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FIBONACCI LENGTHS OF ALL FINITE p-GROUPS OF EXPONENT p?
JOBKHUHU ®IBOHAYYI JIIsI BCIX CKIHUEHHUX p-T'PYII EKCIIOHEHTH p?

The Fibonacci lengths of finite p-groups were studied by Dikici and co-authors since 1992. All of the considered groups
are of exponent p, and the lengths depend on the Wall number k(p). The p-groups of nilpotency class 3 and exponent p
were studied in 2004 also by Dikici. In the present paper, we study all p-groups of nilpotency class 3 and exponent p*. We
thus complete the study of Fibonacci lengths of all p-groups of order p*, proving that the Fibonacci length is k(p?).

Josxuan ®i6oHa4yui cKiHYeHHHUX p-rpyn BuBdanucs [likidi Ta cmiBaBropamu 3 1992 poky. Bei rpynm, mo posmisaanucs,
Oyau rpynaMu eKCIIOHEHTH p, a BCi JOBKUHHU 3ajexand Bin uucna Yomna k(p). p-Ipynu knacy HimbnoreHtHocTi 3 i
EKCIIOHEHTH p Oynu Takok nociimkeHi ikiai y 2004 poui. Y maHiii cTaTTi MU BUBYAEMO BCi p-TPYIHU KJIacy HUTBIIOTEHTHOCTI
3 i excrionentn p2. [{uM 3aBepIIyeThCS AOCIIKEHHs 1oBKuHN DiGoHAYYl BCiX p-rpym nopsaky p*; Ipu HpoMy J0BEaEHO,
o nopxuHa OiGoHayyi qopiBHIOE k(pQ).

1. Introduction. The study of Fibonacci sequences in groups began with the earlier work of Wall
[19] in 1960, where the ordinary Fibonacci sequences in cyclic groups were investigated. In the
mid-eighties, Wilcox [20] extended the problem to the abelian groups. In 1990, Campbell et al. [5]
expanded the theory to some classes of finite groups. In 1992, Knox proved that the periods of k-
nacci (k-step Fibonacci) sequences in the dihedral groups are equal to 2k + 2, in the article [17]. In
the progress of this study, the article [2] of Aydin and Smith proves that the lengths of the ordinary
2-step Fibonacci sequences are equal to the lengths of the ordinary 2-step Fibonacci recurrences in
finite nilpotent groups of nilpotency class 4 and a prime exponent, in 1994.

Since 1994, the theory has been generalized and many authors had nice contributions in compu-
tations of recurrence sequences in groups and we may give here a brief of these attempts. In [7] and
[8] the definition of the Fibonacci sequence has been generalized to the ordinary 3-step Fibonacci
sequences in finite nilpotent groups. Then in the article [1] it is proved that the period of 2-step
general Fibonacci sequence is equal to the length of the fundamental period of the 2-step general
recurrence constructed by two generating elements of a group of nilpotency class 2 and exponent p.
In [16] Karaduman and Yavuz showed that the periods of the 2-step Fibonacci recurrences in finite
nilpotent groups of nilpotency class 5 and a prime exponent, are p.k(p), for 2 < p < 2927, where p
is a prime and k(p) is the period of ordinary 2-step Fibonacci sequence. The main role of the articles
[14] and [15] in generalizing the theory was to study the 2-step general Fibonacci sequences in finite
nilpotent groups of nilpotency class 4 and exponent p and to the 2-step Fibonacci sequences in finite
nilpotent groups of nilpotency class n and exponent p, respectively.

Going on a detailed literature in this area of research, we have to mention certain essential com-

putation on the Fibonacci lengths of new structures like the semidirect products, the direct products
and the automorphism groups of finite groups which have been studied in the articles [3, 4, 9—12].
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Let s = (s;) be the 2-step Fibonacci sequence of numbers defined by so = 0, s1 = 1, s; =
= sj_2 + S;—1, for ¢ > 2. We may extend the sequence backwards to obtain a bi-infinite sequence.
The fundamental period or Wall number (see [19]) of this sequence is denoted by k(s, p™), where
the sequence reduced modulo p™, for a positive integer n and a prime p. Since now on, we denote
k(s,p™) by k(p").

A 2-step general Fibonacci sequence in a finite non-abelian 2-generated group G = (a,b) is
defined by zg = a, 1 = b, z; = z?ﬁQmé_l, for ¢ > 2 and the integers m and [. If m =1 = 1, the
least period of this sequence is called the Fibonacci length of G and denoted by k(G).

Among all of the p-groups of order p* and nilpotency class 3 (see [18]), the group

H = (a,b,e,d|a? = = =d’ =1, [a,b] = [a,c] = [a,d] =1,

b,d] = a, [e,d] =b),  p#3,
is of exponent p and studied by Dikici [6]. The remained four classes indeed, the groups
K={(abc|lad®=0=c=1,[a,b] =1, [a,d] =0, [c,b7}] =a"?),
and
Lo = {(a,b,c| a?’ =P = 1, &# =a", [a,b] =dP, [a,c] =b, [b,c] =1),

where a = 0, 1, or a non-residue modulo p, are of exponent p?. The aim of this paper is to study the
Fibonacci lengths of these groups. First of all we attempt to give a power-commutator presentation
for the groups (see [13]) and by investigating their nilpotency class we will go to the computation of
Fibonacci lengths.

Our main result is:

Main theorem. For a group G of order p* and of exponent p? which is of nilpotency class 3,
k(G) = k(p®) where, p is an odd prime.

The proof of this theorem and the computation of k(G) for the group G = K, may be checked
by using a procedure in a group theoretic software like GAP (GAP-groups, Algorithms and Pro-
gramming, Ver. gap4rdpl2; http://www.gap-system.org). Of course, we will give the details of our
calculation on k(G) of the group G = L, in the next section. Also, we will state a conjecture for the

groups of orders of p°, p® and p”.

2. The groups L. Case o = 0. Let G = Ly, where a = 0. Then G = (a,b,c | a?* = bP =
=cP =1,[a,b] = aP, [a,c] =b,[b,c|] = 1). By the relations of group, a? € [G,G’]. Therefore, G
has nilpotency class 3 and [G, G'] < Z(G). Hence a? is a central element of G. A power-commutator
presentation of G may be given as follows:

G:<x7y’z’w|xp:yp:zp:]_’ /wp:l‘a [ﬂz,y]:[x,z]:[x,w]zl,
[2,y] =1, [w,y] = 2, [w,2] =y).
Case « = 1. Let G = L, where @ = 1. Then G = <a,b,c\ap2 =0 =1, ? =adP, [a,b] =

=aP, [a,c] =, [b,c] =1). We may show that G has the following power-commutator presentation:
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G= <$,y,z,w | P =yP =1, X =uwP =z, [l’,y] = [l‘,Z] = [$,’UJ] =1,

[Zvy] =1, [way] =, [wvz] = y>

Case where « is a non-residue modulo p. Let G = L., where « is a non-residue modulo p.
Then G = (a,b,c | a?* = =1, ® = a®®, [a,b] = aP, [a,c] = b, [b,c] = 1). We may show that
G has the following power-commutator presentation:

G:<x,y,z,w|:ﬂp:yp:1, 2P =z wl =u, [z,y] =[x, 2] = [r,w] =1,

[z,y] =1, [way] =, [w,z] = y>-

Note that in the new presentations, the group G is generated by w and z. Moreover, z is a central
element. Also, each element of G can be uniquely represented as x%y’2°w?, where in the first case
a, b, ¢ reduced modulo p and d reduced modulo p? and in the second and third cases a and b reduced
modulo p and ¢ and d reduced modulo p?. From now on we suppose that G = L, where o = 0, 1,
or a non-residue modulo p. First we prove some elementary results.

Lemma 2.1. For every positive integers m and n,

(i) wmz" = x(m;l)"ym”z”wm

Proof. Since z is a central element of G, then (i) may be proved by the induction method. To
prove (ii) we may use (i) and the relation [z, y] = 1.

Lemma 2.2. Let 2%y"zw® and 2% y" 2¢w® be elements of G. Then

1ol ’ ’ ’ d+1\ s ’ / ’ ’
(xaybzc,wd)(wa yb € U)d ) — xa—l—a +db +( 5 )c berb +dc Zchc derd )

Proof. By using Lemma 2.1, we have

d/

(abc d)( v _c d’) yzwdyb’z’w _

Yy’ 2w a:yzw

b_c,.db’ d

! / / !
_ y 2 y w P wd :xa+a+db yb+b d d

ZU)Z’LU =

/ / ’ d+1\ /
xa+a +db yb+b ZCJ,‘( ¢, dc

! y d, d _ $a+a’+db'+(d‘gl)c’yb+b/+dc’ et d+d

/
2¢ww

Lemma 2.3. Let 2%y’2w® and x“/yb/ 2w be elements of G and m and | be positive integers.
Then
a, b c

(i) (zy’zw?)" =z
(i) (x%ylzcw®)™ (2 y" 2w ) = zo

T e e () e
(o Q) (s

I d+1
+mldb’+m<2>dc’d'+ <m + )lc’,

mat ()0 (D)) ()t b (et
// b// C// d// ’
y 2w,

2
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m

b =mb
m+<2

l
>cd +1Ib 4+ (2) dd + mldd,

' =me+1d,

d" =md+1d.
Proof. (i) By induction on m. (ii) By using (i) and Lemma 2.2.

Lemma 2.4. FEvery element of the Fibonacci sequence in the group G may be presented by

ty = xtrybr zSnwsn—1 where the sequences {a,} and {by,}3° are defined as follows:
Y 0 0

n—1
bp =0, by, = E Sp—1-iSi—15i+1, 1 >1,
i=0

n—1 s + 1
i1
ap =0, ap = g Sn—1-i <3i1bz’+1 + < ! 9 >Si+1>7 n > 1.

=0

Proof. We use an induction method on n. It is obvious that ty = w = %y 2501 and
t1=2z= :U“lybl z51w?0, for, a1 = by = 0. Now assume that the result holds for n and n + 1, where
n > 0. Then

e = tatuan = (@0 st 1) (@01 g s ) =
an+an+1+sn—1b 1+(S"*1+1)8 1,,bntbnr1+Sn—15n+1 .Sn+Sn+1,,,Sn—1+$
:xn n—+ n—1Yn+ 2 n+yn n-+ n— n+zn n+wn— n o —
! /
— 20 yb an+2wsn+1’
where

Spn—1+1
d = ap + any1 + Sp—1bpp1 + ( " 9 >5n+1 =

n—1
Ssi—1+1
= an—l—i <3i—1bi+1 + < ! 5 >$i+1> +

=0

n
si—1+1 Sp—1+1
—I—anﬂ‘ <5i1bi+1 + < ! 5 >5i+1> + Sp—1bpy1 + ( " 5 )5n+1 =

1=0

n
Ssi—1+1 Sp—1+1
= anflfi <5i1bi+1 + < ! 12 )5i+1> — 51 (Snlbn+1 + ( " 12 >Sn+1> +

1=0

n
si—1+1 Sp—1+1
+an—i <3i—1bi+1 + < ’ 5 )Si—i-l) + Sn—1bnt1 + ( " 5 >5n+1 =

i=0
n
Si—1+1
= an+1—i <5i—1bi+1 + < ‘ 12 >5i+1> =

1=0

ISSN 1027-3190. Vkp. mam. xcypn., 2013, m. 65, Ne 5



FIBONACCI LENGTHS OF ALL FINITE p-GROUPS OF EXPONENT p? 607

n+1 i1 + 1
= Z Spt1—i | Si—1bit1 + 5 Si41 | = Gny2

=0

and

v = bp +bpi1 + Sp_15p41 =

n—1 n
= g Sn—1—iSi—1Si+1 + E Sp—iSi—1Si+1 + Sp—18p+1 =
i=0 i=0
n n
= g Sn—1—iSi—1Si+1 — S—1Sn—15n+1 + g Sn—iSi—1Si+1 + Sp—18n4+1 =
i=0 i=0

n

= E Sn+1-iSi—18i+1 = bpt2.
i=0

Lemma 2.4 is proved.
From now on we shall be working modulo p?. Let k = k(p?). The following equations hold and
are easy to see:

k-1

k-1 k-1 k-1
1
Sh—i = 5—; = (1), § 5; = Zsk—i7 ZSH—a = g si, a€Z.
=0 =0 =0 =0

The proofs of the Lemmas 2.5, 2.6 and 2.7 may be found in [2] and [6].
Lemma 2.5. The following equations hold:

. k—1
@y si=0
k-1
i) Y. si=0,

k=1
(i) Zz‘:o sg’ =0.
Lemma 2.6. Ifp > 3, then

. k—1
® Zz‘:o sisi—1 =0,
k—1 k—1
.. 2 2
(11) Zi:{] 8;_18; = Zz’:(} s;—18; = 0.

Lemma 2.7. For every integers a, b, ¢, d, and e the following equations hold:

. k-1
(1 E i Si+aSitbS—itesi =0,

k—1
. i—1
(i) Z Z]’:O S—it+aSi+bSi—j—dSj+eSite = 0.

=0
Lemma 2.8. The following equations hold:

k—1 )

i —1)ts3 =
MY,  (~1)si=0,
N k—1 ‘ k—1 .
(i1) Zi:(} (—1)'siq8i = Zi:(} (—1)'si—1s7 = 0,p > 3.
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Proof. (i)
k—1 k—1 k—1 k—1
3 3 3 3
(71)152_1 - S—(i-1) = Z‘Sk—(l—l) = s; =0
=0 =0 =0 =0

k—1 k—1 k—1
0= st =) (-D'sty =D (-)(si+si-1)" =
=0 1=0 1=0
k—1 ' k—1 '
=3 (—1)isi1s7 +3) (-1)'s7 s, (1)
=0 =0
On the other hand,
k—1 k—1 k—1
0=> 8= (=) 'siy=> (=1)(si—si1)” =
=0 =0 1=0
k—1 A k—1 ‘
=3 (—1)'sias] —3) (~1)'s7 s, )
1=0 =0

Adding (1) and (2) we obtain

k—1
6 Z Si—18; = 0,
i=0
and subtracting (2) from (1) we have
k-1
6 57127181 — O
i=0

Since p > 3, (ii) follows.

Lemma 2.8 is proved.

Now we are ready to prove the main result.

Proof of main theorem. By using Lemma 2.4, it is sufficient to show that ay, = a1 = by =
= br4+1 = 0. We have

k—1 k—1 k-1
; 2
by, = E Sk—1-iSi—18i41 = E S_(i41)Si—1Si+1 = E (—1)'si—187,1 =
i=0 i=0 =0
k-1
‘ 2
= > (=1)'si—1(si-1+ )" =
1=0
k—1 k—1
i .3
= (=1)'s3  + Y (—1)'s;_y5° -I-QZ 2 s,
i=0 i=0

ISSN 1027-3190. Ykp. mam. xcypn., 2013, m. 65, Ne 5



FIBONACCI LENGTHS OF ALL FINITE p-GROUPS OF EXPONENT p? 609

and the last three expressions vanish by Lemma 2.8. So b, = 0. Similarly,

k k k
b — G 1Gi. 1 — R —1)tls. igi5.q =
k+1 = Sk—iSi—1Si+1 = S$—iSi—1Si+1 = ( ) Si—18iSi+1 =
i=0 =0 =0
k— 1 k—1
_ -1 i+1 (a. . _
= i 1sisizr =Y (=1 sis1si(si +si-1) =
l:0 1=0
k—1
= - g ( 31 18 + § 151 ,
i=0

and the last two sums vanish by Lemma 2.8. On the other hand,

k1
S;i—1+1
A= Sp-1 <5i—1bi+1 + < ' 5 )Si-i-l) =

1=0

k—1 ‘
- si—1+1
Sk—(i+1) | Si—1 Z 8i—58j—18j+1 T 9 Si+1 | =

i=0 j=0
k=1 i k-1
si—1+1
= S_(i4+1)Si—15i—jSj—15j+1 + § 9 S_(i+1)Si+1 =
i=0 j=0 i=0
k—1i—1 k—1
= S_i—18i—18i—jSj—1Sj+1 + B E (si—1 + 1)$z‘—18—(z‘+1)8i+17
i=0 j=0 i=0

and the first sum vanishes by Lemma 2.7(ii). For the second sum in the above expression, we have

k—1 k—1 k-1
(si—1+ 1)3i—137(z’+1)3i+1 = E 8i—18i-15—(i4+1)Si+1 T E 8i—18_(i+1)Si+1 =
i=0 i=0 i=0
k—1
2
S;—28;—25_;8; + E Siflsi—‘rla
i=0

and the first sum vanishes by Lemma 2.7(i) and the second one is equal to by which is zero. A similar
method may be used to prove ayy; = 0. This completes the proof showing that k(G) = k(p?) for
all of groups G = L, where a = 0, 1, or non-residue modulo p.

Main theorem is proved.

Conjecture. For every p-group G of order p’, i = 5,6,7, k(G) = k(p?), where G is of
nilpotency class 3 and of exponent p?, for every odd prime p.
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