We prove some general fixed-point theorems in complete G-metric space that generalize some recent results.

1. Introduction. In [3, 4] Dhage introduced a new class of generalized metric space, named D-metric space. Mustafa and Sims [7, 8] proved that most of the claims concerning the fundamental topological structures on D-metric spaces are incorrect and introduced appropriate notion of generalized metric space, named G-metric space. In fact, Mustafa, Sims and other authors [2, 9 – 11] studied many fixed-point results for self mappings in G-metric spaces under certain conditions.

Quite recently [12], Mustafa et al. obtained new results for mappings in G-metric spaces.

In [13, 14], Popa initiated the study of fixed points in metric spaces for mappings satisfying an implicit relation.

Let T be a self mapping of a metric space (X, d). We denote by Fix (T) the set of all fixed points of T. T is said to satisfy property (P) if Fix $(T) = \text{Fix} (T^n)$ for each $n \in \mathbb{N}$. An interesting fact about mappings satisfying property (P) is that they have not nontrivial periodic points. Papers dealing with property (P) are, between others, [2, 13 – 15].

The purpose of this paper is to prove a general fixed-point theorem in complete G-metric space which generalize the results from [1, 10 – 12] for mappings satisfying a new form of implicit relation.

In the last part of this paper is proved a general theorem for mappings in G-metric space satisfying property (P), which generalize some results from [1].

2. Preliminaries.

Definition 2.1 [8]. Let X be a nonempty set and $G: X^3 \to \mathbb{R}_+$ be a function satisfying the following properties:

(G_1) $G(x, y, z) = 0$ if $x = y = z$;

(G_2) $0 < G(x, x, y)$ for all $x, y \in X$ with $x \neq y$;

(G_3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $z \neq y$;

(G_4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \ldots$ (symmetry in all three variables);

(G_5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality).

Then the function G is called a G-metric and the pair (X, G) is called a G-metric space.

Note that if $G(x, y, z) = 0$ then $x = y = z$ [8].

Lemma 2.1 [8]. $G(x, y, y) \leq 2G(x, x, y)$ for all $x, y \in X$.

Definition 2.2 [8]. Let (X, G) be a metric space. A sequence (x_n) in X is said to be:

a) G-convergent to $x \in X$ if for any $\varepsilon > 0$ there exists $k \in \mathbb{N}$ such that $G(x, x_n, x_m) < \varepsilon$ for all $m, n \geq k$;
b) **G-Cauchy** if for \(\varepsilon > 0 \), there exists \(k \in \mathbb{N} \) such that for all \(n,m,p \geq k \), \(G(x_n, x_m, x_p) < \varepsilon \) that is \(G(x_n, x_m, x_p) \to 0 \) as \(n,m,p \to \infty \).

A \(G \)-metric space is said to be \(G \)-complete if every \(G \)-Cauchy sequence in \(X \) is \(G \)-convergent.

Lemma 2.2 [8]. Let \((X, G)\) be a \(G \)-metric space. Then, the following properties are equivalent:

1) \((x_n)\) is \(G \)-convergent to \(x \);
2) \(G(x, x_n, x_n) \to 0 \) as \(n \to \infty \);
3) \(G(x_n, x, x) \to 0 \) as \(n \to \infty \).

Lemma 2.3 [8]. Let \((X, G)\) be a \(G \)-metric space. Then the following properties are equivalent:

1) The sequence \((x_n)\) is \(G \)-Cauchy.
2) For every \(\varepsilon > 0 \), there exists \(k \in \mathbb{N} \) such that \(G(x_n, x_m, x_m) < \varepsilon \) for \(n, m > k \).

Definition 2.3 [8]. Let \((X, G)\) and \((X', G')\) be two \(G \)-metric spaces and \(f: (X, G) \to (X', G')\). Then, \(f \) is said to be \(G \)-continuous at \(x \in X \) if for \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that for all \(x, y \in X \) and \(G(a, x, y) < \delta \), then \(G'(fa, fx, fy) < \varepsilon \). \(f \) is \(G \)-continuous if it is \(G \)-continuous at each \(a \in X \).

Lemma 2.4 [8]. Let \((X, G)\) and \((X', G')\) be two \(G \)-metric spaces. Then, a function \(f: (X, G) \to (X', G')\) is \(G \)-continuous at a point \(x \in X \) if and only if \(f \) is sequentially continuous, that is, whenever \((x_n)\) is \(G \)-convergent to \(x \) we have that \(f(x_n) \) is \(G \)-convergent to \(fx \).

Lemma 2.5 [8]. Let \((X, G)\) be a \(G \)-metric space. Then, the function \(G(x, y, z) \) is continuous in all three of its variables.

Quite recently, the following theorem is proved in [12].

Theorem 2.1. Let \((X, G)\) be a complete \(G \)-metric space and \(T: X \to X \) be a mapping which satisfies the following condition, for all \(x, y \in X \)

\[
G(Tx, Ty, Ty) \leq \max\{aG(x, y, y), b[G(x, Tx, Tx) + 2G(y, Ty, Ty)],
\]

\[
b[G(x, Ty, Ty) + G(y, Ty, Ty) + G(y, Ty, Tx)]\},
\]

where \(a \in [0, 1) \) and \(b \in \left[0, \frac{1}{3}\right)\). Then \(T \) has a unique fixed point.

The purpose of this paper is to prove a general fixed point theorem in \(G \)-metric space for mappings satisfying a new type of implicit relation which generalize Theorem 2.1 and other results from [1, 2, 10 – 12].

3. **Implicit relations.**

Definition 3.1. Let \(\mathcal{F}_a \) be the set of all continuous functions \(F(t_1, \ldots, t_6): \mathbb{R}_{+}^6 \to \mathbb{R} \) such that

\(F_1 \) \(F \) is nonincreasing in variables \(t_5 \) and \(t_6 \);

\(F_2 \) there exists \(h \in [0,1) \) such that for each \(u, v \geq 0 \) and \(F(u, v, u, u + v, 0) \leq 0 \), then \(u \leq hv \);

\(F_3 \) \(F(t, t, 0, 0, t, 2t) > 0 \) \(\forall t > 0 \).

Example 3.1. \(F(t_1, \ldots, t_6) = t_1 - \max\{at_2, b(t_3 + 2t_4), b(t_4 + t_5 + t_6)\} \), where \(a \in [0, 1) \) and \(b \in \left[0, \frac{1}{3}\right)\).

\(F_1 \) Obviously.

\(F_2 \) Let \(u, v \geq 0 \) be and \(F(u, v, u, u + v, 0) = u - \max\{av, b(v + 2u)\} \leq 0 \). If \(u > v \), then \(u[1 - \max\{a, 3b\}] \leq 0 \), a contradiction. Hence \(u \leq v \), which implies \(u \leq hv \), where \(h = \max\{a, 3b\} < 1 \).

\(F_3 \) \(F(t, t, 0, 0, t, 2t) = t(1 - \max\{a, 3b\}) > 0 \) \(\forall t > 0 \).
Example 3.2. $F(t_1, \ldots, t_6) = t_1 - at_2 - b(t_3 + 2t_4) - c(t_5 + t_6)$, where $a, b, c \geq 0$, $a + 3b + 2c < 1$ and $a + 3c < 1$.

(F1) Obviously.

(F2) Let $u, v \geq 0$ be and $F(u, v, v, u + v, 0) = u - av - b(u + 2u) - c(u + v) \leq 0$. Then $u \leq hv$, where $h = \frac{a + b + c}{1 - 2b - c} < 1$.

(F3) $F(t, t, 0, 0, t, 2t) = t[1 - (a + 3c)] > 0 \ \forall t > 0$.

Example 3.3. $F(t_1, \ldots, t_6) = t_1 - at_2 - b\max\{t_3, t_4\} - c\max\{t_5, t_6\}$, where $a, b, c \geq 0$, $a + b + 2c < 1$.

(F1) Obviously.

(F2) Let $u, v \geq 0$ be and $F(u, v, v, u + v, 0) = u - av - b\max\{u, v\} - c(u + v) \leq 0$. If $u > v$, then $u[1 - (a + b + 2c)] \leq 0$, a contradiction. Hence, $u \leq v$ which implies $u \leq hv$, where $h = \frac{a + b + c}{1 - c} < 1$.

(F3) $F(t, t, 0, 0, t, 2t) = t[1 - (a + 2c)] > 0 \ \forall t > 0$.

Example 3.4. $F(t_1, \ldots, t_6) = t_1 - k\max\{t_2, t_3, \ldots, t_6\}$, where $k \in \left[0, \frac{1}{2}\right]$.

(F1) Obviously.

(F2) Let $u, v \geq 0$ be and $F(u, v, v, u + v, 0) = u - k(u + v) \leq 0$ which implies $u \leq hv$, where $h = \frac{k}{k - 1} < 1$.

(F3) $F(t, t, 0, 0, t, 2t) = t(1 - 2k) > 0 \ \forall t > 0$.

Example 3.5. $F(t_1, \ldots, t_6) = t_1 - at_2 - b(t_3 + 2t_4) - c\max\{t_4 + t_5, 2t_6\}$, where $a, b, c \geq 0$, $a + b + 3c < 1$, $a + 4c < 1$.

(F1) Obviously.

(F2) Let $u, v \geq 0$ be and $F(u, v, v, u + v, 0) = u - av - bv - c(2u + v) \leq 0$. Then $u \leq hv$, where $h = \frac{a + b + c}{1 - 2c} < 1$.

(F3) $F(t, t, 0, 0, t, 2t) = t[1 - (a + 4c)] > 0 \ \forall t > 0$.

Example 3.6. $F(t_1, \ldots, t_6) = t_1 - k\max\left\{t_2, t_3, t_4, \frac{2t_4 + t_6}{3}, \frac{2t_4 + t_3}{3}, \frac{t_5 + t_6}{3}\right\} \leq 0$, where $k \in [0, 1)$.

(F1) Obviously.

(F2) Let $u, v \geq 0$ be and $F(u, v, v, u + v, 0) = u - k\max\left\{u, v, \frac{2u + v}{3}, \frac{u + v}{3}\right\}$. If $u > v$, then $u(1 - k) \leq 0$, a contradiction. Hence, $u \leq v$ which implies $u \leq hv$, where $h = k < 1$.

(F3) $F(t, t, 0, 0, t, 2t) = t(1 - k) > 0 \ \forall t > 0$.

Example 3.7. $F(t_1, \ldots, t_6) = t_1 - k\max\left\{t_2, t_3, t_4, \frac{t_5 + t_6}{2}\right\}$, where $k \in \left[0, \frac{2}{3}\right]$.

(F1) Obviously.

(F2) Let $u, v \geq 0$ be and $F(u, v, v, u + v, 0) = u - k\max\left\{u, v, \frac{u + v}{2}\right\} \leq 0$. If $u > v$, then $u(1 - k) \leq 0$, a contradiction. Hence, $u \leq v$ which implies $u \leq hv$, where $h = k < 1$.

(F3) $F(t, t, 0, 0, t, 2t) = t - k\max\left\{t, \frac{3t}{2}\right\} = t\left[1 - \frac{3k}{2}\right] > 0 \ \forall t > 0$.

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6
Example 3.8. \(F(t_1, \ldots, t_6) = t_1^2 - t_1(at_2 + bt_3 + ct_4) - dt_5t_6, \) where \(a, b, c \geq 0, a + b + c < 1, a + 2d < 1. \)

\(F_1 \) Obviously.

\(F_2 \) Let \(u, v \geq 0 \) be and \(F(u, v, v, u, u + v, 0) = u^2 - u(av + bv + cu) \leq 0. \) If \(u > 0, \) then \(u - av - bv - cu \leq 0 \) which implies \(u \leq hv, \) where \(h = \frac{a + b}{1 - c} < 1. \) If \(u = 0, \) then \(u \leq hv. \)

\(F_3 \) \(F(t, t, 0, 0, t, 2t) = t^2[1 - (a + 2d)] > 0 \quad \forall t > 0. \)

Example 3.9. \(F(t_1, \ldots, t_6) = t_1 - k \max \left\{ \frac{t_3 + t_4}{2}, \frac{t_5 + t_6}{2} \right\}, \) where \(k \in \left[0, \frac{2}{3} \right]. \)

\(F_1 \) Obviously.

\(F_2 \) Let \(u, v \geq 0 \) be and \(F(u, v, v, u, u + v, 0) = u - k \max \left\{ \frac{v}{2} \right\} \leq 0. \) If \(u > 0, \) then \(u(1 - k) \leq 0, \) a contradiction. Hence \(u \leq v \) which implies \(u \leq hv, \) where \(h = k < 1. \)

\(F_3 \) \(F(t, t, 0, 0, t, 2t) = t \left[1 - \frac{3k}{2} \right] > 0 \quad \forall t > 0. \)

Example 3.10. \(F(t_1, \ldots, t_6) = t_1 - k \max \left\{ t_2, \sqrt{t_3t_4}, \sqrt{t_5t_6} \right\}, \) where \(k \in \left[0, \frac{2}{3} \right]. \)

\(F_1 \) Obviously.

\(F_2 \) Let \(u, v \geq 0 \) be and \(F(u, v, v, u, u + v, 0) = u - k \max \left\{ \frac{v}{2} \right\} \leq 0. \) If \(u > v, \) then \(u(1 - k) \leq 0, \) a contradiction. Hence, \(u \leq v \) which implies \(u \leq hv, \) where \(0 \leq h = k < 1. \)

\(F_3 \) \(F(t, t, 0, 0, t, 2t) = t(1 - \sqrt{2k}) > 0 \quad \forall t > 0. \)

4. Main results.

Theorem 4.1. Let \((X, G) \) be a \(G \)-metric space and \(T: (X, G) \to (X, G) \) be a mapping such that

\[
F(G(Tx, Ty, Ty), G(x, y, y), G(x, Tx, Tx), G(y, Ty, Ty), G(x, Ty, Ty), G(y, Tx, Tx)) \leq 0
\]

(4.1)

for all \(x, y \in X, \) where \(F \) satisfies property \((F_3). \) Then \(T \) has at most a fixed point.

Proof. Suppose that \(T \) has two distinct fixed points \(u \) and \(v. \) Then by (4.1) we have successively

\[
F(G(Tu, Tv, Tv), G(u, v, v), G(u, Tu, Tu), G(v, Tv, Tv), G(u, Tv, Tv), G(v, Tu, Tu))) \leq 0,
\]

\[
F(G(u, v, v), G(u, v, v), 0, 0, G(u, v, v), G(u, u, u)) \leq 0.
\]

By Lemma 2.1 \(G(v, u, u) \leq 2G(u, v, v). \) Since \(F \) is nonincreasing in variable \(t_6 \) we obtain

\[
F(G(u, v, v), G(u, v, v), 0, 0, G(u, v, v), 2G(u, v, v)) \leq 0,
\]

a contradiction of \((F_3). \) Hence \(u = v. \)

Theorem 4.1 is proved.

Theorem 4.2. Let \((X, G) \) be a complete \(G \)-metric space and \(T: (X, G) \to (X, G) \) satisfying inequality (4.1) for all \(x, y \in X, \) where \(F \in \mathbb{F}_u. \) Then \(T \) has a unique fixed point.

Proof. Let \(x_0 \in X \) be an arbitrary point in \(X. \) We define \(x_n = Tx_{n-1}, n = 1, 2, \ldots. \) Then by (4.1) we have successively

\[
F(G(Tx_{n-1}, Tx_n, Tx_n), G(x_{n-1}, x_n, x_n), G(x_{n-1}, Tx_{n-1}, Tx_{n-1}),
\]

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6
\[G(x_n, Tx_n, Tx_n), G(x_{n-1}, Tx_n, Tx_n), G(x_n, Tx_{n-1}, Tx_{n-1}) \leq 0, \]
\[F(G(x_n, x_{n+1}, x_{n+1}), G(x_{n-1}, x, x), G(x_{n-1}, x_n, x_n), \]
\[G(x_n, x_{n+1}, x_{n+1}), G(x_{n-1}, x_{n+1}, x_{n+1}), 0) \leq 0. \]

By \((G_5), G(x_{n-1}, x_{n+1}, x_{n+1}) \leq G(x_{n-1}, x, x) + G(x_n, x_{n+1}, x_{n+1}).\) Since \(F\) is nonincreasing in variable \(t_5\) we obtain
\[F(G(x_n, x_{n+1}, x_{n+1}), G(x_{n-1}, x, x), G(x_{n-1}, x_n, x_n), \]
\[G(x_n, x_{n+1}, x_{n+1}), G(x_{n-1}, x_n, x_n) + G(x_n, x_{n+1}, x_{n+1}, 0) \leq 0 \]
which implies by \((F_2)\) that
\[G(x_n, x_{n+1}, x_{n+1}) \leq hG(x_{n-1}, x, x_n). \]

Then
\[G(x_n, x_{n+1}, x_{n+1}) \leq hG(x_{n-1}, x, x_n) \leq \ldots \leq h^nG(x_0, x_1, x_1). \]

Moreover, for all \(m, n \in \mathbb{N}, m > n,\) we have repeated use the rectangle inequality
\[G(x_n, x_m, x_m) \leq G(x_{n-1}, x, x_n) + G(x_{n+1}, x, x_{n+2}) + \ldots + G(x_{m-1}, x_m, x_m) \leq \]
\[(h^n + h^{n+1} + \ldots + h^{m-1})G(x_0, x_1, x_1) \leq \frac{h^n}{1 - h}G(x_0, x_1, x_1), \]
which implies \(\lim_{n,m \to \infty} G(x_n, x_m, x_m) = 0.\) Hence, \((x_n)\) is a \(G\)-Cauchy sequence. Since \((X, G)\) is \(G\)-complete, there exists \(u \in X\) such that \(\lim_{n \to \infty} x_n = u.\)

We prove that \(u = Tu.\) By \((F_1)\) we have successively
\[F(G(Tx_n, Tu, Tu), G(x_{n-1}, u, u), G(x_{n-1}, Tx_n, Tx_{n-1}), \]
\[G(u, Tu, Tu), G(x_{n-1}, Tu, Tu), G(u, Tx_{n-1}, Tx_{n-1}), 0) \leq 0, \]
\[F(G(x_n, Tu, Tu), G(x_{n-1}, u, u), G(x_{n-1}, x, x_n), \]
\[G(u, Tu, Tu), G(x_{n-1}, Tu, Tu), G(u, x, x_n) \leq 0. \]

By continuity of \(F\) and \(G,\) letting \(n\) tend to infinity, we obtain
\[F(G(u, Tu, Tu), 0, 0, G(u, Tu, Tu), G(u, Tu, Tu), 0) \leq 0. \]

By \((F_2)\) we obtain \(G(u, Tu, Tu) = 0,\) hence \(u = Tu\) and \(u\) is a fixed point of \(T.\) By Theorem 4.1 \(u\) is the unique fixed point of \(T.\)

Theorem 4.2 is proved.

Corollary 4.1. Theorem 2.1.

Proof. The proof follows from Theorem 4.2 and Example 3.1.
Corollary 4.2 (Theorem 2.2 [11]). Let \((X, G)\) be a \(G\)-complete metric space and \(T: (X, G) \to (X, G)\) be a mapping satisfying the following condition:

\[
G(Tx, Ty, Tz) \leq \alpha G(x, y, z) + \beta [G(x, Tx, Tx) + G(y, Ty, Ty) + G(z, Tz, Tz)],
\]

for all \(x, y, z \in X\) and \(0 \leq \alpha + 3\beta < 1\). Then \(T\) has a unique fixed point.

Proof. By (4.2) for \(z = y\) we obtain

\[
G(Tx, Ty, Ty) \leq \alpha G(x, y, y) + \beta [G(x, Tx, Tx) + 2G(y, Ty, Ty)],
\]

for all \(x, y \in X\). By Theorem 4.2 and Example 3.2 for \(\alpha = a, \beta = b\) and \(c = 0\) it follows that \(T\) has a unique fixed point.

Corollary 4.3 (Theorem 2.3 [11]). Let \((X, G)\) be a \(G\)-complete metric space and \(T: (X, G) \to (X, G)\) be a mapping satisfying the condition

\[
G(Tx, Ty, Tz) \leq \alpha G(x, y, z) + \beta \max\{G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)\},
\]

for all \(x, y, z \in X\) and \(0 \leq \alpha + \beta < 1\). Then \(T\) has a unique fixed point.

Proof. By (4.3) for \(z = y\) we obtain

\[
G(Tx, Ty, Ty) \leq \alpha G(x, y, y) + \beta \max\{G(x, Tx, Tx), G(y, Ty, Ty)\},
\]

for all \(x, y \in X\). By Theorem 4.2 and Example 3.3 for \(\alpha = a, \beta = b\) and \(c = 0\) it follows that \(T\) has a unique fixed point.

Corollary 4.4 (Theorem 2.1 [10]). Let \((X, G)\) be a \(G\)-complete metric space and \(T: (X, G) \to (X, G)\) be a mapping satisfying the condition

\[
G(Tx, Ty, Tz) \leq k \max\{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(y, Ty, Ty), G(z, Tz, Tz), G(z, Tx, Tz)\},
\]

for all \(x, y, z \in X\), where \(k \in \left[0, \frac{1}{2}\right)\). Then \(T\) has a unique fixed point.

Proof. By (4.4) for \(z = y\) we obtain

\[
G(Tx, Ty, Ty) \leq k \max\{G(x, y, y), G(x, Tx, Tx), G(y, Ty, Ty), G(x, Ty, Ty), G(y, Ty, Ty), G(y, Tx, Tx)\}.
\]

By Theorem 4.2 and Example 3.4, \(T\) has a unique fixed point.

Corollary 4.5. Let \((X, G)\) be a \(G\)-complete metric space and \(T: (X, G) \to (X, G)\) be a mapping which satisfy the following inequality for all \(x, y \in X\),

\[
G(Tx, Ty, Ty) \leq k \max\{G(y, Ty, Ty) + G(x, Ty, Ty), 2G(y, Tx, Tx)\},
\]

where \(k \in \left[0, \frac{1}{3}\right)\). Then \(T\) has a unique fixed point.

Proof. By Theorem 4.2 and Example 3.5 for \(a = b = 0\) and \(c = k\), \(T\) has a unique fixed point.

Remark 4.1. In Theorem 2.8 [10], \(k \in \left[0, \frac{1}{2}\right)\).
Corollary 4.6. Let \((X, G)\) be a \(G\)-metric space and \(T: (X, G) \rightarrow (X, G)\) be a mapping satisfying the following inequality for all \(x, y, z \in X\),

\[
G(Tx, Ty, Tz) \leq h \max \left\{ \frac{G(x, y, z)}{3}, \frac{G(y, Tx, Tx)}{3}, \frac{G(y, Ty, Ty)}{3}, \frac{G(z, Tz, Tz)}{3} \right\},
\]

(4.6)

where \(k \in [0, 1)\). Then \(T\) has a unique fixed point.

Proof. If \(y = z\), by (4.6) we obtain that

\[
G(Tx, Ty, Ty) \leq \frac{G(x, y, y)}{3}, \frac{G(y, Tx, Tx)}{3}, \frac{G(y, Ty, Ty)}{3}, \frac{G(z, Tz, Tz)}{3} \leq 0.
\]

for all \(x, y \in X\).

By Theorem 4.2 and Example 3.6, \(T\) has a unique fixed point.

Remark 4.2. Corollary 4.6 is a generalization of Theorem 2.6 [1], where \(k \in \left[0, \frac{1}{2}\right)\).

Remark 4.3. By Theorem 4.2 and Examples 3.7–3.10 we obtain new results.

5. **Property \((P)\) in \(G\)-metric spaces.**

Theorem 5.1. Under the conditions of Theorem 4.2, \(T\) has property \((P)\).

Proof. By Theorem 4.2, \(T\) has a fixed point. Therefore, \(\text{Fix}(T^n) \neq \emptyset\) for each \(n \in \mathbb{N}\). Fix \(n > 1\) and assume that \(p \in \text{Fix}(T^n)\). We prove that \(p \in \text{Fix}(T)\). Using (4.1) we have

\[
F(G(T^n p, T^{n+1} p, T^{n+1} p), G(T^{n-1} p, T^n p, T^n p), G(T^{n-1} p, T^n p, T^n p), G(T^n p, T^{n+1} p, T^{n+1} p), G(T^{n-1} p, T^{n+1} p, T^{n+1} p), G(T^n p, T^n p, T^n p)) \leq 0.
\]

By rectangle inequality

\[
G(T^{n-1} p, T^{n+1} p, T^{n+1} p) \leq G(T^{n-1} p, T^n p, T^n p) + G(T^n p, T^{n+1} p, T^{n+1} p).
\]

By \((F_1)\) we obtain

\[
F(G(T^n p, T^{n+1} p, T^{n+1} p), G(T^{n-1} p, T^n p, T^n p), G(T^{n-1} p, T^n p, T^n p), G(T^n p, T^{n+1} p, T^{n+1} p), G(T^{n-1} p, T^n p, T^n p) + G(T^n p, T^{n+1} p, T^{n+1} p), 0) \leq 0.
\]

ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6
By \((F_2)\) we obtain
\[
G(T^n p, T^{n+1} p, T^{n+1} p) \leq h G(T^{n-1} p, T^n p, T^n p) \leq \ldots \leq h^n G(p, Tp, Tp).
\]
Since \(p \in T^n p\), then
\[
G(p, Tp, Tp) = G(T^n p, T^{n+1} p, T^{n+1} p).
\]
Therefore
\[
G(p, Tp, Tp) \leq h^n G(p, Tp, Tp)
\]
which implies \(G(p, Tp, Tp) = 0\), i.e., \(p = Tp\) and \(T\) has property \((P)\).
Theorem 5.1 is proved.

Corollary 5.1. In the condition of Corollary 4.6, \(T\) has property \((P)\).

Remark 5.1. Corollary 5.1 is a generalization of the results from Theorem 2.6 [1].

Corollary 5.2. In the condition of Corollary 4.4 with \(k \in \left[0, \frac{1}{2}\right]\), instead \(k \in [0, 1)\), \(T\) has property \((P)\).

Remark 5.2. We obtain other new results from Examples 3.1 – 3.10.

Received 14.02.12, after revision — 19.11.12