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SOME PROPERTIES OF MULTIVALENT FUNCTIONS
ASSOCIATED A CERTAIN OPERATOR *

NESIKI BIACTUBOCTI BATATO3HAUHUX ®YHKIIIN,
ACOIINOBAHHUX 3 OIIEPATOPOM

We obtain certain subordinations and superordinations results involving a new operator. By means of the new introduced
operator (‘32’” (a, ¢) f(2), for certain multivalent functions in the open unit disc, we establish differential Sandwich Theorem.

OTpuMaHO JesKi CyOopauHAILT i pe3ylIbTaTH s CYTIepOPANHALN i3 BAKOPUCTAHHSIM HOBOTO OIEpaTopa. 3 JOIOMOTOI0 BBE-
nenoro oneparopa ), (a, ) f(z) noBeneHo audepeHTiaTEHy ceHBiU-TeOpeMy aTs GaraTo3HaTHUX BYHKIH Y BiIKpHTOMY
OJIMHUYHOMY KpPY3i.

1. Introduction. Let ¥, denote the class of functions f(z) of the form

oo
f2) =22+ apu2®™ peN={1,23 .}, (1)
k=n
which are analytic in the open unit disk U ={z: z € C, |z| < 1}.
For functions f € ¥, given by (1) and g € X, given by

o
g(z) =2 + Z by i

k=n

We define the Hadamard product (or convolution) of f and g by

(f+9)(2) = 2 + > apyrbpsnz? ™. 2
k=n
Let f(z) and g(z) be analytic in U. We say that the function g(z) is subordinate to f(z), if there
exists a function w(z) analytic in U, with w(0) = 0 and |w(z)| < 1, and such that g(2) = f(w(z)).
In such a case, we write g(z) < f(z). If the function f is univalent in U, then g(z) < f(z) if and
only if g(0) = f(0) and ¢g(U) C f(U).
Let H(U) denote the class of analytic functions in U and let H(a,n) denote the subclass of
functions f € H(U) of the form:

f(2)=a+apz" +apn1 2" 4L

Denote by @, the set of all functions f(z) that are analytic and injective on U\ E(f), where
E(f) ={¢ € 9U: lim, ¢ f(z) = oo}, and such that f'(§) # 0 for £ € U\ E(f).

Let ¢p: C3 x U — C, let h(z) be univalent in U and ¢(z) € Q. Miller and Mocanu [1] considered
the problem of determining conditions on admissible function ¢ such that
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P(p(z), 20/ (2), 2°p"(2); 2) < h(z) 3)

implies p(z) < ¢(z), for all functions p(z) € H(a,n) that satisfy the differential subordination (3).
Moreover, they found conditions so that ¢(z) is the smallest function with this property, called the
best dominant of the subordination (3).

Let p: C3 x U — C, let h(z) € H and ¢(z) € H(a,n). Recently Miller and Mocanu [2] studied
the dual problem and determined conditions on ¢ such that

h(z) < @(p(2), 20 (2), 2°p" (2); 2) 4)

implies ¢(z) < p(z), for all functions p(z) € @ that satisfy the above superordination. They also
found conditions so that the function ¢(z) is the largest function with this property, called the best
subordinant of the superordination (4).

In [3], N. E. Cho, O. S. Kwon and H. M. Srivastava extended the multiplier transformation and
defined the operator J), (a, c) f(z) by the following infinite series:

(A + p )k
Jl’}’n(a 2P + Z IE ak+pzk+p. Q)

In recent years, Aghalary [4], Patel [5], Patel et al. [6], Sokl and Trojnar-Spelina [7], Zeng et al.
[8] and Wang et al. [9] obtained many interesting results associated with the Cho — Kwon — Srivastava
operator.

We now introduce the following family of linear operators:

A k+
Lp,n(a =P+ Z A + p k+p2 P, (6)

It is readily verified from the definition (6) that
2 Lpnla,c+1)f(2)) = Ly nla,0)f(2) = (¢ = p)Lyula,c+1)f(2) ()
and
2Lpn(a,0)f(2)) = (e =D)Ly u(a,c = 1) f(2) = (¢ = 1= p)Lp,(a,0) f(2). ®)

We also note that £, .(p + 1,1)f(z) = f(z) and L) ,(p,1)f(2) = f(z). In this paper, we
will derive several subordination results, superordination results and sandwich results involving the
operator L;,‘?n (a,c)f(z) and some of its special operators.

2. Some lemmas. In order to prove our main results, we need the following lemmas.

Lemma 1 [10]. Let q(z) be univalent in U, v € C* = C\{0} and suppose that

Re {1 n Z;,/;g) } > max {0, —Rei} .

p(z) +720'(2) < q(2) + 724 (2),

then p(z) < q(z), and q(z) is the best dominant.

If p(z2) is analytic in U and
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Lemma 2 [10]. Let q(z) be convex in U, q(0) = a and v € C, Rey > 0. If p € H(a,1) and
p(z) + v2p'(2) is univalent in U, then
q(2) + 724 (2) < p(2) +v2p'(2),

where q(z) < p(z) and q(z) is the best subordinant.
3. Main results. We shall assume in the reminder of this paper that p,n € N and z € U.
Theorem 1. Let q(z) be univalent in U with q(0) = 1, a € C*, and suppose that

Re {1 n Zq”(z)} > max {o, —Rel} : )
q'(2) o

If f(z) € X, satisfies the subordination

R(a,n,p, N, a,¢) < q(z) + azq'(2), (10)
where R(a, n, p, A, a, c) is given by
R(a,n,p, A\, a,c) =

LA (a,c+1) f(z L;}yna,c+1 z L;}m a,c—1) f(z
—e p@(nm S *“{C‘ e 1o <Lif(<) S )}’ (1
then
Lo n(a,c+1)f(2)
Linla, o) f(2)

=<q(2)

and q(z) is the best dominant.
Proof. Let
L) nla,c+1)f(2)
p(2) = — X
Lpnla;c)f(2)
differentiating (12) with respect to z and using the identity (7) and (8) in the resulting equation, we
have

(12)

5 ,(Z) — e (C . 1)L1)J\,n(a7 c+ l)f(z) : L;)a\,n(av c— 1)f(2’) . Lg,n(mc + l)f(z)
P (L2 o(a, ) f(2))? L (@of)

Therefore, we have
R(e,n,p, A, a,¢) = p(2) + azp'(z).
By (10), we obtain

p(2) +azp'(2) < q(2) + azd (2).

L (a c+1)f (z .
By Lemma 1, ( 97 ) ( ), and the proof of Theorem 1 is completed.
z
+ Az
Taking the convex function ¢(z) = 5B in Theorem 1, we have the following corollary.
z
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Corollary 1. Let A, B, o« € C, A # B, |B| < 1, Rea > 0. If f(2) € X, satisfies the
subordination

1+ Az (A—B)z
< a )

1+ Bz (14 Bz)?

R(a,n,p, A, a,c)

where R(a,n, p, A\, a, c) is given by (11), then

Lg,n(a)c + 1)f(2:) < 1+ Az
Qu@alz) 1+ B

and the function is the best dominant.

1
Theorem 2. Let

_|_
Ly a(a,c+1)f

Lynla,c)f(z
the superordination

Bz

q(z) be convex in U, q(0) = 1 and o« € C, Reax > 0. If f(z) € X, such
z

that g ) € H(q(0),1)NQ, and R(a,n,p,\,a,c) is univalent in U and satisfies

q(z) + azd'(z) < R(a,n,p, A, a,¢), (13)
where R(a,n,p, A\, a,c) is given by (11), then

L])D‘m(a, c+1)f(z)

1) 2= @)

and q(z) is the best subordinant.
Proof. Let p(z) be given by (12) and proceeding as in the proof of Theorem 1, the subordination
(13) becomes

q(2) + azq(2) < p(2) + azp'(2).

The proof follows by an application of Lemma 2.
Corollary 2. Let A, B, « € C, A # B, |B| < 1, Rea > 0. If f(z) € ¥, such that
Lg7n(a, c+1)f(z)
Lynla,c)f(2)

superordination

€ H(q(0),1)NQ, and R(a,n,p,\, a,c) is univalent in U and satisfies the

1+ Az (A—B)z
R A
1+BZ +a(1+Bz)2 —< (a7n7p’ 70’70)7

then

1+ Az E;‘m(a, c+1)f(z)
1+ Bz L;);‘,n(% o)f(z)

1
and the function 1 +az is the best subordinant.
z

Combining Theorems 1 and 2, we have the following sandwich theorem.
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Theorem 3. Let q1(z) and q2(z) be convex in U, ¢1(0) = ¢2(0) = 1 and q2(2) satisfies

9.

Lyala,c+1)f
and o € €, Rea > 0. If f(z) € ¥y such that =30 550

gz) e H(q(0),1)NQ, and

R(a,n, p, A\, a, c) is univalent in U and satisfies

QI(Z) + OéZ(]i(Z) = :R(Oéa n,p, )‘7@7 C) = Q2(z) + OéZQé(Z),

where R(a,n,p, A, a,c) is given by (11), then

and

L;‘m(a, c+1)f(z)
L) n(a,0) f(2)

q1(2), q2(z) are the best subordinant and the best dominant, respectively.

q1(z) < < q2(z)

Remark. Combining Corollaries 1, 2, we obtain the corresponding sandwich results for the

operators

10.

L) nla,c+1)f(2)

Lynla, o) f(2)

Miller S. S., Mocanu P. T. Differential subordination: theory and applications // Ser. Monogr. and Textbooks in Pure
and Appl. Math. — New York; Basel: Marcel Dekker Inc., 2000. — 225.

Miller S. S., Mocanu P. T. Subordinates of differential superordinations // Complex Var. — 2003. — 48, No 10. —
P. 815-826.

Cho N. E., Kwon O. S., Srivastava H. M. Inclusion relationships and argument properties for certain subclasses
of multivalent functions associated with a family of linear operators // J. Math. Anal. and Appl. — 2004. — 292. —
P. 470 -483.

Aghalary R. On subclasses of p-valent analytic functions defined by integral operators // Kyungpook Math. J. — 2007. —
47. - P. 393-401.

Patel J. On certain subclasses of multivalent functions involving Cho — Kwonv - Srivastava operator / Ann. Univ.
Mariae Curie-Skaodowska Sect. A. — 2006. — 60. — P. 75 -86.

Patel J., Cho N. E., Srivastava H. M. Certain subclasses of multivalent functions associated with a family of linear
operators // Math. Comput. Modelling. — 2006. — 43. — P. 320-338.

Sokl J., Trojnar-Spelina L. Convolution properties for certain classes of multivalent functions // J. Math. Anal. and
Appl. — 2008. - 337. - P. 1190-1197.

Zeng T, Gao C.-Y., Wang Z.-G., Aghalary R. Certain subclass of multivalent functions involving the Cho—-Kwon-
Srivastava operator // J. Math. Appl. — 2008. — 30. — P. 161-170.

Wang Z. G., Aghalaryc R., Darus M., Ibrahim R. W. Some properties of certain multivalent analytic functions
involving the Cho - Kwon - Srivastava operator // Math. and Comput. Modelling. — 2009. — 49. — P. 1969 - 1984.
Shanmugam T. N., Ravichandran V., Sivasubramanian S. Differential sandwich theorems for some subclasses of
analytic functions // J. Austr. Math. Anal. and Appl. — 2006. —3, Ne 1. - P. 1-11.

Received 04.02.12

ISSN 1027-3190. Ykp. mam. srcypn., 2013, m. 65, Ne 11



