С. А. Плакса, Р. П. Пухтаевич (Ин-т математики НАН Украины, Киев)

КОНСТРУКТИВНОЕ ОПИСАНИЕ МОНОГЕННЫХ ФУНКЦИЙ В ТРЕХМЕРНОЙ ГАРМОНИЧЕСКОЙ АЛГЕБРЕ С ОДНОМЕРНЫМ РАДИКАЛОМ

We present a constructive description of monogenic functions that take values in a three-dimensional commutative harmonic algebra with one-dimensional radical by using analytic functions of a complex variable. It is proved that monogenic functions have the Gâteaux derivatives of all orders.

Наведено конструктивний опис моногенних функцій, що набувають значень у тривимірній комутативній гармонічній алгебрі з одновимірним радикалом, за допомогою аналітичних функцій комплексної змінної. Доведено, що моногенні функції мають похідні Гато усіх порядків.

Эффективность применения методов теории аналитических функций комплексной переменной к исследованию плоских потенциальных полей побуждает математиков к развитию аналогичных методов для пространственных полей.

В работах [1-7] рассмотрены некоторые коммутативные ассоциативные алгебры, в которых существуют тройки линейно независимых элементов, удовлетворяющие условиям

$$e_1^2 + e_2^2 + e_3^2 = 0, e_k^2 \neq 0 \text{при} k = 1, 2, 3.$$
 (1)

Такие алгебры называют гармоническими (см. [1, 4, 6]).

В работе [1] показано, что каждая функция $\Phi(\zeta)$, представимая в виде ряда по степеням переменной $\zeta:=xe_1+ye_2+ze_3$ с действительными x,y,z, вследствие равенства (1) удовлетворяет равенствам

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)\Phi(\zeta) = \Phi''(\zeta)\left(e_1^2 + e_2^2 + e_3^2\right) = 0 \tag{2}$$

(здесь $\Phi''(\zeta)$ — результат формального двойного дифференцирования упомянутого ряда), а следовательно, и трехмерному уравнению Лапласа.

В работе [2] развит метод формального конструирования решений трехмерного уравнения Лапласа с использованием степенных рядов в любой гармонической алгебре над полем комплексных чисел.

В работе [3] показано, что для каждой дважды дифференцируемой по Гато функции $\Phi(\zeta)$ выполняются равенства (2), в которых $\Phi''(\zeta)$ — производная Гато второго порядка, и доказано, что трехмерные гармонические алгебры с единицей существуют только над полем комплексных чисел. В работе [4] найдены все трехмерные гармонические алгебры с единицей, а в монографии [6] описаны все *гармонические* базисы $\{e_1, e_2, e_3\}$ в них, удовлетворяющие условиям (1).

В работе [7] рассмотрены моногенные (т. е. непрерывные и дифференцируемые по Гато функции) в одной из гармонических алгебр, а именно: в трехмерной гармонической алгебре \mathbb{A}_3 с двумерным радикалом. При этом, опираясь на разложение алгебры моногенных функций в прямую сумму алгебры главных продолжений аналитических функций комплексной переменной и алгебры моногенных функций, принимающих значения в максимальном идеале алгебры

 \mathbb{A}_3 (см. также [8, 9]), получено конструктивное описание всех моногенных функций с помощью аналитических функций комплексной переменной и, как следствие, доказана бесконечная дифференцируемость по Гато всех моногенных функций.

Ниже рассматриваются моногенные функции в трехмерной гармонической алгебре \mathbb{A}_2 с одномерным радикалом, устанавливается их конструктивное описание с помощью аналитических функций комплексной переменной и бесконечная дифференцируемость по Гато. Отметим, что в отличие от случаев, изученных в работах [7-9], главные продолжения аналитических функций комплексной переменной, вообще говоря, не определены в той области, где рассматриваются заданные моногенные функции.

1. Предварительные сведения. Рассмотрим коммутативную ассоциативную алгебру \mathbb{A}_2 над полем комплексных чисел \mathbb{C} с базисом $\{I_1, I_2, \rho\}$, для элементов которого выполняются правила умножения:

$$I_1^2 = I_1, \quad I_2^2 = I_2, \quad I_1 I_2 = \rho^2 = I_1 \rho = 0, \quad I_2 \rho = \rho,$$
 (3)

при этом единица алгебры представляется в виде $1 = I_1 + I_2$.

В теореме 1.8 из [6] показано, что в алгебре \mathbb{A}_2 гармоническими являются базисы $\{e_1, e_2, e_3\}$, разложения которых по базису $\{I_1, I_2, \rho\}$ имеют вид

$$e_1 = I_1 + I_2,$$

 $e_2 = n_1 I_1 + n_2 I_2 + n_3 \rho,$
 $e_3 = m_1 I_1 + m_2 I_2 + m_3 \rho,$

$$(4)$$

где n_k, m_k при k = 1, 2, 3 — комплексные числа, удовлетворяющие системе

$$1 + n_1^2 + m_1^2 = 0,$$

$$1 + n_2^2 + m_2^2 = 0,$$

$$n_2 n_3 + m_2 m_3 = 0,$$

$$m_3 (n_2 - n_1) + n_3 (m_1 - m_2) \neq 0,$$
(5)

и хотя бы одно из чисел в каждой из пар (n_1, n_2) , (m_1, m_2) отлично от нуля. При этом умножением элементов гармонических базисов вида (4) на произвольные обратимые элементы алгебры могут быть получены все гармонические базисы в алгебре \mathbb{A}_2 (см. [6, с. 35]).

Алгебра \mathbb{A}_2 содержит два максимальных идеала $\mathfrak{I}_1 := \{\alpha_1 I_2 + \alpha_2 \rho \colon \alpha_1, \ \alpha_2 \in \mathbb{C}\}, \ \mathfrak{I}_2 := \{\beta_1 I_1 + \beta_2 \rho \colon \beta_1, \ \beta_2 \in \mathbb{C}\},$ пересечением которых является одномерный радикал $\{\gamma \rho \colon \gamma \in \mathbb{C}\}$.

Определим два линейных функционала $f_1\colon \mathbb{A}_2 \to \mathbb{C}$ и $f_2\colon \mathbb{A}_2 \to \mathbb{C}$, положив

$$f_1(I_1) = 1, f_1(I_2) = f_1(\rho) = 0$$
 (6)

И

$$f_2(I_2) = 1,$$
 $f_2(I_1) = f_2(\rho) = 0.$ (7)

Ядрами функционалов f_1 и f_2 являются соответственно максимальные идеалы \mathfrak{I}_1 и \mathfrak{I}_2 , поэтому указанные функционалы являются непрерывными и мультипликативными (см. [10, с. 147]).

Выделим в алгебре \mathbb{A}_2 линейную оболочку $E_3:=\{\zeta=xe_1+ye_2+ze_3\colon x,y,z\in\mathbb{R}\}$ над полем действительных чисел \mathbb{R} , порожденную векторами гармонического базиса $\{e_1,e_2,e_3\}$. Области Ω трехмерного пространства \mathbb{R}^3 поставим в соответствие конгруэнтную область $\Omega_\zeta:=:=\{\zeta=xe_1+ye_2+ze_3\colon (x,y,z)\in\Omega\}$ в E_3 . Всюду в дальнейшем $\zeta:=xe_1+ye_2+ze_3$ и $x,y,z\in\mathbb{R}$.

Непрерывная функция $\Phi:\Omega_\zeta\to\mathbb{A}_2$ называется *моногенной* в области $\Omega_\zeta\subset E_3$, если Φ дифференцируема по Гато в каждой точке этой области, т.е. если для каждого $\zeta\in\Omega_\zeta$ существует элемент $\Phi'(\zeta)$ алгебры \mathbb{A}_2 такой, что выполняется равенство

$$\lim_{\varepsilon \to 0+0} \left(\Phi(\zeta + \varepsilon h) - \Phi(\zeta) \right) \varepsilon^{-1} = h \Phi'(\zeta) \qquad \forall h \in E_3.$$
 (8)

 $\Phi'(\zeta)$ называется *производной Гато* функции Φ в точке ζ .

Рассмотрим разложение функции $\Phi:\Omega_\zeta\to\mathbb{A}_2$ по базису $\{e_1,e_2,e_3\}:$

$$\Phi(\zeta) = U_1(x, y, z)e_1 + U_2(x, y, z)e_2 + U_3(x, y, z)e_3.$$
(9)

В предположении, что функции $U_k \colon \Omega \to \mathbb{C}, \ k=1,2,3,$ являются дифференцируемыми в области Ω , т. е. во всех точках $(x,y,z) \in \Omega$ выполняются соотношения

$$U_k(x + \Delta x, y + \Delta y, z + \Delta z) - U_k(x, y, z) = \frac{\partial U_k(x, y, z)}{\partial x} \Delta x + \frac{\partial U_k(x, y, z)}{\partial y} \Delta y + \frac{\partial U_k(x, y, z)}{\partial z} \Delta z + o\left(\sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}\right),$$
$$(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2 \to 0,$$

в теореме 1.3 из [6] установлены необходимые и достаточные условия моногенности функции Φ (аналоги условий Коши – Римана), которые всюду в области Ω_{ζ} в свернутом виде выражаются равенствами

$$\frac{\partial \Phi}{\partial y} = \frac{\partial \Phi}{\partial x} e_2, \qquad \frac{\partial \Phi}{\partial z} = \frac{\partial \Phi}{\partial x} e_3. \tag{10}$$

Ниже будет показано, что из моногенности функции $\Phi:\Omega_\zeta\to\mathbb{A}_2$ следует бесконечная дифференцируемость компонент U_1,U_2,U_3 разложения (9) в области $\Omega.$

Из разложения резольвенты

$$(t-\zeta)^{-1} = \frac{1}{t-x-n_1y-m_1z}I_1 + \frac{1}{(t-x-n_2y-m_2z)}I_2 + \frac{y}{(t-x-n_2y-m_2z)^2}\rho, \quad (11)$$

$$\forall t \in \mathbb{C} : t \neq x+n_1y+m_1z, \qquad t \neq x+n_2y+m_2z,$$

следует, что точки $(x,y,z) \in \mathbb{R}^3$, соответствующие необратимым элементам $\zeta \in \mathbb{A}_2$, лежат на прямых

$$L_1: x + y \operatorname{Re} n_1 + z \operatorname{Re} m_1 = 0, \qquad y \operatorname{Im} n_1 + z \operatorname{Im} m_1 = 0,$$
 (12)

$$L_2: x + y \operatorname{Re} n_2 + z \operatorname{Re} m_2 = 0, \qquad y \operatorname{Im} n_2 + z \operatorname{Im} m_2 = 0$$
 (13)

в трехмерном пространстве \mathbb{R}^3 .

Прямые L_1 и L_2 имеют, по крайней мере, одну общую точку (0,0,0), но могут и совпадать. Например, для гармонического базиса

$$e_1 = 1$$
,

$$e_2 = i\sqrt{2}I_1 - i\sqrt{2}I_2 - i\rho,$$

$$e_3 = I_1 + I_2 + \sqrt{2}\rho$$

имеет место равенство $L_1 = L_2 = \{(x, y, z) \in \mathbb{R}^3 \colon x + z = 0, y = 0\}.$

2. Вспомогательные утверждения. Область $\Omega \subset \mathbb{R}^3$ называют выпуклой в направлении прямой L, если она содержит каждый отрезок, соединяющий две ее точки и параллельный прямой L.

Лемма 1. Пусть область $\Omega \subset \mathbb{R}^3$ является выпуклой в направлениях прямых L_1 и L_2 , а функция $\Phi \colon \Omega_\zeta \to \mathbb{A}_2$ моногенна в области Ω_ζ . Если точки $\zeta_1, \, \zeta_2 \in \Omega_\zeta$ такие, что $\zeta_1 - \zeta_2 \in \{\zeta = xe_1 + ye_2 + ze_3 \colon (x,y,z) \in L_1\}$, то

$$\Phi(\zeta_1) - \Phi(\zeta_2) \in \mathfrak{I}_1. \tag{14}$$

Если же точки $\zeta_1,\zeta_2\in\Omega_\zeta$ такие, что $\zeta_1-\zeta_2\in\{\zeta=xe_1+ye_2+ze_3\colon (x,y,z)\in L_2\},$ то

$$\Phi(\zeta_1) - \Phi(\zeta_2) \in \mathfrak{I}_2. \tag{15}$$

Соотношение (14) доказывается по схеме доказательства леммы 1 работы [7], в котором вместо прямой L надо взять прямую L_1 , а вместо функционала f нужно использовать функционал f_1 . Аналогично доказывается соотношение (15) с заменой L_1 и f_1 соответственно на L_2 и f_2 .

Пусть область Ω является выпуклой в направлениях прямых L_1 и L_2 . Обозначим через D_1 и D_2 области в \mathbb{C} , на которые область Ω_{ζ} отображается соответственно функционалами f_1 и f_2 .

Введем в рассмотрение линейный оператор A_1 , который каждой моногенной функции $\Phi \colon \Omega_\zeta \to \mathbb{A}_2$ ставит в соответствие аналитическую функцию $F_1 \colon D_1 \to \mathbb{C}$ по формуле

$$F_1(\xi_1) := f_1(\Phi(\zeta)),$$
 (16)

где $\xi_1:=f_1(\zeta)=x+n_1y+m_1z$ и $\zeta\in\Omega_\zeta$. Из леммы 1 следует, что значение $F_1(\xi_1)$ не зависит от выбора точки ζ , для которой $f_1(\zeta)=\xi_1$.

Введем также в рассмотрение линейный оператор A_2 , который каждой моногенной функции $\Phi\colon \Omega_\zeta \to \mathbb{A}_2$ ставит в соответствие аналитическую функцию $F_2\colon D_2 \to \mathbb{C}$ по формуле

$$F_2(\xi_2) := f_2(\Phi(\zeta)),$$
 (17)

где $\xi_2:=f_2(\zeta)=x+n_2y+m_2z$ и $\zeta\in\Omega_\zeta$. Из леммы 1 следует также, что значения $F_2(\xi_2)$ не зависят от выбора точки ζ , для которой $f_2(\zeta)=\xi_2$.

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 5

В работах [7-9] в некоторых конкретных коммутативных алгебрах построены в явном виде подобно равенствам (16) и (17) операторы A, отображающие моногенные функции Φ со значениями в этих алгебрах на аналитические функции комплексной переменной. Далее, в указанных работах использованы главные продолжения аналитических функций комплексной переменной как обобщенно обратные к A операторы $A^{(-1)}$, удовлетворяющие равенству $AA^{(-1)}A = A$. При этом было установлено, что для каждой моногенной функции Φ значения моногенной функции $\Phi - A^{(-1)}A\Phi$ принадлежат некоторому максимальному идеалу \Im заданной алгебры. Наконец, после описания всех моногенных функций со значениями в идеале \Im в работах [7,9] получены конструктивные описания всех моногенных функций Φ с помощью аналитических функций комплексной переменной.

Отметим, что главные продолжения аналитических функций комплексной переменной в определенную область линейной оболочки $E_3 \subset \mathbb{A}_2$ построены в явном виде в теореме 1.9 из [6]. Однако, операторы, обобщенно обратные к операторам A_1 и A_2 , не могут быть заданы с помощью главных продолжений аналитических функций комплексной переменной, поскольку эти продолжения, вообще говоря, не определены в области Ω_{ζ} , где рассматриваются заданные моногенные функции $\Phi \colon \Omega_{\zeta} \to \mathbb{A}_2$.

Перейдем к построению операторов, обобщенно обратных к операторам A_1 и A_2 .

Введем в рассмотрение оператор B_1 , который каждой аналитической функции $F_1\colon D_1\to\mathbb{C}$ ставит в соответствие функцию $\Phi_1\colon \Omega_\zeta\to\mathbb{A}_2$ по формуле

$$\Phi_1(\zeta) := F_1(\xi_1)I_1 \qquad \forall \, \zeta \in \Omega_{\zeta}, \qquad \xi_1 = f_1(\zeta), \tag{18}$$

и оператор B_2 , который каждой аналитической функции $F_2\colon D_2\to\mathbb{C}$ ставит в соответствие функцию $\Phi_2\colon \Omega_\zeta\to\mathbb{A}_2$ вида

$$\Phi_2(\zeta) := F_2(\xi_2)I_2 + (n_3y + m_3z)F_2'(\xi_2)\rho \qquad \forall \, \zeta \in \Omega_{\zeta}, \qquad \xi_2 = f_2(\zeta). \tag{19}$$

Лемма 2. Пусть область Ω является выпуклой в направлениях прямых L_1 и L_2 , а $F_1\colon D_1\to \mathbb{C}$ и $F_2\colon D_2\to \mathbb{C}$ — аналитические функции, заданные соответственно в областях D_1 и D_2 . Тогда (18) и (19) — моногенные функции в области Ω_{ζ} .

Доказательство. Покажем, что для функции (18) в области Ω_{ζ} выполняются условия (10), которые при $\Phi = \Phi_1$ с учетом соотношений (3), (4) принимают вид

$$\frac{\partial F_1(\xi_1)}{\partial y} I_1 = n_1 \frac{\partial F_1(\xi_1)}{\partial x} I_1,
\frac{\partial F_1(\xi_1)}{\partial z} I_1 = m_1 \frac{\partial F_1(\xi_1)}{\partial x} I_1.$$
(20)

С этой целью выделим действительную и мнимую части выражения

$$\xi_1 = (x + y \operatorname{Re} n_1 + z \operatorname{Re} m_1) + i(y \operatorname{Im} n_1 + z \operatorname{Im} m_1) := \tau_1 + i\eta_1$$
(21)

и запишем систему (20) в виде

$$\left(\frac{\partial F_1}{\partial \tau_1} \operatorname{Re} n_1 + \frac{\partial F_1}{\partial \eta_1} \operatorname{Im} n_1\right) I_1 = n_1 \frac{\partial F_1}{\partial \tau_1} I_1,
\left(\frac{\partial F_1}{\partial \tau_1} \operatorname{Re} m_1 + \frac{\partial F_1}{\partial \eta_1} \operatorname{Im} m_1\right) I_1 = m_1 \frac{\partial F_1}{\partial \tau_1} I_1.$$
(22)

Теперь очевидно, что равенства (22) являются следствием классических условий Коши—Римана для аналитической функции $F_1\colon D_1\to \mathbb{C},$ которые в свернутом виде выражаются равенством

$$\frac{\partial F_1}{\partial \eta_1} = i \frac{\partial F_1}{\partial \tau_1} \, .$$

Следовательно, функция (18) является моногенной в области Ω_{ζ} .

Покажем также, что для функции (19) в области Ω_{ζ} выполняются условия (10), которые при $\Phi = \Phi_2$ с учетом соотношений (3), (4) принимают вид

$$\frac{\partial F_2(\xi_2)}{\partial y} I_2 + \left(n_3 F_2'(\xi_2) + (n_3 y + m_3 z) \frac{\partial F_2'(\xi_2)}{\partial y} \right) \rho =$$

$$= n_2 \frac{\partial F_2(\xi_2)}{\partial x} I_2 + \left(n_3 \frac{\partial F_2(\xi_2)}{\partial x} + n_2 (n_3 y + m_3 z) \frac{\partial F_2'(\xi_2)}{\partial x} \right) \rho,$$

$$\frac{\partial F_2(\xi_2)}{\partial z} I_2 + \left(m_3 F_2'(\xi_2) + (n_3 y + m_3 z) \frac{\partial F_2'(\xi_2)}{\partial z} \right) \rho =$$

$$= m_2 \frac{\partial F_2(\xi_2)}{\partial x} I_2 + \left(m_3 \frac{\partial F_2(\xi_2)}{\partial x} + m_2 (n_3 y + m_3 z) \frac{\partial F_2'(\xi_2)}{\partial x} \right) \rho.$$
(23)

Выделим действительную и мнимую части выражения

$$\xi_2 = (x + y \operatorname{Re} n_2 + z \operatorname{Re} m_2) + i(y \operatorname{Im} n_2 + z \operatorname{Im} m_2) := \tau_2 + i\eta_2$$
(24)

и аналогично равенствам (20) установим, что следствием классических условий Коши – Римана

$$\frac{\partial F_2}{\partial \eta_2} = i \frac{\partial F_2}{\partial \tau_2}$$

для аналитической функции $F_2\colon D_2 o \mathbb{C}$ являются равенства

$$\frac{\partial F_2(\xi_2)}{\partial y} = n_2 \frac{\partial F_2(\xi_2)}{\partial x} , \qquad \frac{\partial F_2(\xi_2)}{\partial z} = m_2 \frac{\partial F_2(\xi_2)}{\partial x} , \qquad (25)$$

а также равенства

$$\frac{\partial F_2'(\xi_2)}{\partial y} = n_2 \frac{\partial F_2'(\xi_2)}{\partial x}, \qquad \frac{\partial F_2'(\xi_2)}{\partial z} = m_2 \frac{\partial F_2'(\xi_2)}{\partial x}.$$
 (26)

Кроме того, справедливо тождество

$$F_2'(\xi_2) \equiv \frac{\partial F_2(\xi_2)}{\partial x} \,. \tag{27}$$

Теперь очевидным следствием соотношений (25) – (27) являются равенства (23). Таким образом, функция (19) является моногенной в области Ω_{ζ} .

Лемма доказана.

Из леммы 2 следует, что обобщенно обратные операторы к операторам A_1 и A_2 задаются соответственно равенствами $A_1^{(-1)}=B_1$ и $A_2^{(-1)}=B_2$.

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 5

Заметим, что главное продолжение функции $F\colon D\to\mathbb{C}$, аналитической в жордановой области $D\subset\mathbb{C}$, определено в области $\{\zeta\in E_3\colon f_1(\zeta)\in D, f_2(\zeta)\in D\}$ и представляется суммой (ср. с [6, с. 37]):

$$\frac{1}{2\pi i} \int_{\Gamma_{\zeta}} F(t) (t - \zeta)^{-1} dt = (B_1 F)(\zeta) + (B_2 F)(\zeta),$$

где замкнутая жорданова спрямляемая кривая Γ_{ζ} лежит в области D и охватывает точки $f_1(\zeta)$ и $f_2(\zeta)$.

3. Конструктивное описание моногенных функций в алгебре \mathbb{A}_2 . Справедлив следующий аналог теоремы 1 из [7] (см. также теорему 2.4 из [6]) для моногенных функций $\Phi \colon \Omega_\zeta \to \mathbb{A}_2$.

Теорема 1. Пусть область Ω является выпуклой в направлениях прямых L_1 и L_2 . Тогда каждая моногенная в области Ω_{ζ} функция $\Phi \colon \Omega_{\zeta} \to \mathbb{A}_2$ представляется в виде

$$\Phi(\zeta) = (B_1 A_1 \Phi)(\zeta) + \Phi_{10}(\zeta) = (B_2 A_2 \Phi)(\zeta) + \Phi_{20}(\zeta),$$

где $\Phi_{10}\colon \Omega_\zeta \to \mathfrak{I}_1$ и $\Phi_{20}\colon \Omega_\zeta \to \mathfrak{I}_2$ — некоторые моногенные в области Ω_ζ функции, принимающие значения соответственно в идеалах \mathfrak{I}_1 и \mathfrak{I}_2 .

Доказательство. Рассмотрим функцию $\Phi_{10} := \Phi - B_1 A_1 \Phi$, которая в силу леммы 2 является моногенной в области Ω_{ζ} . Учитывая равенства (16), (18) и (6), получаем

$$f_1(\Phi_{10}(\zeta)) = f_1(\Phi(\zeta)) - f_1(B_1 A_1 \Phi(\zeta)) = F_1(\xi) - F_1(\xi) = 0,$$

т. е. $\Phi_{10}(\zeta) \in \mathfrak{I}_1$.

Аналогично устанавливается, что функция $\Phi_{20}:=\Phi-B_2A_2\Phi$ является моногенной в области Ω_ζ и $\Phi_{20}(\zeta)\in\mathfrak{I}_2.$

Теорема доказана.

В следующей теореме описаны все моногенные функции, принимающие значения в идеале \mathfrak{I}_1 алгебры \mathbb{A}_2 , с помощью аналитических функций соответствующей комплексной переменной.

Теорема 2. Пусть область Ω является выпуклой в направлении прямой L_2 . Тогда каждая моногенная функция $\Phi_{10}: \Omega_{\zeta} \to \mathfrak{I}_1$ со значениями в идеале \mathfrak{I}_1 представляется в виде

$$\Phi_{10}(\zeta) = F_{11}(\xi_2) I_2 + \left(F_{12}(\xi_2) + (n_3 y + m_3 z) F'_{11}(\xi_2) \right) \rho \tag{28}$$

$$\forall \zeta = xe_1 + ye_2 + ze_3 \in \Omega_{\zeta}$$

где $F_{11}: D_2 \to \mathbb{C}, F_{12}: D_2 \to \mathbb{C}$ — некоторые аналитические в области D_2 функции и $\xi_2 := x + n_2 y + m_2 z$.

Доказательство. Поскольку Φ_{10} принимает значения в идеале \mathfrak{I}_{1} , справедливо равенство

$$\Phi_{10}(\zeta) = V_1(x, y, z) I_2 + V_2(x, y, z) \rho, \qquad (29)$$

где $V_k \colon \Omega \to \mathbb{C}$ при k = 1, 2.

Из моногенности функции Φ_{10} в области Ω_{ζ} следует существование частных производных $\frac{\partial \Phi_{10}}{\partial x}$, $\frac{\partial \Phi_{10}}{\partial y}$, $\frac{\partial \Phi_{10}}{\partial z}$, удовлетворяющих условиям (10) при $\Phi=\Phi_{10}$. Подставляя в них выражения (4), (29), а также учитывая однозначность разложения элементов алгебры \mathbb{A}_2 по базису $\{I_1,I_2,\rho\}$, получаем систему уравнений для нахождения функций V_1,V_2 :

$$\frac{\partial V_1}{\partial y} = n_2 \frac{\partial V_1}{\partial x},$$

$$\frac{\partial V_2}{\partial y} = n_2 \frac{\partial V_2}{\partial x} + n_3 \frac{\partial V_1}{\partial x},$$

$$\frac{\partial V_1}{\partial z} = m_2 \frac{\partial V_1}{\partial x},$$

$$\frac{\partial V_2}{\partial z} = m_2 \frac{\partial V_2}{\partial x} + m_3 \frac{\partial V_1}{\partial x}.$$
(30)

Используя соотношение (24) и тот факт, что $\operatorname{Im} n_2$ и $\operatorname{Im} m_2$ одновременно не могут быть равными нулю для гармонического базиса (4), из первого и третьего уравнений системы (30) получаем равенство

$$\frac{\partial V_1}{\partial \eta_2} = i \frac{\partial V_2}{\partial \tau_2}. (31)$$

Теперь так же, как и при доказательстве теоремы 2 из [7], с использованием теоремы 6 из [11] доказывается равенство $V_1(x_1,y_1,z_1)=V_1(x_2,y_2,z_2)$ для точек $(x_1,y_1,z_1), (x_2,y_2,z_2)\in\Omega$ таких, что отрезок, соединяющий эти точки, параллелен прямой L_2 . Из указанного равенства и равенства (31) следует, что функция $V_1(x,y,z):=F_{11}(\xi_2)$, где F_{11} — произвольная аналитическая в области D_2 функция, является общим решением системы

$$\frac{\partial V_1}{\partial y} - n_2 \frac{\partial V_1}{\partial x} = 0,$$

$$\frac{\partial V_1}{\partial z} - m_2 \frac{\partial V_1}{\partial x} = 0,$$
(32)

состоящей из первого и третьего уравнений системы (30).

Далее, из второго и четвертого уравнений системы (30) для нахождения функции $V_2(x,y,z)$ получаем систему уравнений

$$\frac{\partial V_2}{\partial y} - n_2 \frac{\partial V_2}{\partial x} = n_3 \frac{\partial F_{11}}{\partial x},$$

$$\frac{\partial V_2}{\partial z} - m_2 \frac{\partial V_2}{\partial x} = m_3 \frac{\partial F_{11}}{\partial x}.$$
(33)

Ее частным решением является функция

$$v_2(x, y, z) := (n_3 y + m_3 z) F'_{11}(\xi_2).$$

Следовательно, общее решение системы (33) представляется как сумма ее частного решения и общего решения соответствующей однородной системы, аналогичной системе (32), в виде

$$V_2(x, y, z) = F_{12}(\xi_2) + (n_3y + m_3z)F'_{11}(\xi_2),$$

где F_{12} — произвольная аналитическая в области D_2 функция.

Теорема доказана.

В следующей теореме описаны все моногенные функции, принимающие значения в идеале \mathfrak{I}_2 алгебры \mathbb{A}_2 , с помощью аналитических функций соответствующей комплексной переменной.

Теорема 3. Пусть область Ω является выпуклой в направлении прямых L_1 и L_2 . Тогда каждая моногенная функция Φ_{20} : $\Omega_{\zeta} \to \mathfrak{I}_2$ со значениями в идеале \mathfrak{I}_2 представляется в виде

$$\Phi_{20}(\zeta) = F_{21}(\xi_1) I_1 + F_{22}(\xi_2) \rho \qquad \forall \zeta = xe_1 + ye_2 + ze_3 \in \Omega_{\zeta}, \tag{34}$$

где $F_{21}\colon D_{1}\to \mathbb{C},\ F_{22}\colon D_{2}\to \mathbb{C}$ — некоторые функции, аналитические соответственно в областях $D_{1},\ D_{2},\ u\ \xi_{1}:=x+n_{1}y+m_{1}z,\ \xi_{2}:=x+n_{2}y+m_{2}z.$

Доказательство. Функция Φ_{20} , принимающая значения в идеале \Im_2 , представляется в виде

$$\Phi_{20}(\zeta) = W_1(x, y, z) I_1 + W_2(x, y, z) \rho, \tag{35}$$

где $W_k \colon \Omega \to \mathbb{C}$ при k = 1, 2.

Из моногенности функции Φ_{20} в области Ω_{ζ} следует существование частных производных $\frac{\partial \Phi_{20}}{\partial x}$, $\frac{\partial \Phi_{20}}{\partial y}$, $\frac{\partial \Phi_{20}}{\partial z}$, удовлетворяющих условиям (10) при $\Phi=\Phi_{20}$. Подставляя в них выражения (4), (35), а также учитывая однозначность разложения элементов алгебры \mathbb{A}_2 по базису $\{I_1,I_2,\rho\}$, получаем систему уравнений для нахождения функций W_1,W_2 :

$$\frac{\partial W_1}{\partial y} = n_1 \frac{\partial W_1}{\partial x}, \qquad \frac{\partial W_2}{\partial y} = n_2 \frac{\partial W_2}{\partial x},$$

$$\frac{\partial W_1}{\partial z} = m_1 \frac{\partial W_1}{\partial x}, \qquad \frac{\partial W_2}{\partial z} = m_2 \frac{\partial W_2}{\partial x}.$$

Таким же способом, как при доказательстве теоремы 2 найдена функция V_1 , получаем $W_2(x,y,z):=F_{22}(\xi_2)$, где F_{22} — произвольная аналитическая в области D_2 функция. Аналогично устанавливаем, что $W_1(x,y,z):=F_{21}(\xi_1)$, где F_{21} — произвольная аналитическая в области D_1 функция.

Теорема доказана.

Из теоремы 1 и равенств (18), (19), (28), (34) следует, что в случае, когда область Ω является выпуклой в направлении прямых L_1 и L_2 , каждая моногенная функция $\Phi\colon \Omega_\zeta\to \mathbb{A}_2$ представляется равенствами

$$\Phi(\zeta) = F_1(\xi_1)I_1 + F_{11}(\xi_2)I_2 + \left(F_{12}(\xi_2) + (n_3y + m_3z)F'_{11}(\xi_2)\right)\rho, \tag{36}$$

$$\Phi(\zeta) = F_{21}(\xi_1) I_1 + F_2(\xi_2) I_2 + \left((n_3 y + m_3 z) F_2'(\xi_2) + F_{22}(\xi_2) \right) \rho. \tag{37}$$

Из равенств (36), (37) и единственности разложения элементов алгебры \mathbb{A}_2 по базису $\{I_1,I_2,\rho\}$ следуют равенства

$$F_1(\xi_1) = F_{21}(\xi_1)$$
,

$$F_2(\xi_2) = F_{11}(\xi_2) \,,$$

$$F_{12}(\xi_2) = F_{22}(\xi_2)$$
.

Таким образом, доказано следующее утверждение.

Теорема 4. Пусть область Ω является выпуклой в направлении прямых L_1 и L_2 . Тогда каждая моногенная функция $\Phi \colon \Omega_\zeta \to \mathbb{A}_2$ представляется в виде

$$\Phi(\zeta) = F_1(\xi_1) I_1 + F_2(\xi_2) I_2 + \left((n_3 y + m_3 z) F_2'(\xi_2) + F_0(\xi_2) \right) \rho$$

$$\forall \zeta = x e_1 + y e_2 + z e_3 \in \Omega_{\zeta},$$
(38)

где F_1 — некоторая аналитическая в области D_1 функция, F_0 и F_2 — некоторые аналитические в области D_2 функции, $\xi_1 := x + n_1 y + m_1 z$ и $\xi_2 := x + n_2 y + m_2 z$.

Отметим, что равенство (38) указывает способ явного построения любой из моногенных функций $\Phi \colon \Omega_\zeta \to \mathbb{A}_2$ с помощью трех соответствующих аналитических функций комплексной переменной.

Следующее утверждение вытекает непосредственно из равенства (38), правая часть которого является моногенной функцией в области $X_{\zeta} := \{\zeta \in E_3 \colon f_1(\zeta) \in D_1, \ f_2(\zeta) \in D_2\}.$

Теорема 5. Пусть область Ω является выпуклой в направлении прямых L_1 и L_2 , а функция $\Phi \colon \Omega_\zeta \to \mathbb{A}_2$ моногенна в области Ω_ζ . Тогда Φ продолжается до функции, моногенной в области X_ζ .

Принципиальным следствием равенства (38) является также следующее утверждение, справедливое для произвольной области Ω_{ζ} .

Теорема 6. Пусть функция $\Phi \colon \Omega_{\zeta} \to \mathbb{A}_2$ моногенна в области Ω_{ζ} . Тогда производные Гато всех порядков функции Φ являются моногенными функциями в области Ω_{ζ} .

Доказательство. Поскольку шар Θ с центром в произвольной точке $(x_0,y_0,z_0)\in\Omega$, целиком содержащийся в области Ω , является выпуклой областью, в окрестности $\Theta_\zeta:=$:= $\{\zeta=xe_1+ye_2+ze_3\colon (x,y,z)\in\Theta\}$ точки $\zeta_0=x_0e_1+y_0e_2+z_0e_3$ справедливо разложение (38), компоненты которого — бесконечно дифференцируемые функции в области Θ . Поэтому и компоненты U_1,U_2,U_3 разложения (9), являющиеся линейными комбинациями указанных компонент разложения (38), также являются бесконечно дифференцируемыми функциями в области Θ . Следовательно, производная Гато Φ' , удовлетворяющая в Θ_ζ условиям вида (10), является моногенной функцией и производные Гато всех порядков функции Φ также являются моногенными функциями в Θ_ζ .

Теорема доказана.

В силу теоремы 6 и соотношений (1) выполняются равенства (2), т. е. произвольная моногенная в области Ω_{ζ} функция $\Phi(\zeta)$ удовлетворяет трехмерному уравнению Лапласа, а вещественные и мнимые части компонент $U_1,\,U_2,\,U_3$ разложения (9) образуют шестерку пространственных гармонических функций в области Ω .

 Ketchum P. W. Analytic functions of hypercomplex variables // Trans. Amer. Math. Soc. – 1928. – 30, № 4. – P. 641 – 667.

- 2. *Kunz K. S.* Application of an algebraic technique to the solution of Laplace's equation in three dimensions // SIAM J. Appl. Math. − 1971. − 21, № 3. − P. 425 − 441.
- 3. *Мельниченко И. П.* О представлении моногенными функциями гармонических отображений // Укр. мат. журн. -1975. -27, № 5. C. 606-613.
- 4. *Мельниченко И. П.* Алгебры функционально-инвариантных решений трехмерного уравнения Лапласа // Укр. мат. журн. 2003. **55**, № 9. С. 1284 1290.
- 5. *Плакса С. А.* Условия Коши Римана для пространственных гармонических функций // 3б. праць Ін-ту математики НАН України. 2006. 3, № 4. С. 396 403.
- 6. *Мельниченко И. П., Плакса С. А.* Коммутативные алгебры и пространственные потенциальные поля. Киев: Ин-т математики НАН Украины, 2008. 230 с.
- 7. *Плакса С. А., Шпаковский В. С.* Конструктивное описание моногенных функций в гармонической алгебре третьего ранга // Укр. мат. журн. 2010. **62**, № 8. С. 1078 1091.
- 8. *Мельниченко И. П., Плакса С. А.* Потенциальные поля с осевой симметрией и алгебры моногенных функций векторного аргумента. III // Укр. мат. журн. − 1997. − **49**, № 2. − С. 228 − 243.
- 9. *Грищук С. В., Плакса С. А.* Моногенные функции в бигармонической алгебре // Укр. мат. журн. 2009. **61**, № 12. С. 1587 1596.
- 10. Хилле Э., Филлипс Р. Функциональный анализ и полугруппы. М.: Изд-во иностр. лит., 1962. 829 с.
- 11. $\mathit{Толстов}\ \Gamma$. $\mathit{\Pi}$. О криволинейном и повторном интеграле // Труды Мат. ин-та АН СССР. 1950. **35**. С. 3 101.

Получено 28.03.12