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FIXED-POINT THEOREMS AND COMMON FIXED-POINT THEOREMS
ON SPACES EQUIPPED WITH VECTOR-VALUED METRICS

TEOPEMM ITPO HEPYXOMY TOUKY TA CIIJIbHY HEPYXOMY TOUKY
HA ITPOCTOPAX I3 BEKTOPHO3HAYHOIO METPHKOIO

We show the existence of a fixed point and common fixed point for single-valued generalized contru’tions on spaces
equipped with vector-valued metrics.

TloxasaHO ICHYBZHHS HEPYXOMOI TOYKH T4 CHOLIBHOI HEPYXOMOI TOUKH IV ONHO3HAYHHX Y3AraibHEHHX CTHCKYBAJIbHHX
Bigo6paxeHs Ha NPOCTOPaX i3 BEKTOPHO3HAYHOIO METPHKOIO.

1. Introduction. The classical Banach contraction principle was extended for contraction mappings
on spaces endowed with vector-valued metrics by Perov in 1964 [4]. Filip et al. [2] studied fixed
point property of a self mapping on generalized metric space (X,d) and generalized the results
of Perov. In this paper, Theorem 2.1 of [2] is generalized, and local fixed point property of a self
mapping on generalized metric space (X, d) is considered. Finally, common fixed point property of
two single-valued self mappings on generalized metric space (X, d) is studied.

Throughout this paper C, R and NV are the sets of all complex, real and natural numbers, respec-
tively.

Let (V,=<) be an ordered Banach space. The cone V, = {v € V: 8 = v}, where  is the
zero-vector of V, satisfies the usual properties

1) Vin—Vy = {6};

2) Ve + Vi CVyy

3) aVy C Vi fora > 0.

Let X be a nonempty set. A mapping d: X x X — V) is called a vector-valued metric on X, if
the following properties are satisfied: '

1) d(z,y) = 6 foreach z,y € X, if d(z,y) = 6, then = = y;

2) d(z,y) = d(y, z) for each z,y € X;

3) d(z,y) < d(z, z) + d(z,y) for each z,7,z € X.
The pair (X, d) is called vector-valued metric space. Agarwal and Khamsi [3] (Theorem 2) show that
for lower semi-continuous function F' from complete vector-valued metric space (X, d) over an order
complete and order continuous Banach lattice V, if function T': X — X satisfied in the following
condition for every z € X

d(z, T(z)) < F(z) — F(T(z)),

then Fix(T) # @. Now, we replace V by R™ and have the following definition for vector-valued
metric space.

Let X be a nonempty set. A mapping d: X x X — R™ is called a vector-valued metric on X,
if the following properties are satisfied:
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1) d(z,y) > 0 for each z,y € X, if d(z,y) = 0, then z = y;

2) d(z,y) = d(y, z) for each z,y € X;

3) d(z,y) < d(z,z) + d(z,y) for each z,y,z € X.

A set X equipped with a vector-valued metric d is called a generalized metric space and denoted
by (X, d). Let z; be an element of generalized metric space X and r = (r;)™; € R™, with r; > 0
for each 1 < i < n, then B(z1,7) = {z € X|d(z1,z) < r} is the open ball centered in z; with
radius r, also g(ml,f‘) = {z € X|d(z1,z) < r} is the closed ball centered in z; with radius r.

Let f: X — X be a single-valued map. Fix(f) = {z € X|f(z) = z} is the set-of all fixed
points of f.

Mm.m(RT) means the set of all m x m matrices with positive elements, © the zero matrix, and
I the identity m x m matrix. Let A € My, m(RT), A is said to be convergent to zero, if and only if
A" — 0 as n — oo (see [7], for more details). i

Let o, € R™, a = (aj,a9,...,an), B = (B1,B82,...,Pn) and ¢ € R. Note that & < S
(resp. o < ) means o; < f; (resp. a; < B;) foreach 1 < ¢ < m, and also & < ¢ (resp. a < ¢)
means ¢o; < ¢ (resp. oy < ¢) for 1 < ¢ < m, respectively. As well as, we can define addition and
multiplication on %™ as follows:

a+pf=(a1+br,a2+ Pa,...,am+ Bm),
and
a-fB=(c1f1,a2B2, ..., 0mbPm),

for every a = (a1, a9,...,04), 8= (B1,B82,-..,0n) € R™.

Now, we need the following equivalent statements:

1) A is convergent towards zero;

2) A" — 0 as n — oo;

3) the eigenvalues of A are in the open unit disc, that is, |A\| < 1, for each A\ € C with det(A4 —
—Al) =0;

4) the matrix I — A is nonsingular and

(F=A)Y=T4 Attt AV F i

5) A%q — 0 and gA™ — 0 as n — oo, for each g € R™.
The proof of the above statements are the classical results in matrix analysis (see [1, 5, 6] for more
details). For the sake of simplicity, we make an identification between row and column vectors in R™.

2. Fixed point property. Let (X, d) be a vector-valued metric space and A be an operator such
as [3] (Theorem 1). In [3], da(z, y) identified by (I — A)d(z,y), for every z,y € X. Then d4 is a
vector-valued metric on X, and the vector-valued metric space (X, d4) is complete.

Theorem 2.1. Let (X,d) be a complete generalized metric space, and f: X — X be a
continuous map with the property that, there exists A, B,C € My m(Ry.) such that

d(f(z), f(¥)) < Ad(z,y) + Bd(z,y)d(y, f(z))[d(z, f(z)) + d(y, f(¥))]+

+Cd(z,y)[d(z, f(¥))d(y, f(2))] @.1)
Jor every x,y € X. Suppose A is a matrix converging to zero. Then Fix(f) # .
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Proof. It is sufficient to provide conditions [3] (Theorem 2). By condition (2.1), we have
d(f(z), f*(z)) < Ad(z, £(2)), 2.2)
for every z € X. Therefore
da(z, f(z)) = (I — A)d(z, f(2)) < d(=, f(z)) — d(f(z), f*(z)).

Similar to [3] (Corollary 1), we define F(z) := d(z, f(z)), for every z € X. Then F' is a
continuous map, and by [3] (Theorem 2]), Fix(f) # @.

We recall B(z1,7) = {z € X|d(z1,2) < r}, is the closed ball centered in z; with radius 7.

Theorem 2.2. Let (X,d) be a complete generalized metric space, v := (r;)[%; € R} with
O0<ri<1lforeachie€ {1,2,...,m}and f: g(xl,r) — X having the property that, there exists
A,B,C € My m(Ry) such that e

d(f(z), f(¥)) < A(d(z,y))d(z,y) + Bd(z,y)d(y, f(z))[d(z, f(2)) + d(y, f(¥))]+

+Cd(z,y)[d(z, f(y))d(y, f(z))]
for every z,y € X. Suppose

(i) A is a matrix converging to zero,

(i) ifu € R is such that u(I — A)™' < (I — A)~r, then u < r;

(iii) d(z1, f(z1))(I —A)P <
Then Fix(f) # 2.

Proof. Construct the sequence (z,)nenr as follows: for each n € N, set 2,41 = f(z,). By
(iii), d(z1,z2)(I — A)™! = d(z1, f(z)) I —A) ' < r < (I — A)~'r. Therefore, by using (ii),
d(z1,x2) < r and

d(z1, z2)(d(z1, z2) (I — A)™1) = d(z1, z2)(d(z1, fz1))(I — 4)7 <
< d(:t.‘l,xz)?" < d(:’:l,mg)(f e, A)_l'."‘ < T‘Q.
Therefore, A(d(z1,22))d(x1, zo)(I — A)~! < Ar?. Similarly,
d(z2,23)(I — A)™" = d(f(z1), f(22))(T — A)™* <
- < A(d(xla $2))d($1, 32)(1— = A)_1+
+Bd(z1, z2)d(xe, f(z1))[d(z1, f(z1)) + d(z2, f(22))]/(I — A) "+
+ Cd(zy, z2)[d(z1, f(z2)d(2, f(21))](I — A)7 <
< Ar? 4+ 0 = Ar?,
Above inequality hold by this fact since z3 = f(z1), thus d(z2, f(z1)) =6,
Bd(z1, z2)d(z2, f(21))[d(21, f(21)) + d(z2, f(22))](I — A =0,
and Cd(z1, 29)[d(e1, f(25)d(z2, f(21))](I — A)~1 = ©.
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As well as, since d(z1,z3) < d(z1,22) + d(z2,23), 0 < r < 1 and r? < r, therefore,
d(z1,23) (I — A)7" < d(z1,22) (T — A) 7" + d(z2, 23)(I — A) 71 <
<SIr+ A <Ir+ Ar<(I4+ A4+ A%+ ..+ A"+ .. )r=
=(I—-A)"1r

By induction, for all n € NV, the sequence (z,) is in B (z1,7) and satisfying
(1) zpy1 = f(xn)§
2) d(zo,za)(I —A)F < (I~ A)7Mr;
(3) d(zn, Tnt1)(I — A)7 < A7
We show, (zn,) is a Cauchy sequence. For every n,m € N, n < m,

A(@n, Tm)(I — A) 7! < d(zn, Tag1) (I — A) 7 + d(@ng1, Tng2) (T — A) 71+

s d(mm—la -Tm)(f - A)_l <
& ARG L AP R o A
L AP T LAY ot AP s

=AY I - A)r —0 as n—co.

Therefore (z,) is a Cauchy sequence. Since the space (§ (z1,7), d) is a complete, there exists

an element z* € B(z1,r) such that z, — z*. Now, z* is a fixed point of f, because
d(z*, f(z*)) < d(z*, zn) + d(zn, f(z*)) =
= d(z", zn) + d(f(zn-1), f(z¥)) <
< d(z*,zn) + Ad(zn—1,2")d(Tn—1, %)+
+Bd(z", f(zn-1))[d(Zn-1, f(Zn-1)) + d(z*, f(z7))]+

+Cd(z*, f(zn-1)d(zn-1,2") — 0 as n — oo.

Then Fix(f) # @.

An application for above stated theorem is the following operator system in Banach space X
with norm || - [|:

fl(ul,'u-z) = ui,
2:3)
fa(u1,ug) = us,

where f;: X2 — X, i = 1,2, are given nonlinear operator.
It is obvious that the system (2.3) can be viewed as a fixed point problem as follows:
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fu)=u
in the space X2, where u = (uj,u2) and f = (f1, f2). Now, we have the following theorem for an
application to Theorem 2.2.
Theorem 2.3. Assume that for i € 1,2, there exist nonnegative number a;, a;, b, b}, ci, ¢;
such that
| i (1, un) = fi(vr, v2)|| < aillur — v + afflug — val*+
+billur — va |l [([lvr = Filur, u2)|| + [lvz — filu, u2)||)x
X(llug 4+ v1 — filur, u2) — fi(vr,v2)|| + lluz +va — fi(ur, ug) — fi(vi, v2) )]+
+b;|lug — val| [([lv1 — fi(uz, u2)|| + |lva — filug, ua)||) X
X(lur 4+ v1 — fi(u1,u2) — fi(vi, v2)ll + llug +v2 — fi(u1,uz) — fi(vi, va)[)]+
+eillur — vi]| [(llur — filvi, va)|| + lluz — filvr, v2) ) (llvr = filur, ua)|| + llva — filuy, w2) )]+

+eillug — val| [(lur — fi(vi,va)l| + |lug — fi(vi, v2)]]) %

X ([l = filur, u2)|| + [lva — filus, w)|))] 2.4)
!

JSor all uy,us,v1,v9 € X. In addition assume that A = (Zl z}) is a convergence to zero matrix,
2 2

!
and B = BB and | C:I belong to May2(R™). Then (2.3) has a unique solution u =
bz 512 Ca Coy

= (u1,us) in X2.
Proof. Condition (2.4) can be rewritten as

1£(w) = F@)I < Allw = v||* + Blllu — vllllv = F@)I(lu — F@) + [lv = F@)ID] +
+ Cllle = 2| (lu = fF)lllv — F()D]-

Thus Theorem 2.2 implies our desire. Here X2 = R? and d(u,v) = |[u — ]

3. Common fixed-point theorem. Let f and g be two self mappings on complete generalized
metric space (X,d). In this section, we study the existence of a common fixed point for these
mapgings. Due to this, we need the-following lemma.

Lemma 3.1. Let (X,d) be a complete generalized metric space and (yn)nenuio} be a se-
quence in X. If A € My m(R") is a matrix converging to zero, and for every n € N'

A(Yn, Yn+1) < Ad(Yn, Yn—1)- (3.1)

Then (yn)nen is converging in X.
Proof. By (3.1) we have

d(ymyn—l) < Ad(yn-—l:yn—2)a d(yn—la yﬂ.—2) & Ad(yn—Z: yn-B): e :d(y2:y1) < Ad(yl,yo)-
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Thus
AYn+1,Yn) < Ad(Yny Yn—1) € A%d(Yn-1.Yn-2) < ... < A™d(y1,90) — 0 as n — co.

Therefore (yn) is a Cauchy sequence. Since (X, d) is a complete, there exists an element z € X

such that y, — =z. _
Theorem 3.1. Let (X,d) be a complete generalized metric space, f: X — X be a continu-

ous function and A € My m(RT) be a nonzero matrix converging to zero. Suppose g is a selfinap
Sfunction such that go f = fog, g(X) C f(X), and

d(g(z),9(y)) < Ad(f(2), f(y)), =zyeX. (32)

Then f and g have a unique common fixed point.
Proof. Choose the elements zg,z; € X such that f(z;) = g(zp). Construct the sequence

(ZTn)nenu(oy, as follows
flza) = g(wn-—l)A

By the assumption g(X) C f(X). and (3.2), we have

d(g(zn), 9(zn-1)) < Ad(f(zn), f(zn-1)),
d(f(:t?-n_), f(:rn—l)) = d(g9(zn-1), 9(zn-2)) < Ad(f(xn—l): f(mn—Q)):

d(f(z2), f(z1)) = Ad(g(z1), 9(x0)) < Ad(f(z1), f(za))-
Thus
d(f(zn+1), f(za)) = d(g(zn), 9(zn-1)) <
< Ad(f(zn), f(@n-1)) = Ad(g(zn-1), 9(zn-2)) <
< A%d(f(zn-1), f(@n—-2)) < ---
... < A"d(f(21), f(z0)) — 0 as n — oo.

Therefore ( f(r,)) is a Cauchy sequence. Thus by Lemma 3.1, there exists a ¢ € X such that
flxn) — t. Also, by the definition of g, g(z,) — ¢. Continuity of f implies that g is a continuous
map. Thus g(f(zn)) — g(t) and since go f = fog, so f(g(zn)) —> f(t). By these results,
f(t) = g(t) and f(f(t)) = f(g(2)) = g(g(t))- But,

d(g(t), g(g(t))) < Ad(f(t), f(g(2))) = Ad(g(t), g(g(¢))).
and so

d(g(t),9(g(t)))(I — A) < 0.

But I # A, hence d(g(t), g(g(¢))) = 0. This means
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9(g(2)) = g(t) = f(g(2)) = g(£(2))-

Therefore g(t) € Fix(f) N Fix(g). Finally, suppose there are z,y € X such that 2,y € Fix(f) N
NFix(g). Then by (2.2),

d(z,y) = d(g(z),9(y)) < Ad(f(z), f(y)) = Ad(z,y),

and so

d(z,y)(I - A) < 0.

Therefore z = y and the common fixed point of f and g is unique.

Corollary 3.1. Let f and g be two commuting and self mappings on a complete generalized
metric space-(X,d). Suppose f is continuous and g(X) C f(X). If, there exists a matrix A €
€ Mmm(R™) such that A converges to zero, and for each z,y € X, following condition holds

(6"(2), 9" (¥)) < 4d(f (), f(¥)), kEN.

Then f and g have a common fixed point.
Proof. For every k > 1,

gFof=g"1ogof=g"lofog=...= fog",

also gF(X) C g(X) c f(X). Therefore, by Theorem 3.1, ¢* and f have a unique common fixed
point. Let a € X be the unique common fixed point of g* and f. Thus @ = f(a) = g*(a). Since f
and g are commuting mappings, then

g9(a) = g(£(a)) = 9(¢*(a)) = g*(9(a)) = f(9(a)).

Thus g(a) is a common fixed point of g and f. Since, the common fixed point of g* and f was
unique. Hence, we should have a = g(a) = f(a).

Corollary 3.2. Letn € N and A invertible matrix which A > I. Suppose g is a continuous self
mapping on a complete generalized metric space (X, d) satisfying:

d(g"(z),9"(y)) = Bd(z,y), =,y € X,

where B is the matrix A~'. Then g has a unique fixed point.
Proof. Take f = g™*t!, then proof is clear.
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