UDC 517.5

T. Tuan (Electric Power Univ., Hanoi, Vietnam)

ON THE FOURIER SINE AND KONTOROVICH -LEBEDEV
GENERALIZED CONVOLUTION TRANSFORMS AND APPLICATIONS

PO CUHYC-IIEPETBOPEHHS ®YP’€ I IEPETBOPEHHS
KOHTOPOBHMYA - JIEBEJIEBA Y3ATAJIBHEHUX 3ITOPTOK
TA iX 3ACTOCYBAHHS

We study a generalized convolutions for the Fourier sine and Kontorovich—Lebedev transforms (h L. f)(x) in a two-

parameter function space L;”ﬂ (R4). We obtain several estimates for the norms and prove a Young-type inequality for this
generalized convolution.
We impose necessary and sufficient conditions on the kernel A to ensure that the generalized convolution transform

Dy : f— Dyp[f] = (1 - dd?) ( F:jK 7))

is a unitary operator in L2(Ry) (Watson-type theorem) and derive its inverse formula. Finally, we apply these results to
an integrodifferential equation and obtain an estimate for the solution in the L,-norm.
BuBuaeThes y3arajabHeHa 3ropTKa 1Is cHHyc-TiepeTBopents Dyp’e i neperBopents Kontoposuua —Jlebenesa (h . )

y IBOTIapaMETPUYHOMY ITPOCTOPi PyHKIIN LS’B (R4). OTprmaHo KinbKa OLIHOK [JI1 HOPM i BCTAHOBJICHO HEPIBHICTB THITY
IOnra muist miel y3araiapHeHOi 3ropTkd. BBeneHO HeoOXimHI Ta JocTaTHI yMOBH Uit sapa h, 3a SKHX HEpPEeTBOPEHHS
y3arajlbHEHOI 3TOPTKH

d2
Dyp: f—D =(1—-—-—)(h = T
nef n[f] e ( FS,Kf)( )

— e yHitapuuii oneparop B L2 (R ) (Teopema tuny Barcona). Otpumano gopmyity st 06epHEHOTo repetBopeHHs. Kpim
TOrO, Ii Pe3yJbTaTH 3aCTOCOBAHO 0 iHTErpo-AudepeHNiaTbHOIO PiBHAHHSA Ta OTPHUMAHO OLHKY IJIi HOro po3B’s3Ky B
L, -nopM™i.

1. Introduction. The Kontorovich—Lebedev integral transform was introduced by M. J. Kontorovich
and N. N. Lebedev during 1938 -1939 (see [8, 14])

™ x

o
2 da:
(K f)(y Q/K%y )—, y > 0.
0

Here, the transform kernel contains the Macdonald function K, (x) (see [2]) of the pure imaginary in-
dex v = 1y. There are several integral representations for the Macdonald function, and the following
one is very useful subsequently [2, 8, 17]:

o0
= /e“OSh“cosyudu, x> 0. (1.1)
0

The inverse Kontorovich — Lebedev transform is of the form [8, 14]

o)

f(z) = / ysinh(my) Ky (2)g(y) dy.

0
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268 T. TUAN

Here, g(y) = (K f)(y).
A generalized convolution for the Fourier sine and the Kontorovich— Lebedev integral transforms

has been studied in [12]:

(h e f(z) = % / % [e—ucosh@—”) - e—ucosh@f“’)] h(u)f(v)dudv, — z>0.  (12)

2
R+

Here, the Fourier sine integral transform is defined by [5, 11]

(Fsf)(y) = \/sz(x) sin zy dz.
0

The existence of the generalized convolution (1.2) for two functions in L; (R ) with weight and
its application to solving integral equations of generalized convolution type were studied in [12].
Namely, for h(z) € Ly ERJF, z3/2 da:) , f(z) € Li1(R,), the following factorization equality holds
(see [12]):

Bh x D) = EW@ENE)  Fy>0. (1.3

In any convolution h * f of two functions h and f, if we fix a function h and let f vary in a certain
function space, then we can define convolution transforms of the form f — D(h x f), where D is a
certain (differential) operator. The most well-known integral transforms constructed by that way are
the Watson transforms that are related to the Mellin convolution and the Mellin transform [11]

F(2) — glz) = / k() f () dy.

Recently, several authors have been interested in the convolution transforms of this type [3, 7,
13, 15]. In this paper, we will study the transforms f — D(h P f), where h o f is the

S S

generalized convolution (1.2). The case D is the identity operator is considered in Section 2, where
we study operator properties for the generalized convolution (1.2) in the two parameter Lebesgue

space LS’B (Ry). In particular, we obtain the Young theorem and the Young inequality for this
2

generalized convolution. In Section 3, for the differential operators D = I — we derive a

o
necessary and sufficient condition such that the corresponding transforms are unciltﬁry on La(Ry),
and we draw the inverse transforms (a Watson-type theorem). Finally, in Section 4, we obtain the
solution in closed form of an integrodifferential equation related to the generalized convolution (1.2),
and an L,-norm estimate of the solution with respect to the data.

2. Generalized convolution operator properties. In this section, we will prove several norm
properties of the generalized convolution (1.2). Throughout the paper, we are interested in the
following family of two parameter Lebesgue spaces.
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ON THE FOURIER SINE AND KONTOROVICH-LEBEDEV GENERALIZED CONVOLUTION ... 269

Definition 2.1 [16]. For o € R, 0 < 8 < 1, we denote by Lg’B(R+) the normed space of all
measurable functions f(x) on Ry such that

/ (@) P Ko(B)a® do < oo
0

with the norm

p

1/l s, = / (@) P EKo(fx)e® d

The boundedness of the generalized convolution (1.2) on the space Li(Ry) is shown in the
following theorem.

Theorem 2.1. Let h € Ll_l”B(R+) and f € Li(Ry), 0 < B < 1. Then the generalized
convolution (1.2) exists for almost all © > 0, belongs to L1(R.), and the following estimate holds:

2
H(h F:K f)||L1(R+) < ﬁ||h”L;1’ﬂ(R+) ”fHL1(]R+)-

Moreover, the factorization property (1.3) holds true. Furthermore, convolution (1.2) belongs to
C}(Ry), and the following Parseval-type equality takes place, for all x > 0:

(h ke Hz \/>/ Kh)(y)(Fsf)(y)sinzy dy. (2.1)

Proof. By using formula (1.1), we obtain

N | —

/ —u cosh(z+v) te —u cosh(z— v))dl' — KO( ) (22)
0

Recalling that Ko(u) < Ko(Bu), 0 < 8 <1 [14], we have

Fo K

[(hx f)HL1<R+>§;/'h?'z{o(u)\f@)\dudvg
RQ

Ih(u 2
<2 / )l (@)l dudo = 2Bl s e 1 s e

It shows that (h ot f)(z) belongs to L1(R;). We now prove the Parseval-type equality. By using
formula 2.16.48.19 in [9]

o

/COS by Kiy(u)dy — ge_"COShb,
0
we get
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270 T. TUAN

Fs K T
2

L 2 L) ) Ky () eos( — )y — cos(a + v)y] dydud
- ——hu) J v) Mgy U r—0)Yy — T+ v udv =

72 TU Y yray

5
4 1 . .
- ey Eh(u)f(v)Ki (u) sinzy sinvy dydudv.
RS

By using the uniform estimate [14]

Ky (u)] < e Ko(ucos ), 0<d< g,

with § = arccos 3, we have

/

3
R+

1

Eh(u)f(v)Kl (u) sinzy sinvy

dydudv <

o0 (e 9] [e.o]

< 0/ ()] Ko(B) du 0/ F(@)] do 0/ e s gy

B 1

~arccos 3 ”hHLIl*B(R” 1l 2Ry < 00

It means that we can apply Fubini’s theorem to obtain

4 1

(h F:K fx) = = / Eh(u)f(v)Kl (u) sinzy sinvy dydudv =

£
2 7(2 T1 5 T
— \/;/ 7r2/uKiz,,(u)h(u)du \/;/f(v)sinvydv sinxy dy =
0 0 0

/2 [umm ) snry iy
0

That is the Parseval identity (2.1). Since
(KR < bl v, e " P, [(Ff) W) < e,

it follows that (1 4+ y)(Kh)(y)(Fsf)(y) € Li(R4). Thus, the Parseval identity (2.1) shows that
(h ot f)(zx) is the Fourier sine transform of a function from L (R ), differentiable, and, therefore,

belongs to C}(R.).
Theorem 2.1 is proved.
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ON THE FOURIER SINE AND KONTOROVICH-LEBEDEV GENERALIZED CONVOLUTION ... 271

Theorem 2.2. Let 1 < p < 0o be a real number and q be its conjugate exponent, i.e., 1/p +
+1/q = 1. Then, for any h € L;p”B(R+) and f € Ly(Ry), the generalized convolution h _* _f

Sy

is a bounded function on Ry. Moreover, h F*K f belongs to Ly (Ry), 1 < r < oo, a > —1,
0<~y<1, and 7

I e Dz < ClN o g 1 Lz 23)
where s
grta— 9 a+1
Con = Tarari’ ( 2 >

Proof. By using the integral representation (2.2) for the function Ky(u), Holder’s inequality,
and the fact that e¢—ucosh(z+v) 4 g—ucosh(z—v) < 9o—u for a]] positives u, v, and z, we get

|f(v)|[e—ucosh(a:+v) + 6—ucosh(z—v)} dudv <

Rz

+

p
nu) [efucosh(x%»v) + efucosh(:v*’u)] dudv X

1

q

P

p
Ko(u)du | || fllL,@,)-

Therefore, the generalized convolution is a bounded function. Moreover, in view of formula (2.16.2.2)
in [9] we get

o0

2 (0%
(R 2k e myy < ﬁHhHL;p,ﬂ(R”||fHLq(R+) /:1: Ko(yz)dz | =
0

2 —1/r ’Y_Q/TQT a1
= 5N () T (=) Wl e Il @ > L

It yields (2.3).
Theorem 2.2 is proved.
By a similar argument as in the proof of Theorem 2.1, one can easily prove the following lemma.
Lemma 2.1. Let h € L2_2’6(]R+), 0 < B <1, and f € La(Ry). Then the generalized

convolution (1.2) satisfies the factorization equality (1.3). Furthermore, the following generalized
Parseval identity holds:
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272 T. TUAN

(h * Nz \/7/ Kh)(y)(Fsf)(y) sinzy dy, (2.4)

where the integral is understood in Ly(R.) norm, if necessary.
Next, we will prove a Young-type theorem for the generalized convolution (1.2).

Theorem 2.3 (Young-type theorem). Let p, q,r be real numbers in (1, 00) such that 1/p+1/q+
+1/r=2andlet f € L,"’(R}),0< B <1, g€ Ly(Ry), h € L.(R,). Then

p—1

e’} 9
/(f F:K g)(z) h(z)dz| < 7”f”L;Pﬁ(R+)||9||Lq(R+)”h”Lr(R+)'
0

Proof. Let p1,q1,71 be the conjugate exponents of p, g, r, respectively, it means

9 T 1
F(z,u,v) = |g(v)|Pt |h(z)|P: |€_UCOSh(I_v) - e_“COSh(x+”)|P1 ,

1
|h(l‘) | qu ’€—u cosh(z—v) e U cosh(z+v) | qT’

Il

q 1
|g(v) | = |67u cosh(z—v) el cosh(z+v) | T

We have

F(x,u,v)G(z,u,v)H(x,u,v) = ‘fij‘)

|g(v)|‘h(ﬂf)’|6_uCOSh(m_v) - e—ucosh(:r+v)|. (2.5)

Furthermore, in the space L,, (R3) we obtain

+
IFI7, sy = [ 9@ e b — oot dududs <
R3

<2 / 19(0) ()T~ duduvdz =
5

— 20gl], g 10l g0 2.6)
On the other hand, by the fact that Kg(u) < Ko(Bu), for 0 < g < 1,

IG12 s, / ]f

| —u cosh(z+v)

_ cosh(z—v)‘ dudvdz <
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/ O go(auino duds -
—HfHL v @ 1PIL. @) (2.7)
and, similarly,
HHHE RS /‘f |q| —ucosh(z—v) 6—ucosh(z+v)|dudvdx <
P
U
S/'f(u) Ko(Bu)|g(v)|" dudv =
R
=112 s 1L 2.8)
Hence, from (2.6), (2.7) and (2.8), we have
p=1
I L, @) 1Gl Ly, @)1 L, sy <27 I fllre @) 190 Lo IPl L, (2.9

From (2.5) and (2.9), by the three-function form of the Holder inequality [1], we have

/fF:f al /\f

||h( )He—ucosh(w—v) o e—ucosh(z—&-v)’ dudvdzr =

1
= F(z,u,v)G(x,u,v)H(x,u,v) dudvdz <
R

1

ﬁHFHLpl(Ri)HG”qu(Ri)HHHLTI(Ri) <

IN

p—1

2P
72Hf||L;M(R+)HQHLq(M)HhHLT(R”-

IN

Theorem 2.3 is proved.

The following Young-type inequality is a direct corollary of the above theorem

Corollary 2.1 (Young-type inequality). Let 1 < p,q,r < oo be such that 1/p+ 1/qg =1+ 1/r
and let f € Ly,"P(Ry),0 < 8 < 1, g € Ly(Ry)

. Then the generalized convolution (1.2) is
well-defined in L,(Ry). Moreover, the following inequality holds

p—1

2P
1 * 9ll,@y) < 5

e 11l 19l 2o (2.10)
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274 T. TUAN

3. A Watson-type theorem. An important class of integral transforms is unitary transforms. In
2

this section, for D =1 — 7 we give a necessary and sufficient condition for a kernel h such that

2 )
Xr
the generalized convolution transform

2
Dii fra=Dulfl= (1= 3 ) 0 N

is a unitary operator in Lo(R ), and derive its inverse formula.
Theorem 3.1. Let h € L2_2’6(R+), 0 < B < 1. Then the condition

1
=1

|(Kh)(y)] (3.1)

is necessary and sufficient to ensure that the transformation f — g, given by formula

g(x) = 1 <1 d? ) /1(eucosh(zv) _ efucosh(a:Jrv))h(u)f(v) dudv (3.2)

o2 dx? U
2
R3

is unitary in Lo(Ry.). Moreover, the inverse transformation can be written in the conjugate symmetric
form

2
fla) =+ <1 - sz> / L(emmeottet) e RO R ) f(0) dudv. (33)
%

Proof. Sufficiency. Suppose that the function A satisfies condition (3.1). Applying Lemma 2.1,
it is easy to see that the generalized convolution transform (3.2) can be written in the form

9 o
o) =2 (1= 5z ) [ KRG ED@sinay iy
0

or, equivalently,

o) = (1= ) B[00 EN )] 0

i

It is well-known that h(y), yh(y), v2h(y) € La(R.) if and only if (Fh)(z), %(Fh)(a:),
j;(Fh)(x) € Ly(R.) (Theorem 68 [11, p. 92]). Moreover,

(1- ) (EhE) = B[40 @) 64

Condition (3.1) shows that (1 + y?)(Kh)(y) is bounded. Therefore (1 + y2)(Kh)(y)(Fsf)(y) €
€ Ly(R4), and formula (3.4) yields

9(w) = B[ (1+ ) (KR () (Ff) ()] (@) € La(Ry).
Applying the Fourier sine transform to both sides of the above equation, we have
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ON THE FOURIER SINE AND KONTOROVICH-LEBEDEV GENERALIZED CONVOLUTION ... 275

(Fsg)(y) = (1 + ) (KR) (y)(Fef) (y)-

Besides, from the Plancherel theorem for the Fourier sine transform || Fs f| 1, ) = [ f |l z(r, ), and
condition (3.1), it is easy to see that || f||z,r,) = l|9/lzo(r,), Which implies that transform (3.2) is
unitary. Again from condition (3.1) we obtain

(KR)(y)(Fsg)(y) = (Fuf)(y)-

Thus, in the same manner as above it corresponds to (3.3) and the inversion formula of transform
(3.2) follows.

Necessity. Suppose that transform (3.2) is unitary in Lo (R ) and the inversion formula is defined
by (3.3). Then, by using the Parseval-type identity (2.4), the Plancherel theorem for the Fourier sine
transform, and formula 4.5.68 in [2], we obtain

9l oy = NER) W) Es )W) oyy = 1E5F Loy = 11|y

The middle equality holds for all f € Lyo(R) if and only if A satisfies the condition (3.1).

Theorem 3.1 is proved.

4. A class of integrodifferential equations. Not many integrodifferential equations can be
solved in closed form despite their useful applications (see [4]). In particular, no applications of
convolution type transforms for solving integrodifferential equations were found in recent investiga-
tions [3, 7, 13, 15]. In this section, we apply the Fourier sine and Kontorovich — Lebedev generalized
convolution to investigate a class of integrodifferential equations, which seems to be difficult to be
solved in closed form by using other techniques.

To introduce a class of integrodifferential equation, we recall the generalized convolution for the
Fourier sine and Fourier cosine transforms, which is of the form (see [5])

1

(f+g)(x) = jﬁ 0/ F@+y) - e —oDlg@)dy, = >0, @.1)

For f,g € L1(Ry), we have f ¥g € L1 (R ), and the following factorization equality holds:

Fo(fx9)(y) = (F ) () (Feg)(y)-

Here, the Fourier cosine transform is defined by [5, 11]

(Fef)(y) = \/Z]of(w) cos zy dz.
0

We consider the integrodifferential equation

f(z) = f"(2) + (Duf)(x) = (b _* g)(x),

ER)

f(0) =0, (4.2)

lim f(z) = lim f'(z) =0.

T—r00 T—00
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276 T. TUAN

Here, h € LII’B(RJF), 0< B <1, ge Li(Ry) are given functions, and f € C?(Ry) N Ly1(Ry) is
the unknown function.

In order to get a solution of the above problem, note that, for f € C?(Ry) N Ly (R, ), such that
£(0) = 0,limy 00 f(x) = limy_s00 f/(x) = 0, we have

= \/Zo/f"(x)sinxydx =

2 [oe)
=/ =< fl(x)si —y | f(z)cosxydr p =
el
=2 s@eosay[” vy [ f@smayde b = 2EDE). @
0

Lemma 4.1. Let f € C}(Ry) N Li(Ry). Then g(z) = (f(y) H e Y)(x) is twice differentiable,

9(0) = 0, and lim; o0 g(2) = limg o0 ¢'(2) = 0.
Proof. We have

/ (0+y)— F(10—yD]e ¥ dy =0,
0

On the other hand,

r) =/[f(x+y) ~f(lz -yl eV dy =
0

:/f (x+y)e Ydy — /fx— e Ydy — /f (y—xz)e Ydy =
0 T

—exx/f(u)e_“du—e_xo/f(u)e“du—e_xo/f(u)e_“du—

— Ii(2) — Io(x) — Ia(a). (4.4)

Clearly, I5(x) — 0 as  — oo. For I1(z) we obtain
I (z)| §/|f(u)e<H>\dug/|f(u)|du—>o as  x — oo.

For any € > 0 choose N large enough such that [ |f(u)|du < e. Then, for 2 — oo,
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N

N T
[L(z)| <e™™ [ |f(u)]e*du+ [ |f(u)]du<e™ [ |f(u)e“du+e— e
0/ 1! /

0

Thus, I3(xz) — 0, and, therefore, g(x) — 0 as x — oo.
Next, from (4.4) we get

g(x) =e" 7f(u) e du+e ™ i Fu) e du + e® 7f(u) e~ du — 2f(z) =
T 0 0

= Ii(z) + La(z) + Is(x) — 2f (). (4.5)

Since f € Cy(Ry), then lim, o f(x) = 0, and, therefore, lim, ,~, ¢’(x) = 0. From formula
(4.5) it is clear that g is twice differentiable.

Lemma 4.1 is proved.

Theorem 4.1. Suppose that the following condition holds:

1+ (Kh)(y) #0  Vy>0. (4.6)

Then problem (4.2) has a unique solution f € C*(Ry) N Li(R,):

fla)=((¢ x _g)*m)(z).

Fo,K
Here, m(x) = \/Zex and { € LII’B(RJF) is defined by
Kh

1+ (Kh)(y)’

the generalized convolution (- *K) and the convolution (T) are defined by (1.2), (4.1), respectively.

ER)

Proof. Equation (4.2) can be rewritten in the form

1) - 1"@+ (1= 1) {0 e D@} =0 00, @)

dx? Fo K Fo K

Applying the Fourier sine transform to both sides of (4.7), and by virtue of the factorization equality
(1.3) and formula (4.3), we obtain

L+ y*)(Ef)(y) + (L +y*)(EKh) () (Fsf)(y) = (Kh)(y)(Fsg) (y),
or, equivalently,
(14 y*) (1 + (Kh) () (Fs f)(y) = (KRh)(y)(Fsg)(y)-

From the condition (4.6) we get

1 (Kh)(y)

(BN = 552 T w0 90
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278 T. TUAN

(Kh)(y)

1+ (Kh)(y)
theorem for the Kontorovich — Lebedev transform [14], and, therefore, there exists a unique function

le LII’B(RJF) such that

By condition (4.6) the function ¢(y) = satisfies conditions of the Wiener—Levy

(Kh)(y)

1
Moreover, note that Tr (Fem)(y) with m(x) = \/ze””, we have

(Fuf)(y) = ﬂ(ch><y><Kf><y><Fs ) =

=/ X(Fum)(y)Fy (€ * 9| W)=
5 (s 0

(e

This implies f(x) = ((EF*Kg)Tm)(:E) Since ¢ € Lfl’ﬂ(RJr) and g € L; (R ), then by Theorem 2.1

we have £ ot 9 € CHRy) N Ly (Ry). Together with m € Li(R4) it yields f = (¢ o 9) xm €

€ L1(R,). Lemma 4.1 implies f(0) = 0, lim, 00 f(2) = limzs00 f'(z) = 0, and f € C?(Ry).
Theorem 4.1 is proved.

1 1 1
Remark. For p,q,r > 1 satisfying — + — = 1 + —, the following inequality holds [10]:
p q r

H(fTQ)HLT(Rg <[ fllz, )19l L) feLlpRy), geLy(Ry).

Combining with inequality (2.10), if we assume that ¢ € L,” B (R4), g € Lg(R4), h € L (Ry),
1
and s > 1, such that — + — + — = — 4 2, we obtain an estimate for the solution of the problem (4.2)
D ros
in the space Ls(R.) as follows:
p=2
22
< 3/2,1/r HEHL;M(M) HQHLQ(Rer

£l = | (€€ 5090 m)

Ls(R4)
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