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FIBONACCI LENGTHS OF ALL FINITE p-GROUPS OF EXPONENT p2

ДОВЖИНИ ФIБОНАЧЧI ДЛЯ ВСIХ СКIНЧЕННИХ p-ГРУП ЕКСПОНЕНТИ p2

The Fibonacci lengths of finite p-groups were studied by Dikici and co-authors since 1992. All of the considered groups
are of exponent p, and the lengths depend on the Wall number k(p). The p-groups of nilpotency class 3 and exponent p
were studied in 2004 also by Dikici. In the present paper, we study all p-groups of nilpotency class 3 and exponent p2. We
thus complete the study of Fibonacci lengths of all p-groups of order p4, proving that the Fibonacci length is k(p2).

Довжини Фiбоначчi скiнченних p-груп вивчалися Дiкiчi та спiвавторами з 1992 року. Всi групи, що розглядалися,
були групами експоненти p, а всi довжини залежали вiд числа Уолла k(p). p-Групи класу нiльпотентностi 3 i
експоненти p були також дослiдженi Дiкiчi у 2004 роцi. У данiй статтi ми вивчаємо всi p-групи класу нiльпотентностi
3 i експоненти p2. Цим завершується дослiдження довжини Фiбоначчi всiх p-груп порядку p4; при цьому доведено,
що довжина Фiбоначчi дорiвнює k(p2).

1. Introduction. The study of Fibonacci sequences in groups began with the earlier work of Wall
[19] in 1960, where the ordinary Fibonacci sequences in cyclic groups were investigated. In the
mid-eighties, Wilcox [20] extended the problem to the abelian groups. In 1990, Campbell et al. [5]
expanded the theory to some classes of finite groups. In 1992, Knox proved that the periods of k-
nacci (k-step Fibonacci) sequences in the dihedral groups are equal to 2k + 2, in the article [17]. In
the progress of this study, the article [2] of Aydin and Smith proves that the lengths of the ordinary
2-step Fibonacci sequences are equal to the lengths of the ordinary 2-step Fibonacci recurrences in
finite nilpotent groups of nilpotency class 4 and a prime exponent, in 1994.

Since 1994, the theory has been generalized and many authors had nice contributions in compu-
tations of recurrence sequences in groups and we may give here a brief of these attempts. In [7] and
[8] the definition of the Fibonacci sequence has been generalized to the ordinary 3-step Fibonacci
sequences in finite nilpotent groups. Then in the article [1] it is proved that the period of 2-step
general Fibonacci sequence is equal to the length of the fundamental period of the 2-step general
recurrence constructed by two generating elements of a group of nilpotency class 2 and exponent p.
In [16] Karaduman and Yavuz showed that the periods of the 2-step Fibonacci recurrences in finite
nilpotent groups of nilpotency class 5 and a prime exponent, are p.k(p), for 2 < p ≤ 2927, where p
is a prime and k(p) is the period of ordinary 2-step Fibonacci sequence. The main role of the articles
[14] and [15] in generalizing the theory was to study the 2-step general Fibonacci sequences in finite
nilpotent groups of nilpotency class 4 and exponent p and to the 2-step Fibonacci sequences in finite
nilpotent groups of nilpotency class n and exponent p, respectively.

Going on a detailed literature in this area of research, we have to mention certain essential com-
putation on the Fibonacci lengths of new structures like the semidirect products, the direct products
and the automorphism groups of finite groups which have been studied in the articles [3, 4, 9 – 12].
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Let s = (si) be the 2-step Fibonacci sequence of numbers defined by s0 = 0, s1 = 1, si =

= si−2 + si−1, for i ≥ 2. We may extend the sequence backwards to obtain a bi-infinite sequence.
The fundamental period or Wall number (see [19]) of this sequence is denoted by k(s, pn), where
the sequence reduced modulo pn, for a positive integer n and a prime p. Since now on, we denote
k(s, pn) by k(pn).

A 2-step general Fibonacci sequence in a finite non-abelian 2-generated group G = 〈a, b〉 is
defined by x0 = a, x1 = b, xi = xmi−2x

l
i−1, for i ≥ 2 and the integers m and l. If m = l = 1, the

least period of this sequence is called the Fibonacci length of G and denoted by k(G).
Among all of the p-groups of order p4 and nilpotency class 3 (see [18]), the group

H = 〈a, b, c, d | ap = bp = cp = dp = 1, [a, b] = [a, c] = [a, d] = 1,

[b, d] = a, [c, d] = b〉, p 6= 3,

is of exponent p and studied by Dikici [6]. The remained four classes indeed, the groups

K = 〈a, b, c | a9 = b3 = c3 = 1, [a, b] = 1, [a, c] = b, [c, b−1] = a−3〉,

and

Lα = 〈a, b, c | ap2 = bp = 1, cp = aαp, [a, b] = ap, [a, c] = b, [b, c] = 1〉,

where α = 0, 1, or a non-residue modulo p, are of exponent p2. The aim of this paper is to study the
Fibonacci lengths of these groups. First of all we attempt to give a power-commutator presentation
for the groups (see [13]) and by investigating their nilpotency class we will go to the computation of
Fibonacci lengths.

Our main result is:
Main theorem. For a group G of order p4 and of exponent p2 which is of nilpotency class 3,

k(G) = k(p2) where, p is an odd prime.

The proof of this theorem and the computation of k(G) for the group G = K, may be checked
by using a procedure in a group theoretic software like GAP (GAP-groups, Algorithms and Pro-
gramming, Ver. gap4r4p12; http://www.gap-system.org). Of course, we will give the details of our
calculation on k(G) of the group G = Lα in the next section. Also, we will state a conjecture for the
groups of orders of p5, p6 and p7.

2. The groups Lα. Case α = 0. Let G = Lα, where α = 0. Then G = 〈a, b, c | ap2 = bp =

= cp = 1, [a, b] = ap, [a, c] = b, [b, c] = 1〉. By the relations of group, ap ∈ [G,G′]. Therefore, G
has nilpotency class 3 and [G,G′] ≤ Z(G). Hence ap is a central element of G. A power-commutator
presentation of G may be given as follows:

G =
〈
x, y, z, w | xp = yp = zp = 1, wp = x, [x, y] = [x, z] = [x,w] = 1,

[z, y] = 1, [w, y] = x, [w, z] = y
〉
.

Case α = 1. Let G = Lα, where α = 1. Then G = 〈a, b, c | ap2 = bp = 1, cp = ap, [a, b] =

= ap, [a, c] = b, [b, c] = 1〉. We may show that G has the following power-commutator presentation:
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G =
〈
x, y, z, w | xp = yp = 1, zp = wp = x, [x, y] = [x, z] = [x,w] = 1,

[z, y] = 1, [w, y] = x, [w, z] = y
〉
.

Case where α is a non-residue modulo p. Let G = Lα, where α is a non-residue modulo p.

Then G = 〈a, b, c | ap2 = bp = 1, cp = aαp, [a, b] = ap, [a, c] = b, [b, c] = 1〉. We may show that
G has the following power-commutator presentation:

G =
〈
x, y, z, w | xp = yp = 1, zp = xα, wp = x, [x, y] = [x, z] = [x,w] = 1,

[z, y] = 1, [w, y] = x, [w, z] = y
〉
.

Note that in the new presentations, the group G is generated by w and z. Moreover, x is a central
element. Also, each element of G can be uniquely represented as xaybzcwd, where in the first case
a, b, c reduced modulo p and d reduced modulo p2 and in the second and third cases a and b reduced
modulo p and c and d reduced modulo p2. From now on we suppose that G = Lα, where α = 0, 1,

or a non-residue modulo p. First we prove some elementary results.
Lemma 2.1. For every positive integers m and n,
(i) wmyn = xmnynwm,

(ii) wmzn = x(
m+1

2 )nymnznwm.

Proof. Since x is a central element of G, then (i) may be proved by the induction method. To
prove (ii) we may use (i) and the relation [z, y] = 1.

Lemma 2.2. Let xaybzcwd and xa
′
yb
′
zc
′
wd
′
be elements of G. Then

(xaybzcwd)(xa
′
yb
′
zc
′
wd
′
) = xa+a

′+db′+(d+1
2 )c′yb+b

′+dc′zc+c
′
wd+d

′
.

Proof. By using Lemma 2.1, we have

(xaybzcwd)(xa
′
yb
′
zc
′
wd
′
) = xa+a

′
ybzcwdyb

′
zc
′
wd
′
=

= xa+a
′
ybzcxdb

′
yb
′
wdzc

′
wd
′
= xa+a

′+db′yb+b
′
zcwdzc

′
wd
′
=

= xa+a
′+db′yb+b

′
zcx(

d+1
2 )c′ydc

′
zc
′
wdwd

′
= xa+a

′+db′+(d+1
2 )c′yb+b

′+dc′zc+c
′
wd+d

′
.

Lemma 2.3. Let xaybzcwd and xa
′
yb
′
zc
′
wd
′
be elements of G and m and l be positive integers.

Then
(i) (xaybzcwd)m = xma+(

m
2 )bd+(

m
2 )c(

d+1
2 )+(m3 )cd

2
ymb+(

m
2 )cdzmcwmd,

(ii) (xaybzcwd)m(xa
′
yb
′
zc
′
wd
′
)l = xa

′′
yb
′′
zc
′′
wd
′′
,

where

a′′ = ma+

(
m

2

)
bd+

(
m

2

)
c

(
d+ 1

2

)
+

(
m

3

)
cd2+

+la′ +

(
l

2

)
b′d′ +

(
l

2

)
c′
(
d′ + 1

2

)
+

(
l

3

)
c′d′2+

+mldb′ +m

(
l

2

)
dc′d′ +

(
md+ 1

2

)
lc′,
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b′′ = mb+

(
m

2

)
cd+ lb′ +

(
l

2

)
c′d′ +mldc′,

c′′ = mc+ lc′,

d′′ = md+ ld′.

Proof. (i) By induction on m. (ii) By using (i) and Lemma 2.2.
Lemma 2.4. Every element of the Fibonacci sequence in the group G may be presented by

tn = xanybnzsnwsn−1 , where the sequences {an}∞0 and {bn}∞0 are defined as follows:

b0 = 0, bn =

n−1∑
i=0

sn−1−isi−1si+1, n ≥ 1,

a0 = 0, an =
n−1∑
i=0

sn−1−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)
, n ≥ 1.

Proof. We use an induction method on n. It is obvious that t0 = w = xa0yb0zs0ws−1 and
t1 = z = xa1yb1zs1ws0 , for, a1 = b1 = 0. Now assume that the result holds for n and n+ 1, where
n ≥ 0. Then

tn+2 = tntn+1 = (xanybnzsnwsn−1)(xan+1ybn+1zsn+1wsn) =

= xan+an+1+sn−1bn+1+(sn−1+1

2 )sn+1ybn+bn+1+sn−1sn+1zsn+sn+1wsn−1+sn =

= xa
′
yb
′
zsn+2wsn+1 ,

where

a′ = an + an+1 + sn−1bn+1 +

(
sn−1 + 1

2

)
sn+1 =

=
n−1∑
i=0

sn−1−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)
+

+

n∑
i=0

sn−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)
+ sn−1bn+1 +

(
sn−1 + 1

2

)
sn+1 =

=

n∑
i=0

sn−1−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)
− s−1

(
sn−1bn+1 +

(
sn−1 + 1

2

)
sn+1

)
+

+
n∑
i=0

sn−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)
+ sn−1bn+1 +

(
sn−1 + 1

2

)
sn+1 =

=

n∑
i=0

sn+1−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)
=
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=

n+1∑
i=0

sn+1−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)
= an+2

and

b′ = bn + bn+1 + sn−1sn+1 =

=

n−1∑
i=0

sn−1−isi−1si+1 +

n∑
i=0

sn−isi−1si+1 + sn−1sn+1 =

=
n∑
i=0

sn−1−isi−1si+1 − s−1sn−1sn+1 +
n∑
i=0

sn−isi−1si+1 + sn−1sn+1 =

=

n∑
i=0

sn+1−isi−1si+1 = bn+2.

Lemma 2.4 is proved.
From now on we shall be working modulo p2. Let k = k(p2). The following equations hold and

are easy to see:

sk−i = s−i = (−1)i+1si,
k−1∑
i=0

si =
k−1∑
i=0

sk−i,
k−1∑
i=0

si+a =
k−1∑
i=0

si, a ∈ Z.

The proofs of the Lemmas 2.5, 2.6 and 2.7 may be found in [2] and [6].
Lemma 2.5. The following equations hold:

(i)
∑k−1

i=0
si = 0,

(ii)
∑k−1

i=0
s2i = 0,

(iii)
∑k−1

i=0
s3i = 0.

Lemma 2.6. If p > 3, then

(i)
∑k−1

i=0
sisi−1 = 0,

(ii)
∑k−1

i=0
s2i−1si =

∑k−1

i=0
si−1s

2
i = 0.

Lemma 2.7. For every integers a, b, c, d, and e the following equations hold:

(i)
∑k−1

i=0
si+asi+bs−i+csi = 0,

(ii)
k−1∑
i=0

∑i−1

j=0
s−i+asi+bsi−j−dsj+esi+c = 0.

Lemma 2.8. The following equations hold:

(i)
∑k−1

i=0
(−1)is3i = 0,

(ii)
∑k−1

i=0
(−1)is2i−1si =

∑k−1

i=0
(−1)isi−1s2i = 0, p > 3.

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 5



608 B. AHMADI, H. DOOSTIE

Proof. (i)
k−1∑
i=0

(−1)is3i−1 =
k−1∑
i=0

s3−(i−1) =
k−1∑
i=0

s3k−(i−1) =
k−1∑
i=0

s3i = 0.

(ii) We may write

0 =

k−1∑
i=0

s3i =

k−1∑
i=0

(−1)is3i+1 =

k−1∑
i=0

(−1)i(si + si−1)
3 =

= 3

k−1∑
i=0

(−1)isi−1s2i + 3

k−1∑
i=0

(−1)is2i−1si. (1)

On the other hand,

0 =
k−1∑
i=0

s3i =
k−1∑
i=0

(−1)i−1s3i−2 =
k−1∑
i=0

(−1)i(si − si−1)3 =

= 3
k−1∑
i=0

(−1)isi−1s2i − 3
k−1∑
i=0

(−1)is2i−1si. (2)

Adding (1) and (2) we obtain

6
k−1∑
i=0

si−1s
2
i = 0,

and subtracting (2) from (1) we have

6

k−1∑
i=0

s2i−1si = 0.

Since p > 3, (ii) follows.
Lemma 2.8 is proved.
Now we are ready to prove the main result.
Proof of main theorem. By using Lemma 2.4, it is sufficient to show that ak = ak+1 = bk =

= bk+1 = 0. We have

bk =
k−1∑
i=0

sk−1−isi−1si+1 =

k−1∑
i=0

s−(i+1)si−1si+1 =

k−1∑
i=0

(−1)isi−1s2i+1 =

=
k−1∑
i=0

(−1)isi−1(si−1 + si)
2 =

=

k−1∑
i=0

(−1)is3i−1 +
k−1∑
i=0

(−1)isi−1s2i + 2

k−1∑
i=0

(−1)is2i−1si,

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 5



FIBONACCI LENGTHS OF ALL FINITE p-GROUPS OF EXPONENT p2 609

and the last three expressions vanish by Lemma 2.8. So bk = 0. Similarly,

bk+1 =

k∑
i=0

sk−isi−1si+1 =

k∑
i=0

s−isi−1si+1 =

k∑
i=0

(−1)i+1si−1sisi+1 =

=

k−1∑
i=0

(−1)i+1si−1sisi+1 =

k−1∑
i=0

(−1)i+1si−1si(si + si−1) =

= −

(
k−1∑
i=0

(−1)isi−1s2i +
k−1∑
i=0

(−1)is2i−1si

)
,

and the last two sums vanish by Lemma 2.8. On the other hand,

ak =
k−1∑
i=0

sk−1−i

(
si−1bi+1 +

(
si−1 + 1

2

)
si+1

)
=

=

k−1∑
i=0

sk−(i+1)

si−1 i∑
j=0

si−jsj−1sj+1 +

(
si−1 + 1

2

)
si+1

 =

=
k−1∑
i=0

i∑
j=0

s−(i+1)si−1si−jsj−1sj+1 +
k−1∑
i=0

(
si−1 + 1

2

)
s−(i+1)si+1 =

=

k−1∑
i=0

i−1∑
j=0

s−i−1si−1si−jsj−1sj+1 +
1

2

k−1∑
i=0

(si−1 + 1)si−1s−(i+1)si+1,

and the first sum vanishes by Lemma 2.7(ii). For the second sum in the above expression, we have

k−1∑
i=0

(si−1 + 1)si−1s−(i+1)si+1 =
k−1∑
i=0

si−1si−1s−(i+1)si+1 +
k−1∑
i=0

si−1s−(i+1)si+1 =

=

k−1∑
i=0

si−2si−2s−isi +

k−1∑
i=0

(−1)isi−1s2i+1,

and the first sum vanishes by Lemma 2.7(i) and the second one is equal to bk which is zero. A similar
method may be used to prove ak+1 = 0. This completes the proof showing that k(G) = k(p2) for
all of groups G = Lα, where α = 0, 1, or non-residue modulo p.

Main theorem is proved.
Conjecture. For every p-group G of order pi, i = 5, 6, 7, k(G) = k(p2), where G is of

nilpotency class 3 and of exponent p2, for every odd prime p.
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