of y in (3.11) and using Lemma 2.5 together with the fact that $d\left(x_{0}\right)=0$, we find that

$$
\alpha\left(x_{0}\right) d(y) t+\alpha\left(x_{0}\right) \alpha(y) d(t)=-\alpha(y) d(t) x_{0}-d(y) t x_{0} \quad \text { for all } \quad y, t \in \mathcal{N}
$$

By (3.11) the above expression implies that

$$
\left(-d(y) x_{0}\right) t+\alpha\left(x_{0}\right) \alpha(y) d(t)=-\alpha(y) d(t) x_{0}-d(y) t x_{0} \quad \text { for all } \quad y, t \in \mathcal{N}
$$

Putting $u \circ v$ instead of t in the last expression, we get

$$
\begin{equation*}
d(y)\left(-x_{0}\right)(u \circ v)=d(y)(u \circ v)\left(-x_{0}\right) \quad \text { for all } \quad u, v, y \in \mathcal{N} \tag{3.12}
\end{equation*}
$$

Replacing y by $y t$ in (3.12) and using it again, we obtain

$$
d(y) t\left(-x_{0}\right)(u \circ v)+\alpha(y) d(t)\left(-x_{0}\right)(u \circ v)=d(y) t(u \circ v)\left(-x_{0}\right)+\alpha(y) d(t)(u \circ v)\left(-x_{0}\right)
$$

for all $y, t \in \mathcal{N}$, which reduces to

$$
d(y) \mathcal{N}\left(\left(-x_{0}\right)(u \circ v)-(u \circ v)\left(-x_{0}\right)\right)=\{0\} \quad \text { for all } \quad y, u, v \in \mathcal{N} .
$$

Since $d \neq 0$, by 3 -primeness of \mathcal{N}, we find that $\left(-x_{0}\right)(u \circ v)=(u \circ v)\left(-x_{0}\right)$ for all $u, v \in \mathcal{N}$, and in this case (3.10) implies $(-x)(u \circ v)=(u \circ v)(-x)$ for all $u, v, x \in \mathcal{N}$. Replacing x by $-x$ in the last equation, we obtain $u \circ v \in Z(\mathcal{N})$ for all $u, v \in \mathcal{N}$. Now by Lemma 2.2, we conclude that \mathcal{N} is a commutative ring. In this case, we obtain $2 d(x y)=0$ for all $x, y \in \mathcal{N}$ and by 2 -torsion freeness, we have $d(x y)=0$ for all $x, y \in \mathcal{N}$. By definition of d, we get $d(x) y+\alpha(x) d(y)=0$ for all $x, y \in \mathcal{N}$. Replacing y by $y z$ in the above expression we obtain that $d(x) y z=0$ for all $x, y, z \in \mathcal{N}$, i.e., $d(x) \mathcal{N} z=\{0\}$ for all $x, z \in \mathcal{N}$ and by 3 -primeness of \mathcal{N} we conclude that $d=0$, a contradiction.

Corollary 3.5. Let \mathcal{N} be a 2 -torsion free 3 -prime near-ring. Then there exists no nonzero derivation d such that $d(x \circ y)=0$ for all $x, y \in \mathcal{N}$.

Corollary 3.6. Let \mathcal{N} be a 2 -torsion free 3-prime near-ring. Then there exists no nonzero semiderivation d associated with an onto map α such that $d(x \circ y)=0$ for all $x, y \in \mathcal{N}$.

Theorem 3.4. Let \mathcal{N} be a 2 -torsion free 3 -prime near-ring which admits a nonzero ($1, \alpha$)derivation d associated with an onto homomophism α. Then the following assertions are equivalent:
(i) $d([x, y])=[x, y]$ for all $x, y \in \mathcal{N}$,
(ii) \mathcal{N} is a commutative ring.

Proof. It is easy to verify that (ii) \Rightarrow (i).
(i) \Rightarrow (ii) Suppose that $d([x, y])=[x, y]$ for all $x, y \in \mathcal{N}$. Replacing y by $x y$, we get

$$
\begin{gathered}
{[x, x y]=d([x, x y])=d(x[x, y])=} \\
=d(x)[x, y]+\alpha(x) d([x, y]) \quad \text { for all } \quad x, y \in \mathcal{N} .
\end{gathered}
$$

Since $[x, x y]=x[x, y]$, the above expression becomes

$$
d(x)[x, y]+\alpha(x)[x, y]=x[x, y] \quad \text { for all } \quad x, y \in \mathcal{N} .
$$

Taking $[u, v]$ instead of x and using our hypothesis, we arrive at

$$
\alpha([u, v])[[u, v], y]=0 \quad \text { for all } \quad u, v, y \in \mathcal{N} .
$$

This implies that

$$
\begin{equation*}
\alpha([u, v]) y[u, v]=\alpha([u, v])[u, v] y \quad \text { for all } \quad u, v, y \in \mathcal{N} . \tag{3.13}
\end{equation*}
$$

Replacing y by $y t$ in (3.13) and using it again, we get

$$
\begin{aligned}
& \alpha([u, v]) y t[u, v]=\alpha([u, v])[u, v] y t= \\
= & \alpha([u, v]) y[u, v] t \quad \text { for all } \quad u, v, y, t \in \mathcal{N},
\end{aligned}
$$

which forces that

$$
\alpha([u, v]) \mathcal{N}[[u, v], t]=\{0\} \quad \text { for all } \quad u, v, t \in \mathcal{N} .
$$

Since \mathcal{N} is 3 -prime, we find that

$$
\begin{equation*}
\alpha([u, v])=0 \quad \text { or } \quad[u, v] \in Z(\mathcal{N}) \quad \text { for all } \quad u, v \in \mathcal{N} . \tag{3.14}
\end{equation*}
$$

If there exist two elements $u_{0}, v_{0} \in \mathcal{N}$ such that $\left[u_{0}, v_{0}\right] \in Z(\mathcal{N})$, then

$$
\begin{aligned}
& d\left(\left[u_{0}, v_{0}\right][x, y]\right)=d\left(\left[\left[u_{0}, v_{0}\right] x, y\right]\right)= \\
& \quad=\left[u_{0}, v_{0}\right][x, y] \quad \text { for all } \quad x, y \in \mathcal{N} .
\end{aligned}
$$

By definition of d, we find that

$$
\begin{gathered}
{\left[u_{0}, v_{0}\right][x, y]=d\left(\left[u_{0}, v_{0}\right][x, y]\right)=} \\
=d\left(\left[u_{0}, v_{0}\right]\right)[x, y]+\alpha\left(\left[u_{0}, v_{0}\right]\right) d([x, y])= \\
=\left[u_{0}, v_{0}\right][x, y]+\alpha\left(\left[u_{0}, v_{0}\right]\right)[x, y] \quad \text { for all } \quad x, y \in \mathcal{N} .
\end{gathered}
$$

By the last expression, we obtain

$$
\begin{equation*}
\alpha\left(\left[u_{0}, v_{0}\right]\right) x y=\alpha\left(\left[u_{0}, v_{0}\right]\right) y x \quad \text { for all } \quad x, y \in \mathcal{N} \tag{3.15}
\end{equation*}
$$

Replacing x by $x t$ in (3.15) and using it again, we get

$$
\begin{aligned}
& \alpha\left(\left[u_{0}, v_{0}\right]\right) x t y=\alpha\left(\left[u_{0}, v_{0}\right]\right) y x t= \\
= & \alpha\left(\left[u_{0}, v_{0}\right]\right) x y t \quad \text { for all } \quad x, y, t \in \mathcal{N} .
\end{aligned}
$$

Using this expression, we arrive at

$$
\alpha\left(\left[u_{0}, v_{0}\right]\right) \mathcal{N}[y, t]=\{0\} \quad \text { for all } \quad y, t \in \mathcal{N}
$$

Since \mathcal{N} is 3 -prime, by Lemma 2.3, we obtain $\alpha\left(\left[u_{0}, v_{0}\right]\right)=0$ or \mathcal{N} is a commutative ring. In this case (3.14) becomes $\alpha([u, v])=0$ for all $u, v \in \mathcal{N}$ or \mathcal{N} is a commutative ring. Since α is an onto homomorphism, we find that \mathcal{N} is a commutative ring.

Theorem 3.5. Let \mathcal{N} be a 2-torsion free 3 -prime near-ring. Then \mathcal{N} admits no nonzero $(1, \alpha)$ derivation d associated with an onto homomorphism α satisfying any one of the following conditions:
(i) $d(x \circ y)=x \circ y$ for all $x, y \in \mathcal{N}$,
(ii) $d([x, y])=x \circ y$ for all $x, y \in \mathcal{N}$,
(iii) $d(x \circ y)=[x, y]$ for all $x, y \in \mathcal{N}$.

Proof. (i) Suppose that $d(x \circ y)=x \circ y$ for all $x, y \in \mathcal{N}$. Replacing x by $x y$, we have

$$
\begin{gathered}
x(x \circ y)=x \circ x y=d(x \circ x y)= \\
=d(x(x \circ y))=d(x)(x \circ y)+\alpha(x) d(x \circ y)= \\
=d(x)(x \circ y)+\alpha(x)(x \circ y) \quad \text { for all } \quad x, y \in \mathcal{N} .
\end{gathered}
$$

Putting $u \circ v$ instead of x in the latter expression, we arrive at $\alpha(u \circ v)((u \circ v) \circ y)=0$ for all $u, v \in \mathcal{N}$, which yields that

$$
\begin{equation*}
\alpha(u \circ v) y(u \circ v)=-\alpha(u \circ v)(u \circ v) y \quad \text { for all } \quad u, v, y \in \mathcal{N} . \tag{3.16}
\end{equation*}
$$

Replacing y by $y t$ in (3.16) and using it again, we get

$$
\alpha(u \circ v) y t(u \circ v)=-\alpha(u \circ v)(u \circ v) y t=\alpha(u \circ v)(u \circ v) y(-t)=
$$

$$
=(-\alpha(u \circ v) y(u \circ v))(-t)=\alpha(u \circ v) y(-(u \circ v))(-t) \quad \text { for all } \quad u, v, t \in \mathcal{N} .
$$

This reduces to

$$
\alpha(u \circ v) \mathcal{N}(-t(-u \circ v)+(-u \circ v) t)=\{0\} \quad \text { for all } \quad u, v, t \in \mathcal{N}
$$

By 3-primeness of \mathcal{N}, we obtain

$$
\begin{equation*}
\alpha(u \circ v)=0 \quad \text { or } \quad-u \circ v \in Z(\mathcal{N}) \quad \text { for all } \quad u, v \in \mathcal{N} . \tag{3.17}
\end{equation*}
$$

Suppose there exist two elements $u_{0}, v_{0} \in \mathcal{N}$ such that $-u_{0} \circ v_{0} \in Z(\mathcal{N})$, then

$$
\begin{gathered}
\left(-u_{0} \circ v_{0}\right)(x \circ y)=\left(x\left(-u_{0} \circ v_{0}\right) \circ y\right)=d\left(\left(x\left(-u_{0} \circ v_{0}\right) \circ y\right)\right)= \\
=d\left(\left(-u_{0} \circ v_{0}\right)(x \circ y)\right)=d\left(\left(-u_{0} \circ v_{0}\right)\right)(x \circ y)+\alpha\left(-u_{0} \circ v_{0}\right) d(x \circ y)= \\
=\left(-u_{0} \circ v_{0}\right)(x \circ y)+\alpha\left(-u_{0} \circ v_{0}\right)(x \circ y) \quad \text { for all } \quad x, y \in \mathcal{N} .
\end{gathered}
$$

This implies that

$$
\begin{equation*}
\alpha\left(-u_{0} \circ v_{0}\right) x y=-\alpha\left(-u_{0} \circ v_{0}\right) y x \quad \text { for all } \quad x, y \in \mathcal{N} . \tag{3.18}
\end{equation*}
$$

Replacing y by $y t$ in (3.18) and using it again, we obtain

$$
\begin{equation*}
\alpha\left(-u_{0} \circ v_{0}\right) y(t x-(-x)(-t))=\{0\} \quad \text { for all } \quad x, y, t \in \mathcal{N} \tag{3.19}
\end{equation*}
$$

Taking $-x$ instead of x in (3.19), we get

$$
\alpha\left(-u_{0} \circ v_{0}\right) \mathcal{N}(-t x+x t)=\{0\} \quad \text { for all } \quad x, t \in \mathcal{N} .
$$

By 3-primeness of \mathcal{N} and Lemma 2.3, we deduce that $\alpha\left(-u_{0} \circ v_{0}\right)=0$ or \mathcal{N} is a commutative ring.
Since α is an additive map, (3.17) becomes

$$
\alpha(u \circ v)=0 \quad \text { for all } \quad u, v \in \mathcal{N} \quad \text { or } \quad \mathcal{N} \quad \text { is a commutative ring. }
$$

Using the fact that α is onto homomorphism, we deduce that

$$
u \circ v=0 \quad \text { for all } \quad u, v \in \mathcal{N} \text { or } \mathcal{N} \text { is a commutative ring. }
$$

By using Lemma 2.2, we conclude that \mathcal{N} is a commutative ring. Returning to our assumptions and using 2 -torsion freeness of \mathcal{N}, we obtain $d(x y)=x y$ for all $x, y \in \mathcal{N}$. By definition of d, we get $d(x) y+\alpha(x) d(y)=x y$ for all $x, y \in \mathcal{N}$. Replacing x by $x z$, we obtain $d(x z) y+\alpha(x z) d(y)=x z y$ for all $x, y, z \in \mathcal{N}$, which means that $\alpha(x z) d(y)=0$ for all $x, y, z \in \mathcal{N}$. Since α is an onto homomorphism, the last expression becomes $x z d(y)=0$ for all $x, y, z \in \mathcal{N}$. Hence $x \mathcal{N} d(y)=\{0\}$ for all $x, y \in \mathcal{N}$. By 3 -primeness of \mathcal{N}, we obtain that $d=0$; a contradiction.
(ii) Assume that $d([x, y])=x \circ y$ for all $x, y \in \mathcal{N}$. Since \mathcal{N} is 2-torsion free, in particular, for $x=y$, we find that $x^{2}=0$ for all $x \in \mathcal{N}$. This implies that $x(x+y)^{2}=0$ for all $x, y \in \mathcal{N}$, hence by a simple calculation, we obtain $x y x=0$ for all $x, y \in \mathcal{N}$. By 3 -primeness of \mathcal{N}, we conclude that $\mathcal{N}=\{0\}$; a contradiction.
(iii) Using the same techniques as used in (i) and (ii), we obtain the required result. The following example shows that the existence of " 3 -primeness" in the hypotheses of Theorems 3.2 and 3.3 is not superfluous.

Example. Let S be a zero symmetric left near-ring and

$$
\mathcal{N}=\left\{\left.\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c \in S\right\} .
$$

Then it can be easily seen that \mathcal{N} is a zero-symmetric left near-ring which is not 3-prime. Define maps $d, \alpha: \mathcal{N} \rightarrow \mathcal{N}$ such that

$$
d\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & 0 \\
0 & c & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & c & 0
\end{array}\right), \quad \alpha\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & 0 \\
0 & c & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & a & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then d is a $(1, \alpha)$-derivation satisfying $d([x, y])=0$ and $d(x \circ y)=0$. However, \mathcal{N} is not a commutative ring.

References

1. M. Ashraf, A. Shakir, On (σ, τ)-derivations of prime near-rings-II, Sarajevo J. Math., 4, № 16, $23-30$ (2008).
2. H. E. Bell, G. Mason, On derivations in near-rings. Near-rings and near-fields, North-Holland Math. Stud., 137 (1987).
3. H. E. Bell, On derivations in near-rings. II. Nearrings, nearfields and K-loops (Hamburg, 1995), Math. Appl., 426, 191-197 (1997).
4. H. E. Bell, A. Boua, L. Oukhtite, Semigroup ideals and commutativity in 3-prime near rings, Commun. Algebra. 43, 1757-1770 (2015).
5. A. Boua, L. Oukhtite, Semiderivations satisfying certain algebraic identities on prime near-rings, Asian-Eur. J. Math., 6, № 3 (2013), 8 p.
6. G. Pilz, Near-rings, 2nd ed., 23, North Holland, Amsterdam (1983).
7. X. K. Wang, Derivations in prime near-rings, Proc. Amer. Math. Soc., 121, № 2, $361-366$ (1994).
8. M. S.Samman, L. Oukhtite, A. Boua, A. Raji, Two sided α-derivations in 3-prime near-rings, Rocky Mountain J. Math., 46, № 4, 1379-1393 (2016).
