T. Tuan (Electric Power Univ., Hanoi, Vietnam)

ON THE FOURIER SINE AND KONTOROVICH-LEBEDEV GENERALIZED CONVOLUTION TRANSFORMS AND APPLICATIONS

ПРО СИНУС-ПЕРЕТВОРЕННЯ ФУР'Є І ПЕРЕТВОРЕННЯ КОНТОРОВИЧА – ЛЕБЕДЄВА УЗАГАЛЬНЕНИХ ЗГОРТОК ТА ЇХ ЗАСТОСУВАННЯ

We study a generalized convolutions for the Fourier sine and Kontorovich–Lebedev transforms $(h_{F_s,K}^*f)(x)$ in a two-parameter function space $L_p^{\alpha,\beta}(\mathbb{R}_+)$. We obtain several estimates for the norms and prove a Young-type inequality for this generalized convolution.

We impose necessary and sufficient conditions on the kernel h to ensure that the generalized convolution transform

$$D_h: f \mapsto D_h[f] = \left(1 - \frac{d^2}{dx^2}\right) (h_{F_s,K}^* f)(x)$$

is a unitary operator in $L_2(\mathbb{R}_+)$ (Watson-type theorem) and derive its inverse formula. Finally, we apply these results to an integrodifferential equation and obtain an estimate for the solution in the L_p -norm.

Вивчається узагальнена згортка для синус-перетворення Фур'є і перетворення Конторовича – Лебедєва $(h\underset{F_-}{*}_K f)(x)$

у двопараметричному просторі функцій $L_p^{\alpha,\beta}(\mathbb{R}_+)$. Отримано кілька оцінок для норм і встановлено нерівність типу Юнга для цієї узагальненої згортки. Введено необхідні та достатні умови для ядра h, за яких перетворення узагальненої згортки

$$D_h: f \mapsto D_h[f] = \left(1 - \frac{d^2}{dx^2}\right) (h *_{F_s, K} f)(x)$$

— це унітарний оператор в $L_2(\mathbb{R}_+)$ (теорема типу Ватсона). Отримано формулу для оберненого перетворення. Крім того, ці результати застосовано до інтегро-диференціального рівняння та отримано оцінку для його розв'язку в L_p -нормі.

1. Introduction. The Kontorovich – Lebedev integral transform was introduced by M. J. Kontorovich and N. N. Lebedev during 1938–1939 (see [8, 14])

$$(Kf)(y) = \frac{2}{\pi^2} \int_0^\infty K_{iy}(x) f(x) \frac{dx}{x}, \qquad y > 0.$$

Here, the transform kernel contains the Macdonald function $K_{\nu}(x)$ (see [2]) of the pure imaginary index $\nu = iy$. There are several integral representations for the Macdonald function, and the following one is very useful subsequently [2, 8, 17]:

$$K_{iy}(x) = \int_{0}^{\infty} e^{-x \cosh u} \cos yu \, du, \qquad x > 0.$$

$$\tag{1.1}$$

The inverse Kontorovich – Lebedev transform is of the form [8, 14]

$$f(x) = K^{-1}[g](x) = \int_{0}^{\infty} y \sinh(\pi y) K_{iy}(x) g(y) dy.$$

Z68 T. TUAN

Here, g(y) = (Kf)(y).

A generalized convolution for the Fourier sine and the Kontorovich – Lebedev integral transforms has been studied in [12]:

$$\left(h \underset{F_s,K}{*} f\right)(x) = \frac{1}{\pi^2} \int_{\mathbb{R}^2_+} \frac{1}{u} \left[e^{-u \cosh(x-v)} - e^{-u \cosh(x+v)} \right] h(u) f(v) \, du \, dv, \qquad x > 0.$$
(1.2)

Here, the Fourier sine integral transform is defined by [5, 11]

$$(F_s f)(y) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin xy \, dx.$$

The existence of the generalized convolution (1.2) for two functions in $L_1(\mathbb{R}_+)$ with weight and its application to solving integral equations of generalized convolution type were studied in [12]. Namely, for $h(x) \in L_1(\mathbb{R}_+, x^{-3/2} dx)$, $f(x) \in L_1(\mathbb{R}_+)$, the following factorization equality holds (see [12]):

$$F_s(h *_{F_s,K} f)(y) = (Kh)(y)(F_s f)(y) \qquad \forall y > 0.$$
 (1.3)

In any convolution h * f of two functions h and f, if we fix a function h and let f vary in a certain function space, then we can define convolution transforms of the form $f \to D(h * f)$, where D is a certain (differential) operator. The most well-known integral transforms constructed by that way are the Watson transforms that are related to the Mellin convolution and the Mellin transform [11]

$$f(x) \longmapsto g(x) = \int_{0}^{\infty} k(xy)f(y) dy.$$

Recently, several authors have been interested in the convolution transforms of this type [3, 7, 13, 15]. In this paper, we will study the transforms $f \to D(h_{F_s,K}^* f)$, where $h_{F_s,K}^* f$ is the generalized convolution (1.2). The case D is the identity operator is considered in Section 2, where we study operator properties for the generalized convolution (1.2) in the two parameter Lebesgue space $L_p^{\alpha,\beta}(\mathbb{R}_+)$. In particular, we obtain the Young theorem and the Young inequality for this generalized convolution. In Section 3, for the differential operators $D = I - \frac{d^2}{dx^2}$, we derive a necessary and sufficient condition such that the corresponding transforms are unitary on $L_2(\mathbb{R}_+)$, and we draw the inverse transforms (a Watson-type theorem). Finally, in Section 4, we obtain the solution in closed form of an integrodifferential equation related to the generalized convolution (1.2), and an L_p -norm estimate of the solution with respect to the data.

2. Generalized convolution operator properties. In this section, we will prove several norm properties of the generalized convolution (1.2). Throughout the paper, we are interested in the following family of two parameter Lebesgue spaces.

Definition 2.1 [16]. For $\alpha \in \mathbb{R}$, $0 < \beta \le 1$, we denote by $L_p^{\alpha,\beta}(\mathbb{R}_+)$ the normed space of all measurable functions f(x) on \mathbb{R}_+ such that

$$\int_{0}^{\infty} |f(x)|^{p} K_{0}(\beta x) x^{\alpha} dx < \infty$$

with the norm

$$||f||_{L_p^{\alpha,\beta}(\mathbb{R}_+)} = \left(\int_0^\infty |f(x)|^p K_0(\beta x) x^\alpha dx\right)^{\frac{1}{p}}.$$

The boundedness of the generalized convolution (1.2) on the space $L_1(\mathbb{R}_+)$ is shown in the following theorem.

Theorem 2.1. Let $h \in L_1^{-1,\beta}(\mathbb{R}_+)$ and $f \in L_1(\mathbb{R}_+)$, $0 < \beta < 1$. Then the generalized convolution (1.2) exists for almost all x > 0, belongs to $L_1(\mathbb{R}_+)$, and the following estimate holds:

$$\|(h_{F_s,K}^*f)\|_{L_1(\mathbb{R}_+)} \le \frac{2}{\pi^2} \|h\|_{L_1^{-1,\beta}(\mathbb{R}_+)} \|f\|_{L_1(\mathbb{R}_+)}.$$

Moreover, the factorization property (1.3) holds true. Furthermore, convolution (1.2) belongs to $C_0^1(\mathbb{R}_+)$, and the following Parseval-type equality takes place, for all x > 0:

$$(h *_{F_s,K} f)(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty (Kh)(y)(F_s f)(y) \sin xy \, dy.$$
 (2.1)

Proof. By using formula (1.1), we obtain

$$\frac{1}{2} \int_{0}^{\infty} \left(e^{-u \cosh(x+v)} + e^{-u \cosh(x-v)} \right) dx = K_0(u). \tag{2.2}$$

Recalling that $K_0(u) \le K_0(\beta u), \ 0 < \beta \le 1$ [14], we have

$$\|(h_{F_s,K}^*f)\|_{L_1(\mathbb{R}_+)} \le \frac{2}{\pi^2} \int_{\mathbb{R}_+^2} \frac{|h(u)|}{u} K_0(u)|f(v)| du dv \le$$

$$\leq \frac{2}{\pi^2} \int_{\mathbb{R}^2_+} \frac{|h(u)|}{u} K_0(\beta u) |f(v)| \, du dv = \frac{2}{\pi^2} ||h||_{L_1^{-1,\beta}(\mathbb{R}_+)} \, ||f||_{L_1(\mathbb{R}_+)}.$$

It shows that $(h *_{F_s,K} f)(x)$ belongs to $L_1(\mathbb{R}_+)$. We now prove the Parseval-type equality. By using formula 2.16.48.19 in [9]

$$\int_{0}^{\infty} \cos by \, K_{iy}(u) dy = \frac{\pi}{2} e^{-u \cosh b},$$

we get

ISSN 1027-3190. Укр. мат. журн., 2020, т. 72, № 2

$$(h_{F_s,K}^* f)(x) = \frac{1}{\pi^2} \int_{\mathbb{R}^2_+} \frac{1}{u} [e^{-u \cosh(x-v)} - e^{-u \cosh(x+v)}] h(u) f(v) du dv =$$

$$= \frac{1}{\pi^2} \int_{\mathbb{R}^3_+} \frac{2}{\pi} \frac{1}{u} h(u) f(v) K_{iy}(u) [\cos(x-v)y - \cos(x+v)y] dy du dv =$$

$$= \frac{4}{\pi^3} \int_{\mathbb{R}^3} \frac{1}{u} h(u) f(v) K_{iy}(u) \sin xy \sin vy dy du dv.$$

By using the uniform estimate [14]

$$|K_{iy}(u)| \le e^{-\delta y} K_0(u\cos\delta), \qquad 0 \le \delta < \frac{\pi}{2},$$

with $\delta = \arccos \beta$, we have

$$\int_{\mathbb{R}^{3}_{+}} \left| \frac{1}{u} h(u) f(v) K_{iy}(u) \sin xy \sin vy \right| dy du dv \le$$

$$\le \int_{0}^{\infty} \frac{1}{u} |h(u)| K_{0}(\beta u) du \int_{0}^{\infty} |f(v)| dv \int_{0}^{\infty} e^{-y \arccos \beta} dy =$$

$$= \frac{1}{\arccos \beta} \|h\|_{L_{1}^{-1,\beta}(\mathbb{R}_{+})} \|f\|_{L_{1}(\mathbb{R}_{+})} < \infty.$$

It means that we can apply Fubini's theorem to obtain

$$(h \underset{F_s,K}{*} f)(x) = \frac{4}{\pi^3} \int_{\mathbb{R}^3_+} \frac{1}{u} h(u) f(v) K_{iy}(u) \sin xy \sin vy \, dy du dv =$$

$$= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \left(\frac{2}{\pi^2} \int_{0}^{\infty} \frac{1}{u} K_{iy}(u) h(u) du \right) \left(\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(v) \sin vy \, dv \right) \sin xy \, dy =$$

$$= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} (Kh)(y) (F_s f)(y) \sin xy \, dy.$$

That is the Parseval identity (2.1). Since

$$|(Kh)(y)| \le ||h||_{L_1^{-1,\beta}(\mathbb{R}_+)} e^{-y \arccos \beta}, \qquad |(F_s f)(y)| \le ||f||_{L_1(\mathbb{R}_+)},$$

it follows that $(1+y)(Kh)(y)(F_sf)(y) \in L_1(\mathbb{R}_+)$. Thus, the Parseval identity (2.1) shows that $(h *_{F_s,K} f)(x)$ is the Fourier sine transform of a function from $L_1(\mathbb{R}_+)$, differentiable, and, therefore, belongs to $C_0^1(\mathbb{R}_+)$.

Theorem 2.1 is proved.

Theorem 2.2. Let 1 be a real number and <math>q be its conjugate exponent, i.e., 1/p + 1/q = 1. Then, for any $h \in L_p^{-p,\beta}(\mathbb{R}_+)$ and $f \in L_q(\mathbb{R}_+)$, the generalized convolution $h \underset{F_s,K}{*} f$ is a bounded function on \mathbb{R}_+ . Moreover, $h \underset{F_s,K}{*} f$ belongs to $L_r^{\alpha,\gamma}(\mathbb{R}_+)$, $1 \le r < \infty$, $\alpha > -1$, $0 < \gamma \le 1$, and

$$\|(h \underset{F_{*}.K}{*} f)\|_{L_{r}^{\alpha,\gamma}(\mathbb{R}_{+})} \le C_{\alpha,\gamma}^{1/r} \|h\|_{L_{p}^{-p,\beta}(\mathbb{R}_{+})} \|f\|_{L_{q}(\mathbb{R}_{+})}, \tag{2.3}$$

where

$$C_{\alpha,\gamma} = \frac{2^{r+\alpha-1}}{\pi^{2r}\gamma^{\alpha+1}}\Gamma^2\left(\frac{\alpha+1}{2}\right).$$

Proof. By using the integral representation (2.2) for the function $K_0(u)$, Hölder's inequality, and the fact that $e^{-u\cosh(x+v)} + e^{-u\cosh(x-v)} \le 2e^{-u}$ for all positives u, v, and x, we get

$$|(h *_{F_s,K} f)(x)| \le \frac{1}{\pi^2} \int_{\mathbb{R}^2_+} \left| \frac{h(u)}{u} \right| |f(v)| [e^{-u \cosh(x+v)} + e^{-u \cosh(x-v)}] du dv \le \frac{1}{\pi^2} \int_{\mathbb{R}^2_+} \left| \frac{h(u)}{u} \right| |f(v)| [e^{-u \cosh(x+v)} + e^{-u \cosh(x-v)}] du dv \le \frac{1}{\pi^2} \int_{\mathbb{R}^2_+} \left| \frac{h(u)}{u} \right| |f(v)| [e^{-u \cosh(x+v)} + e^{-u \cosh(x-v)}] du dv \le \frac{1}{\pi^2} \int_{\mathbb{R}^2_+} \left| \frac{h(u)}{u} \right| |f(v)| [e^{-u \cosh(x+v)} + e^{-u \cosh(x-v)}] du dv \le \frac{1}{\pi^2} \int_{\mathbb{R}^2_+} \left| \frac{h(u)}{u} \right| |f(v)| [e^{-u \cosh(x+v)} + e^{-u \cosh(x-v)}] du dv \le \frac{1}{\pi^2} \int_{\mathbb{R}^2_+} \left| \frac{h(u)}{u} \right| |f(v)| |f(v)| |f(v)| = \frac{1}{\pi^2} \int_{\mathbb{R}^2_+} \left| \frac{h(u)}{u} \right| |f(v)| |f(v)| = \frac{1}{\pi^2} \int_{\mathbb{R}^2_+} \left| \frac{h(u)}{u} \right| du dv \le \frac{1}{\pi^2} \int_{\mathbb{R}^2_+} \left| \frac$$

$$\leq \frac{1}{\pi^2} \left(\int\limits_{\mathbb{R}^2_+} \left| \frac{h(u)}{u} \right|^p \left[e^{-u \cosh(x+v)} + e^{-u \cosh(x-v)} \right] du dv \right)^{\frac{1}{p}} \times$$

$$\times \left(\int_{\mathbb{R}^2_+} |f(v)|^q \left[e^{-u \cosh(x+v)} + e^{-u \cosh(x-v)} \right] du dv \right)^{\frac{1}{q}} \le$$

$$\leq \frac{2}{\pi^2} \left(\int_0^\infty \left| \frac{h(u)}{u} \right|^p K_0(u) du \right)^{\frac{1}{p}} ||f||_{L_q(\mathbb{R}_+)}.$$

Therefore, the generalized convolution is a bounded function. Moreover, in view of formula (2.16.2.2) in [9] we get

$$\|(h_{F_s,K}^*f)\|_{L_r^{\alpha,\gamma}(\mathbb{R}_+)} \le \frac{2}{\pi^2} \|h\|_{L_p^{-p,\beta}(\mathbb{R}_+)} \|f\|_{L_q(\mathbb{R}_+)} \left(\int_0^\infty x^{\alpha} K_0(\gamma x) \, dx \right)^{\frac{1}{r}} =$$

$$= \frac{2}{\pi^2} (2\gamma)^{-1/r} \left(\frac{\gamma}{2}\right)^{-\alpha/r} \Gamma^{2/r} \left(\frac{\alpha+1}{2}\right) \|h\|_{L_p^{-p,\beta}(\mathbb{R}_+)} \|f\|_{L_q(\mathbb{R}_+)}, \qquad \alpha > -1.$$

It yields (2.3).

Theorem 2.2 is proved.

By a similar argument as in the proof of Theorem 2.1, one can easily prove the following lemma. **Lemma 2.1.** Let $h \in L_2^{-2,\beta}(\mathbb{R}_+)$, $0 < \beta < 1$, and $f \in L_2(\mathbb{R}_+)$. Then the generalized convolution (1.2) satisfies the factorization equality (1.3). Furthermore, the following generalized Parseval identity holds:

$$(h *_{F_s,K} f)(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty (Kh)(y)(F_s f)(y) \sin xy \, dy, \tag{2.4}$$

where the integral is understood in $L_2(\mathbb{R}_+)$ norm, if necessary.

Next, we will prove a Young-type theorem for the generalized convolution (1.2).

Theorem 2.3 (Young-type theorem). Let p,q,r be real numbers in $(1,\infty)$ such that 1/p+1/q+1/r=2 and let $f\in L_p^{-p,\beta}(\mathbb{R}_+), 0<\beta<1,\ g\in L_q(\mathbb{R}_+),\ h\in L_r(\mathbb{R}_+)$. Then

$$\left| \int_{0}^{\infty} (f \underset{F_s,K}{*} g)(x) h(x) dx \right| \leq \frac{2^{\frac{p-1}{p}}}{\pi^2} ||f||_{L_p^{-p,\beta}(\mathbb{R}_+)} ||g||_{L_q(\mathbb{R}_+)} ||h||_{L_r(\mathbb{R}_+)}.$$

Proof. Let p_1, q_1, r_1 be the conjugate exponents of p, q, r, respectively, it means

$$\frac{1}{p} + \frac{1}{p_1} = \frac{1}{q} + \frac{1}{q_1} = \frac{1}{r} + \frac{1}{r_1} = 1.$$

Then
$$\frac{1}{p_1} + \frac{1}{q_1} + \frac{1}{r_1} = 1$$
. Put

$$F(x, u, v) = |g(v)|^{\frac{q}{p_1}} |h(x)|^{\frac{r}{p_1}} |e^{-u\cosh(x-v)} - e^{-u\cosh(x+v)}|^{\frac{1}{p_1}},$$

$$G(x, u, v) = \left| \frac{f(u)}{u} \right|^{\frac{p}{q_1}} |h(x)|^{\frac{r}{q_1}} |e^{-u \cosh(x-v)} - e^{-u \cosh(x+v)}|^{\frac{1}{q_1}},$$

$$H(x, u, v) = \left| \frac{f(u)}{u} \right|^{\frac{p}{r_1}} |g(v)|^{\frac{q}{r_1}} |e^{-u \cosh(x-v)} - e^{-u \cosh(x+v)}|^{\frac{1}{r_1}}.$$

We have

$$F(x, u, v)G(x, u, v)H(x, u, v) = \left| \frac{f(u)}{u} \right| |g(v)||h(x)||e^{-u\cosh(x-v)} - e^{-u\cosh(x+v)}|.$$
 (2.5)

Furthermore, in the space $L_{p_1}(\mathbb{R}^3_+)$ we obtain

$$\|F\|_{L_{p_{1}}(\mathbb{R}^{3}_{+})}^{p_{1}} = \int\limits_{\mathbb{R}^{3}_{+}} |g(v)|^{q} |h(x)|^{r} |e^{-u \cosh(x-v)} - e^{-u \cosh(x+v)}| \, du dv dx \leq$$

$$\leq 2 \int_{\mathbb{R}^3_+} |g(v)|^q |h(x)|^r e^{-u} \, du \, dv \, dx =$$

$$=2\|g\|_{L_{q}(\mathbb{R}_{+})}^{q}\|h\|_{L_{r}(\mathbb{R}_{+})}^{r}. (2.6)$$

On the other hand, by the fact that $K_0(u) \leq K_0(\beta u)$, for $0 < \beta < 1$,

$$\|G\|_{L_{q_1}(\mathbb{R}^3_+)}^{p_1} = \int\limits_{\mathbb{R}^3_+} \left| \frac{f(u)}{u} \right|^p |h(x)|^r |e^{-u \cosh(x+v)} - e^{-u \cosh(x-v)}| \, du dv dx \leq 1 + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \frac{f(u)}{u} \right|^p |h(x)|^r |e^{-u \cosh(x+v)} - e^{-u \cosh(x-v)}| \, du dv dx \leq 1 + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \frac{f(u)}{u} \right|^p |h(x)|^r |e^{-u \cosh(x+v)} - e^{-u \cosh(x-v)}| \, du dv dx \leq 1 + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \frac{f(u)}{u} \right|^p |h(x)|^r |e^{-u \cosh(x+v)} - e^{-u \cosh(x-v)}| \, du dv dx \leq 1 + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \frac{f(u)}{u} \right|^p |h(x)|^r |e^{-u \cosh(x+v)} - e^{-u \cosh(x-v)}| \, du dv dx \leq 1 + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \frac{f(u)}{u} \right|^p |h(x)|^r |e^{-u \cosh(x+v)} - e^{-u \cosh(x-v)}| \, du dv dx \leq 1 + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \frac{f(u)}{u} \right|^p |h(x)|^r |e^{-u \cosh(x+v)} - e^{-u \cosh(x-v)}| \, du dv dx \leq 1 + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \frac{f(u)}{u} \right|^p |h(x)|^r |e^{-u \cosh(x+v)} - e^{-u \cosh(x-v)}| \, du dv dx \leq 1 + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \frac{f(u)}{u} \right|^p |h(x)|^r |e^{-u \cosh(x+v)} - e^{-u \cosh(x-v)}| \, du dv dx \leq 1 + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \frac{f(u)}{u} \right|^p |h(x)|^r |e^{-u \cosh(x+v)} - e^{-u \cosh(x-v)}| \, du dv dx \leq 1 + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \frac{f(u)}{u} \right|^p |h(x)|^r |e^{-u \cosh(x+v)} - e^{-u \cosh(x+v)}| \, du dv dx \leq 1 + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \frac{f(u)}{u} \right|^p |h(x)|^r |e^{-u \cosh(x+v)}| \, du dv dx \leq 1 + \frac{1}{2} \int\limits_{\mathbb{R}^3_+} \left| \frac{f(u)}{u} \right|^p |h(x)|^r |h(x)|$$

$$\leq \int_{\mathbb{R}^2_+} \left| \frac{f(u)}{u} \right|^p K_0(\beta u) |h(x)|^r du dx =$$

$$= \|f\|_{L_p^{-p,\beta}(\mathbb{R}_+)}^p \|h\|_{L_r(\mathbb{R}_+)}^r, \tag{2.7}$$

and, similarly,

$$||H||_{L_{r_{1}}(\mathbb{R}^{3}_{+})}^{r_{1}} = \int_{\mathbb{R}^{3}_{+}} \left| \frac{f(u)}{u} \right|^{p} |g(v)|^{q} |e^{-u \cosh(x-v)} - e^{-u \cosh(x+v)}| \, du \, dv \, dx \le$$

$$\leq \int_{\mathbb{R}^{2}_{+}} \left| \frac{f(u)}{u} \right|^{p} K_{0}(\beta u) |g(v)|^{r} \, du \, dv =$$

$$= ||f||_{L_{p}^{-p,\beta}(\mathbb{R}_{+})}^{p} ||g||_{L_{q}(\mathbb{R}_{+})}^{q}. \tag{2.8}$$

Hence, from (2.6), (2.7) and (2.8), we have

$$||F||_{L_{p_1}(\mathbb{R}^3_+)} ||G||_{L_{q_1}(\mathbb{R}^3_+)} ||H||_{L_{r_1}(\mathbb{R}^3_+)} \le 2^{\frac{p-1}{p}} ||f||_{L_n^{-p,\beta}(\mathbb{R}_+)} ||g||_{L_q(\mathbb{R}_+)} ||h||_{L_r(\mathbb{R}_+)}. \tag{2.9}$$

From (2.5) and (2.9), by the three-function form of the Hölder inequality [1], we have

$$\left| \int_{0}^{\infty} (f_{F_{s},K}^{*} g)(x) h(x) dx \right| \leq \frac{1}{\pi^{2}} \int_{\mathbb{R}^{3}_{+}} \left| \frac{f(u)}{u} \right| |g(v)| |h(x)| |e^{-u \cosh(x-v)} - e^{-u \cosh(x+v)}| du dv dx =$$

$$= \frac{1}{\pi^{2}} \int_{\mathbb{R}^{3}_{+}} F(x,u,v) G(x,u,v) H(x,u,v) du dv dx \leq$$

$$\leq \frac{1}{\pi^{2}} ||F||_{L_{p_{1}}(\mathbb{R}^{3}_{+})} ||G||_{L_{q_{1}}(\mathbb{R}^{3}_{+})} ||H||_{L_{r_{1}}(\mathbb{R}^{3}_{+})} \leq$$

$$\leq \frac{2^{\frac{p-1}{p}}}{\pi^{2}} ||f||_{L_{p}^{-p,\beta}(\mathbb{R}_{+})} ||g||_{L_{q}(\mathbb{R}_{+})} ||h||_{L_{r}(\mathbb{R}_{+})}.$$

Theorem 2.3 is proved.

The following Young-type inequality is a direct corollary of the above theorem.

Corollary 2.1 (Young-type inequality). Let $1 < p, q, r < \infty$ be such that 1/p + 1/q = 1 + 1/r and let $f \in L_p^{-p,\beta}(\mathbb{R}_+), 0 < \beta < 1, g \in L_q(\mathbb{R}_+)$. Then the generalized convolution (1.2) is well-defined in $L_r(\mathbb{R}_+)$. Moreover, the following inequality holds:

$$\|(f \underset{F_{s},K}{*} g)\|_{L_{r}(\mathbb{R}_{+})} \leq \frac{2^{\frac{p-1}{p}}}{\pi^{2}} \|f\|_{L_{p}^{-p,\beta}(\mathbb{R}_{+})} \|g\|_{L_{q}(\mathbb{R}_{+})}. \tag{2.10}$$

3. A Watson-type theorem. An important class of integral transforms is unitary transforms. In this section, for $D=I-\frac{d^2}{dx^2}$, we give a necessary and sufficient condition for a kernel h such that the generalized convolution transform

$$D_h: f \mapsto g = D_h[f] = \left(1 - \frac{d^2}{dx^2}\right) (h_{F_s,K}^* f)(x)$$

is a unitary operator in $L_2(\mathbb{R}_+)$, and derive its inverse formula. **Theorem 3.1.** Let $h \in L_2^{-2,\beta}(\mathbb{R}_+), \ 0 < \beta < 1$. Then the condition

$$|(Kh)(y)| = \frac{1}{1+y^2} \tag{3.1}$$

is necessary and sufficient to ensure that the transformation $f \to g$, given by formula

$$g(x) = \frac{1}{\pi^2} \left(1 - \frac{d^2}{dx^2} \right) \int_{\mathbb{R}^2_+} \frac{1}{u} (e^{-u \cosh(x-v)} - e^{-u \cosh(x+v)}) h(u) f(v) du dv$$
 (3.2)

is unitary in $L_2(\mathbb{R}_+)$. Moreover, the inverse transformation can be written in the conjugate symmetric form

$$f(x) = \frac{1}{\pi^2} \left(1 - \frac{d^2}{dx^2} \right) \int_{\mathbb{R}^2_+} \frac{1}{u} \left(e^{-u \cosh(x-v)} - e^{-u \cosh(x+v)} \right) \overline{h}(u) f(v) \, du \, dv. \tag{3.3}$$

Proof. Sufficiency. Suppose that the function h satisfies condition (3.1). Applying Lemma 2.1, it is easy to see that the generalized convolution transform (3.2) can be written in the form

$$g(x) = \sqrt{\frac{2}{\pi}} \left(1 - \frac{d^2}{dx^2} \right) \int_0^\infty (Kh)(y) (F_s f)(y) \sin xy \, dy,$$

or, equivalently,

$$g(x) = \left(1 - \frac{d^2}{dx^2}\right) F_s \left[(Kh)(y)(F_s f)(y) \right] (x).$$

It is well-known that h(y), yh(y), $y^2h(y) \in L_2(\mathbb{R}_+)$ if and only if (Fh)(x), $\frac{d}{dx}(Fh)(x)$, $\frac{d^2}{dx^2}(Fh)(x) \in L_2(\mathbb{R}_+)$ (Theorem 68 [11, p. 92]). Moreover,

$$\left(1 - \frac{d^2}{dx^2}\right)(F_s h)(x) = F_s \left[(1 + y^2)h(y) \right](x).$$
(3.4)

Condition (3.1) shows that $(1+y^2)(Kh)(y)$ is bounded. Therefore $(1+y^2)(Kh)(y)(F_sf)(y) \in$ $\in L_2(\mathbb{R}_+)$, and formula (3.4) yields

$$g(x) = F_s [(1+y^2)(Kh)(y)(F_s f)(y)](x) \in L_2(\mathbb{R}_+).$$

Applying the Fourier sine transform to both sides of the above equation, we have

$$(F_s g)(y) = (1 + y^2)(Kh)(y)(F_s f)(y).$$

Besides, from the Plancherel theorem for the Fourier sine transform $||F_s f||_{L_2(\mathbb{R}_+)} = ||f||_{L_2(\mathbb{R}_+)}$, and condition (3.1), it is easy to see that $||f||_{L_2(\mathbb{R}_+)} = ||g||_{L_2(\mathbb{R}_+)}$, which implies that transform (3.2) is unitary. Again from condition (3.1) we obtain

$$(K\overline{h})(y)(F_sg)(y) = (F_sf)(y).$$

Thus, in the same manner as above it corresponds to (3.3) and the inversion formula of transform (3.2) follows.

Necessity. Suppose that transform (3.2) is unitary in $L_2(\mathbb{R}_+)$ and the inversion formula is defined by (3.3). Then, by using the Parseval-type identity (2.4), the Plancherel theorem for the Fourier sine transform, and formula 4.5.68 in [2], we obtain

$$||g||_{L_2(\mathbb{R}_+)} = ||(Kh)(y)(F_sf)(y)||_{L_2(\mathbb{R}_+)} = ||F_sf||_{L_2(\mathbb{R}_+)} = ||f||_{L_2(\mathbb{R}_+)}.$$

The middle equality holds for all $f \in L_2(\mathbb{R}_+)$ if and only if h satisfies the condition (3.1). Theorem 3.1 is proved.

4. A class of integrodifferential equations. Not many integrodifferential equations can be solved in closed form despite their useful applications (see [4]). In particular, no applications of convolution type transforms for solving integrodifferential equations were found in recent investigations [3, 7, 13, 15]. In this section, we apply the Fourier sine and Kontorovich–Lebedev generalized convolution to investigate a class of integrodifferential equations, which seems to be difficult to be solved in closed form by using other techniques.

To introduce a class of integrodifferential equation, we recall the generalized convolution for the Fourier sine and Fourier cosine transforms, which is of the form (see [5])

$$(f *_{1} g)(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} [f(x+y) - f(|x-y|)]g(y) \, dy, \qquad x > 0.$$
 (4.1)

For $f, g \in L_1(\mathbb{R}_+)$, we have $f *_1 g \in L_1(\mathbb{R}_+)$, and the following factorization equality holds:

$$F_s(f * g)(y) = (F_s f)(y)(F_c g)(y).$$

Here, the Fourier cosine transform is defined by [5, 11]

$$(F_c f)(y) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos xy \, dx.$$

We consider the integrodifferential equation

$$f(x) - f''(x) + (D_h f)(x) = (h *_{F_s, K} g)(x),$$

$$f(0) = 0,$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f'(x) = 0.$$
(4.2)

ISSN 1027-3190. Укр. мат. журн., 2020, т. 72, № 2

Here, $h \in L_1^{-1,\beta}(\mathbb{R}_+)$, $0 < \beta < 1$, $g \in L_1(\mathbb{R}_+)$ are given functions, and $f \in C^2(\mathbb{R}_+) \cap L_1(\mathbb{R}_+)$ is the unknown function.

In order to get a solution of the above problem, note that, for $f \in C^2(\mathbb{R}_+) \cap L_1(\mathbb{R}_+)$, such that f(0) = 0, $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f'(x) = 0$, we have

$$(F_s f'')(y) = \sqrt{\frac{2}{\pi}} \int_0^\infty f''(x) \sin xy \, dx =$$

$$= \sqrt{\frac{2}{\pi}} \left\{ f'(x) \sin xy \Big|_{x=0}^\infty - y \int_0^\infty f'(x) \cos xy \, dx \right\} =$$

$$= -\sqrt{\frac{2}{\pi}} y \left\{ f(x) \cos xy \Big|_{x=0}^\infty + y \int_0^\infty f(x) \sin xy \, dx \right\} = -y^2 (F_s f)(y). \tag{4.3}$$

Lemma 4.1. Let $f \in C_0^1(\mathbb{R}_+) \cap L_1(\mathbb{R}_+)$. Then $g(x) = (f(y) \underset{1}{*} e^{-y})(x)$ is twice differentiable, g(0) = 0, and $\lim_{x \to \infty} g(x) = \lim_{x \to \infty} g'(x) = 0$.

Proof. We have

$$g(0) = \int_{0}^{\infty} [f(0+y) - f(|0-y|)] e^{-y} dy = 0.$$

On the other hand,

$$g(x) = \int_{0}^{\infty} [f(x+y) - f(|x-y|)] e^{-y} dy =$$

$$= \int_{0}^{\infty} f(x+y) e^{-y} dy - \int_{0}^{x} f(x-y) e^{-y} dy - \int_{x}^{\infty} f(y-x) e^{-y} dy =$$

$$= e^{x} \int_{x}^{\infty} f(u) e^{-u} du - e^{-x} \int_{0}^{x} f(u) e^{u} du - e^{-x} \int_{0}^{\infty} f(u) e^{-u} du =$$

$$= I_{1}(x) - I_{2}(x) - I_{3}(x). \tag{4.4}$$

Clearly, $I_3(x) \to 0$ as $x \to \infty$. For $I_1(x)$ we obtain

$$|I_1(x)| \le \int_x^\infty |f(u) e^{-(u-x)}| du \le \int_x^\infty |f(u)| du \to 0 \text{ as } x \to \infty.$$

For any $\epsilon > 0$ choose N large enough such that $\int_{N}^{\infty} |f(u)| du < \epsilon$. Then, for $x \to \infty$,

$$|I_2(x)| \le e^{-x} \int_0^N |f(u)| e^u du + \int_N^x |f(u)| du \le e^{-x} \int_0^N |f(u)| e^u du + \epsilon \to \epsilon.$$

Thus, $I_2(x) \to 0$, and, therefore, $g(x) \to 0$ as $x \to \infty$.

Next, from (4.4) we get

$$g'(x) = e^{x} \int_{x}^{\infty} f(u) e^{-u} du + e^{-x} \int_{0}^{x} f(u) e^{u} du + e^{-x} \int_{0}^{\infty} f(u) e^{-u} du - 2f(x) =$$

$$= I_{1}(x) + I_{2}(x) + I_{3}(x) - 2f(x). \tag{4.5}$$

Since $f \in C_0(\mathbb{R}_+)$, then $\lim_{x\to\infty} f(x) = 0$, and, therefore, $\lim_{x\to\infty} g'(x) = 0$. From formula (4.5) it is clear that g is twice differentiable.

Lemma 4.1 is proved.

Theorem 4.1. Suppose that the following condition holds:

$$1 + (Kh)(y) \neq 0 \qquad \forall y > 0.$$
 (4.6)

Then problem (4.2) has a unique solution $f \in C^2(\mathbb{R}_+) \cap L_1(\mathbb{R}_+)$:

$$f(x) = ((\ell *_{F_s,K} g) *_1 m)(x).$$

Here, $m(x)=\sqrt{\frac{\pi}{2}}e^{-x}$ and $\ell\in L_1^{-1,\beta}(\mathbb{R}_+)$ is defined by

$$(K\ell)(y) = \frac{(Kh)(y)}{1 + (Kh)(y)},$$

the generalized convolution $(\cdot *_{F_s,K} \cdot)$ and the convolution $(\cdot *_1 \cdot)$ are defined by (1.2), (4.1), respectively.

Proof. Equation (4.2) can be rewritten in the form

$$f(x) - f''(x) + \left(1 - \frac{d^2}{dx^2}\right) \left\{ (h \underset{F_s,K}{*} f)(x) \right\} = (h \underset{F_s,K}{*} g)(x). \tag{4.7}$$

Applying the Fourier sine transform to both sides of (4.7), and by virtue of the factorization equality (1.3) and formula (4.3), we obtain

$$(1+y^2)(F_sf)(y) + (1+y^2)(Kh)(y)(F_sf)(y) = (Kh)(y)(F_sg)(y),$$

or, equivalently,

$$(1+y^2)(1+(Kh)(y))(F_sf)(y) = (Kh)(y)(F_sg)(y).$$

From the condition (4.6) we get

$$(F_s f)(y) = \frac{1}{1 + y^2} \frac{(Kh)(y)}{1 + (Kh)(y)} (F_s g)(y).$$

ISSN 1027-3190. Укр. мат. журн., 2020, т. 72, № 2

By condition (4.6) the function $\varphi(y) = \frac{(Kh)(y)}{1 + (Kh)(y)}$ satisfies conditions of the Wiener-Levy theorem for the Kontorovich-Lebedev transform [14], and, therefore, there exists a unique function $\ell \in L_1^{-1,\beta}(\mathbb{R}_+)$ such that

$$(K\ell)(y) = \frac{(Kh)(y)}{1 + (Kh)(y)}.$$

Moreover, note that $\frac{1}{1+y^2} = (F_c m)(y)$ with $m(x) = \sqrt{\frac{\pi}{2}}e^{-x}$, we have

$$(F_s f)(y) = \sqrt{\frac{\pi}{2}} (F_c m)(y) (K\ell)(y) (F_s g)(y) =$$

$$= \sqrt{\frac{\pi}{2}} (F_c m)(y) F_s \left[\left(\ell \underset{F_s, K}{*} g \right) \right] (y) =$$

$$= \sqrt{\frac{\pi}{2}} F_s \left[\left(\left(\ell \underset{F_s, K}{*} g \right) \underset{1}{*} m \right) \right] (y).$$

This implies $f(x)=((\ell_{F_s,K}^*g)_1^*m)(x)$. Since $\ell\in L_1^{-1,\beta}(\mathbb{R}_+)$ and $g\in L_1(\mathbb{R}_+)$, then by Theorem 2.1 we have $\ell_{F_s,K}^*g\in C_0^1(\mathbb{R}_+)\cap L_1(\mathbb{R}_+)$. Together with $m\in L_1(\mathbb{R}_+)$ it yields $f=(\ell_{F_s,K}^*g)_1^*m\in L_1(\mathbb{R}_+)$. Lemma 4.1 implies f(0)=0, $\lim_{x\to\infty}f(x)=\lim_{x\to\infty}f'(x)=0$, and $f\in C^2(\mathbb{R}_+)$. Theorem 4.1 is proved.

Remark. For p, q, r > 1 satisfying $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$, the following inequality holds [10]:

$$\|(f *_1 g)\|_{L_r(\mathbb{R}_+)} \le \|f\|_{L_p(\mathbb{R}_+)} \|g\|_{L_q(\mathbb{R}_+)}, \qquad f \in L_p(\mathbb{R}_+), \quad g \in L_q(\mathbb{R}_+).$$

Combining with inequality (2.10), if we assume that $\ell \in L_p^{-p,\beta}(\mathbb{R}_+)$, $g \in L_q(\mathbb{R}_+)$, $h \in L_r(\mathbb{R}_+)$, and s > 1, such that $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = \frac{1}{s} + 2$, we obtain an estimate for the solution of the problem (4.2) in the space $L_s(\mathbb{R}_+)$ as follows:

$$||f||_{L_s(\mathbb{R}_+)} = \left\| \left((\ell \underset{F_s,K}{*} g) \underset{1}{*} m \right) \right\|_{L_s(\mathbb{R}_+)} \le \frac{2^{\frac{p-2}{2p}}}{\pi^{3/2} r^{1/r}} ||\ell||_{L_p^{-p,\beta}(\mathbb{R}_+)} ||g||_{L_q(\mathbb{R}_+)}.$$

References

- 1. R. A. Adams, J. J. F. Fournier, Sobolev spaces, 2nd ed., Acad. Press, New York; Elsevier Sci., Amsterdam (2003).
- 2. M. Abramowitz, I. A. Stegun, *Handbook of mathematical functions, with formulas, graphs and mathematical tables,* Nat. Bureau Standards Appl. Math. Ser., 55, Washington, D.C. (1964).
- 3. F. Al-Musallam, V. K. Tuan, *Integral transforms related to a generalized convolution*, Results Math., **38**, 197–208 (2000).
- 4. Y. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev, S. V. Meleshko, *Symmetries of integrodifferential equations with applications in mechanics and plasma physics*, Lect. Notes Phys., **806**, Springer, Dordrecht (2010).
- 5. I. N. Sneddon, Fourier transforms, McGray-Hill, New York (1951).
- 6. H. Bateman, A. Erdelyi, Table of integral transforms, vol. 1, McGraw-Hill Book Co., New York etc. (1954).

- 7. L. E. Britvina, *A class of integral transforms related to the Fourier cosine convolution*, Integral Transforms Spec. Funct., **16**, № 5-6, 379 389 (2005).
- 8. H. J. Glaeske, A. P. Prudnikov, K. A. Skornik, *Operational calculus and related topics*, Chapman Hall/CRC, Boca Raton etc. (2006).
- 9. A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, *Integrals and series: special functions*, Gordon and Breach, New York; London (1986).
- 10. N. X. Thao, N.T. Hong, Fourier sine-cosine convolution inequalities and applications, Proc. XIII Int. Sci. Kravchuk Conf., Ukraine, 28–29 (2010).
- 11. E. C. Titchmarsh, Introduction to the theory of Fourier integrals, 3rd ed., Chelsea Publ. Co., New York (1986).
- 12. T. Tuan, N. X. Thao, N. V. Mau, On the generalized convolution for the Fourier sine and the Kontorovich–Lebedev transforms, Acta Math. Vietnam., 35, № 2, 303–317 (2010).
- 13. V. K. Tuan, Integral transforms of Fourier cosine convolution type, J. Math. Anal. and Appl., 229, 519 529 (1999).
- 14. S. B. Yakubovich, *Index transforms*, World Sci., Singapore etc. (1996).
- 15. S. B. Yakubovich, *Integral transforms of the Kontorovich Lebedev convolution type*, Collect. Math., **54**, № 2, 99 110 (2003).
- 16. S. B. Yakubovich, L. E. Britvina, *Convolution related to the Fourier and Kontorovich–Lebedev transforms revisited*, Integral Transforms Spec. Funct., **21**, № 4, 259–276 (2010).
- 17. J. Wimp, A class of integral transforms, Proc. Edinburgh Math. Soc., 14, 33-40 (1964).

Received 22.12.16, after revision -01.08.17