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A CHARACTERIZATION OF TOTALLY UMBILICAL HYPERSURFACES
OF A SPACE FORM BY GEODESIC MAPPING

XAPAKTEPUCTUKA TOTAJBbHO OMBUUITYHUX TI'TTTIEPITOBEPXOHb
MNPOCTOPOBOI ®OPMHU 3A JOIMOMOI'OIO I'EQJIE3MYHUX BIJIOBPAKEHb

The idea of considering the second fundamental form of a hypersurface as the first fundamental form of another hypersurface
has found very useful applications in Riemannian and semi-Riemannian geometry, specially when trying to characteri-
ze extrinsic hyperspheres and ovaloids. Recently, T. Adachi and S. Maeda gave a characterization of totally umbilical
hypersurfaces in a space form by circles. In this paper, we give a characterization of totally umbilical hypersurfaces of a
space form by means of geodesic mapping.

[nest BUKOpHCTaHHs ApYyrol GpyHAaMeHTalIbHOI (OpMH TileprnoBepxHi sk nepioi GpyHrameHtansHol Gpopmu iHIIOT rinepno-
BEPXHI 3HAMIUIA Ty)Ke BaXJINBI 3aCTOCYBaHHS y PIMAHOBIi Ta HamiBpIMaHOBIH reoMeTpii, 30KpeMa IPHU OMHKCI 30BHIIIHIX
rimepcep Ta osanoimis. Hemonasuo T. Adachi Ta S. Maeda HaBenm XapakTepHCTHKY TOTAIbHO OMOLTIYHMX Timeprio-
BEPXOHb Yy MPOCTOPOBiii (opMi 3a JOMOMOTOI0 Kifl. Y il poOOTI MU HAaBOIUMO XapaKTEPUCTUKY TOTAIHLHO OMOLUTIYHUX
TrimeproBepXoHb MPOCTOPOBOI (OPMHU 3a JONOMOTOO TeOIE3NIHIX BiTOOPaKCHB.

1. Introduction. Let M,, and M;, be two hypersurfaces of the space form M, 1 [3-5] and let g, ¢’
and g be the respective positive definite metric tensors. Denote by V, V' and V the corresponding
connections induced by ¢, ¢’ and g.

In this paper, we choose the first fundamental form of M, as

2

g =e*w, (1.1

where w is the second fundamental form of M,, which is supposed to be positive definite and o is a
differentiable function defined on M,,.

Let {z'}, {2’ Z} and {y®} be the respective coordinate systems in M,,, M;, and M, 1 and let f
be a one-to-one differentiable mapping of M,, upon M, defined by

I’li:fi(x17x2a"'7xn)7 i:1727"'7n’ (12)

in which fi are smooth functions defined on M,, and have a non-vanishing Jacobian. Then, it is clear
that the corresponding points of M,, and M, are represented by the same set of coordinates and that
the coordinate vectors correspond.

Let R, R and R’ be the covariant curvature tensors of M, 1, M, and M,, respectively and let
K be the Riemannian curvature of M,, 1.

We then have'

Rﬂ"/ée = K(gﬁégwe - ggegn,(s)' (13)

On the other hand, under the condition (1.3) the Codazzi equations

'In the sequel, Latin indices i, j, k, . . . run from 1 to n, while the Greek indices «, 8, v will run from 1 to n + 1.
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D ﬁéy,y 53/6 5y6
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and the Gauss equation
5 0y’ oy 0y’ dy

Rijn = 595 957 Do Bk Bl T (Wikwji — wiwik)
transform, respectively, into
Viwij — Vjwy, =0 (1.4)
and
Rijri = K(9irgji — 9agik) + (wikwji — wiwjk) (1.5)

in which N? are the components of the unit normal vector field of M,, [4].
2. Relation between the connections V and V’. It is well-known that the connection coeffi-
cients of a Riemannian space whose metric tensor is g are given by [5]
1 0
Ty = 59" (Gigjn + Ojgin — Ohgig), O =5 . @1
Replacing g in (2.1) by the metric tensor ¢’ of M, given by (1.1) and doing the necessary
calculations we first find the connection coefficients F;Z of M}, as

1
Fglj = 56209/lk (Bjwir + Oiwjr — Opwij) + (900 + (aia)dé- - (Oka)g'lkg'ij. (2.2)

On the other hand, for the covariant derivative of the second fundamental tensor w of M,, we
have [3, 4]

Viwji = Oiwjr — Dswne — Thhwjn. (2.3)

Changing the indices 4, j and k cyclically we obtain two more equations:

Vjwki = Ojwp; — F?jwhk - Fijim (24
Viwij = Ogwij — Diwn; — Tjwin- (2.5)
Subtracting (2.5) from the sum of (2.3) and (2.4) and using the Codazzi equations (1.4), we
obtain

Viwjk = @wjk + @-wik - 8sz‘j — 2whk1“?j. (2.6)

In view of (2.6), (2.2) becomes

1

F;l] = I‘ij +0lj0 + 5;810 - g’lkg;jakcr + §e%gllkviwjk. (2.7)

(2.7) is the desired relation connecting the connection coefficients of M,, and M,,.

3. Geodesic mappings of M,, upon M;,,. If the map f defined by (1.2) transforms every
geodesic in M,, into a geodesic in M,,, f is called a geodesic mapping of M,, into M.

M, and M, will be in geodesic correspondence if and only if the respective connection coeffi-
cients F?j and I‘ZL of M,, and M, are related by [3]

I =Tl + 8tk + 0jabj, (3.1)
where 1, are the components of some 1-form which is known to be a gradient.

We first prove the following lemma which will be needed in our subsequent work.
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Lemma 3.1. Let M, and M, be hypersurfaces of the space form M, 1 and let the metric
tensor of M), be defined by (1.1). If M,, and M,, are in geodesic correspondence, then the 1-form 1y,
is the gradient of 20.

Proof. Since V' is a metric connection we have

0= v?fgz,‘j = 8k’gzl‘j - ngF;lk - giil“}lk
so that with the help of (1.1) and (3.1) we obtain
0 = 2w;j0k0 + Viwij — 2Uwij — Yiwrj — Vjwii. (3.2)
Interchanging the indices j and £ in (3.2) we find
0 = 2wk 0j0 + Vi wik — 2¢wik — Yiwkj — Ypwiji. (3.3)
Subtracting (3.3) from (3.2) and putting
Ok = Y — 200 (3.4)
in (3.3) we conclude that
WijPr — wikd; =0 (3.5

in which the Codazzi equations (1.4) have been used.
We note that, since 1/, is a gradient, it follows from (3.4) that ¢, is also a gradient. Multiplying
(3.5) by €2 and using (1.1) we obtain

Prgi; — i = 0 (3.6)
or, multiplying (3.6) by ¢’ "I and summing with respect to ¢ and j we find for n > 1 that

ér = 0. (3.7)

Combination of (3.4) and (3.7) yields vy, = 20x0.

We next prove the following theorem.

Theorem 3.1. The hypersurface M, of a space form M, | will be totally umbilical if and
only if M, can be geodesically mapped upon M.

Proof. Sufficiency. Let v be a geodesic through the point p € M,, which is defined by = = z*(s),

s being the arc length of +. Then, the normal curvature, say k,, of M, in the direction of ~, i.e., in
i

the direction of C;i, is [4]

S
dx' da?
da’ da? dx®
Multiplying (3.2) by d$ didi and summing with respect to ¢, j, k and using (3.8) we obtain
s ds ds
da* da dat da? da* da’ da?
2n 5 i'777_2 — n i 7 n | 7 n — Y.
n(00) ds + (Viws) ds ds ds <7/1k ds ) " (¢ ds ) " <¢J ds > fon =0
(3.9
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Since v is a gradient, there exists a differentiable function 1 such that i, = Jr1p. On the other
hand, differentiating (3.8) covariantly in the direction of v and using the Frenet’s formula [3]

dzt\ da* i
<Wd$>d$—“y?’

where £ is the geodesic curvature and U is the unit principal normal vector field of y relative to M,,,
we find that

da* det de? dk, - dxd
i e = 9k wi )t ——. 3.10
(ka]) ds ds ds ds FgWij ? ds ( )

Using (3.10) in (3.9) and remembering that  is a geodesic (k, = 0) in M, we get

P“” + (2 o 467’4) mn} @ _,

ox? ox? ox? ds

or
0 da’

[M (ln|/~£n|+20—4d})} dz =0 (3.11)

along .
On the other hand, by (1.1) and (3.11), we find
o S dxt dzd
ds'”® = g'ida’dr’ = e*7widatda? = egawijd—id—ZdSQ = ¥ K, ds?,

from which it follows that «, > 0. From (3.1) it follows that,
In Ky, + 20 — 49 = const = Cy (3.12)

along .
By Lemma 3.1, ¢ = 20 + C5, C2 = Const and therefore (3.12) gives

Ky = ce%, (3.13)

where c is an arbitrary positive constant.

From (3.13) it follows that the lines of curvature of M, are indeterminate at all points of M,,.
Consequently, M, is totally umbilical.

Necessity. Assume that M, is a totally umbilical hypersurface of M,, 1 which means that wij =

H
= —g;; where H is the mean curvature of M,,. In this case, (1.1) becomes
n

H
9ii = P°9ij <p2 = 620n>’ (3.14)

so that M,, and M), are conformal.
From (1.5) it follows that
_ H?
Riji = (K + n2) (9ikgj1 — 9ugjk)

2
showing that M), has the constant curvature K + —-. So H is constant.
n
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We will show that M,, can also be geodesically mapped upon Mj,. Since M, is conformal to
My, their connection coefficients are related by [6]

h
D =Tl + 8o+ s — g (0= Vi, 0" = 9" 1) (3.15)

To show that this conformal mapping between M,, and My, is also a geodesic mapping, according
to (3.15) and (3.1) we have to find a 1-form ¢, such that

% + 0)bi + 6 = Tl + 87 pi + 07 pj — gigp”

or

0 (Wi = pi) + 07 (W5 = p;) + gigp" = 0. (3.16)
Transvecting (3.16) by ¢¥/ we get

9" (Wi — pi) + ¢ (5 — pj) +np" =0
or

29" (i — pi) + np" =0, (3.17)
Multiplying (3.17) by g;; and summing for h we obtain
2+ (n—2)p; = 0.

Then, by (3.14) we find that

;= @;g\/ﬁ) d;¢%, H > 0.
With this choice of 1); the conformal mapping mentioned above becomes also a geodesic mapping.

Theorem 1.1 is proved.

In the special case where o = 0 throughout M,,, i.e., when ¢’ = w, we may mention below some
properties of M,, which is in geodesic correspondence with Mj,.

1. From Lemma 3.1 and the relation (3.1) we conclude that any geodesic mapping of M,, upon
My, is connection preserving.

2. By (3.13) it follows that M), has constant normal curvature along each geodesic through a
point p € M,.

3. The underlying geodesic mapping is a homothety.
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