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S®-SUPPLEMENTED SUBGROUPS OF FINITE GROUPS”
S®-JONMOBHIOBAHI NIATPYIIN CKIHYEHHUX I'PYII

We call H an S®-supplemented subgroup of a finite group G if there exists a subnormal subgroup 7' of G such that
G=HTand HNT < ®(H), where ®(H) is the Frattini subgroup of H. In this paper, we characterize the p-nilpotency
and supersolubility of a finite group GG under the assumption that every subgroup of a Sylow p-subgroup of G with given
order is S®-supplemented in G. Some results about formations are also obtained.

Minrpyny H nasuBaroth SP-10MOBHIOBAHOIO MiATPYIOK CKiHYeHHOI rpynu (G, SIKIIO iCHY€e Taka CyOHOpManbHa miarpyna
Trpymu G,umo G = HT i HNT < ®(H), ne ®(H) e nigrpynoro @parrini miarpynu H. YV wiii crarti oxapaktepu3oBaHo
D-HUIBIIOTEHTHICT TA HAAPO3B’A3HICTh CKIHYEHHOI rpynu G 3a MPHITYIIEHHS, [0 KOXHA MiArpyIa CUIOBCHKOI p-TiArpyNH
rpynu G 3a7aHOTO MOPSIAKY € SP-10moBHIOBaHOW B (G. OTpUMAaHO TaKOX MESIKi Pe3y/bTaTH M0A0 (hOopMarliid.

1. Introduction. All groups considered in this paper are finite. F denotes a formation, a normal
subgroup N of a group G is said to be F-hypercentral in G provided N has a chain of subgroups
1=Ny<dN; <...<N, = N such that each N;11/N; is an F-central chief factor of GG, the product
of all F-hypercentral subgroups of G is again an F-hypercentral subgroup of G. It is denoted by
Zr(G) and called the F-hypercenter of G. U and N denote the classes of all supersoluble groups and
nilpotent groups respectively. The other terminology and notations are standard, as in [7] and [13].

We know that for every normal subgroup N of G, the minimal supplement H of NV in G satisfies
H NN < ®(H). Then naturally, we consider the converse case, i.e., if for some subgroup H of G,
there exists a subnormal subgroup N of G such that HN = G and H N N < ®(H), what can we
say about G? To study this question, we introduce the concept of S®-supplemented subgroups of a
finite group.

Definition 1.1. A subgroup H of a group G is said to be S®-supplemented in G if there exists
a subnormal subgroup T of G such that G = HT and H N'T < ®(H ), where ®(H) is the Frattini
subgroup of H.

From the Definition 1.1, we can easily deduce that the minimal supplement of any minimal normal
subgroup and every Sylow subgroup of a nilpotent group G are S®-supplemented in G. We can also
deduce that every non-trivial subgroup of G contained in ®(G) can not be S®-supplemented in G.
Meanwhile, a group with a non-trivial S®-supplemented subgroup cannot be a non-abelian simple
group.

Inspired by [1] and [11], for each prime p dividing the order of G, let P be a Sylow p-subgroup
of G and D a subgroup of P such that 1 < |D| < |P|, we study the structure of G under the
assumption that each subgroup H of P with |H| = |D| is S®-supplemented in G. We get some
characterizations about formation.

2. Preliminaries. In this section, we list some basic results which will be used below.

Lemma 2.1. Let H be an S®-supplemented subgroup and N a normal subgroup of G.
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S®-SUPPLEMENTED SUBGROUPS OF FINITE GROUPS 93

() If H < K <G, then H is S®-supplemented in K.

(2) If N < H, then H/N is S®-supplemented in G/N.

(3) Let 7 be a set of primes, H a ww-subgroup and N a 7'-subgroup. Then HN/N is S®-
supplemented in G /N.

Proof. By the hypothesis, there exists a subnormal subgroup 7" of G such that G = HT and
HNT < ®(H). Then

WK =KnNnG=HKnT)and HN(KNT)=(HNT)NK < PH)NK < ®(H).
Obviously, K NT is a subnormal subgroup of K. Hence H is S®-supplemented in K.

(2) G/N = (H/N)(TN/N) and

H/NNTN/N = (HNTN)/N = (HNT)N/N < ®(H)N/N < &(H/N),

TN/N is subnormal in G/N. Hence H/N is S®-supplemented in G/N.

(3) Since T contains a Hall 7’-subgroup of G and T is subnormal in G, it is easy to see that
N < T and G/N = (HN/N)(T/N). Since HN/NNT/N = (HNT)N/N < ®(H)N/N <
< ®(HN/N) and T/N is subnormal in G/N, HN/N is S®-supplemented in G/N.

Lemma 2.1 is proved.

Lemma 2.2. Let P be a Sylow p-subgroup of a group G, where p is a prime dividing |G|. If
every subgroup of P with order p is S®-supplemented in G, then G is p-nilpotent.

Proof. We use induction on |G|. Let H be a subgroup of P of order p. By the hypothesis, there
exists a subnormal subgroup 7" of G such that G = HT and HNT < ®(H) = 1. Then T is a
maximal subgroup of G and so 7' < G. Hence if p { |T'|, then G is p-nilpotent, the result holds. Thus
we may suppose that p||T| and P = H(PNT). Clearly P NT is a Sylow p-subgroup of 7. Then
every subgroup of PNT with order p is S®-supplemented in G and so in 7" by Lemma 2.1. Hence T'
is p-nilpotent by induction. Since 7" is p-nilpotent and 7" <1 GG, we have G is p-nilpotent, as required.

Lemma 2.2 is proved.

From [2] (Theorem A) or [3] (Theorem A or B), we can easily deduce that:

Lemma 2.3. Let P be a normal p-subgroup of a group G, where p is a prime dividing |G|. If
every subgroup of P with order p is S®-supplemented in G, then P < Z1;(G).

Lemma 2.4. Let P be a normal p-subgroup of a group G, where p is a prime dividing |G|. If
every maximal subgroup of P is S®-supplemented in G, then P < Z1/(G).

Proof. Assume that the result is false and let (G, P) be a counterexample for which |G||P| is
minimal. We treat with the following two cases:

Case 1. ®(P) # 1.

By Lemma 2.1, every maximal subgroup of P/®(P) is S®-supplemented in G/®(P). Then
P/®(P) < Zy(G/®(P)) by the choice of G. Hence P < Z;(G) by [12] (I, Theorem 7.19), a
contradiction.

Case 2. ®(P)=1.

At this time, P is an elementary abelian group. If |P| = p, then P < Z;;(G), a contradiction.
Now we may assume that |P| = p™, n > 2. Let P; be a maximal subgroup of P. By the hypothesis,
there exists a subnormal subgroup K of G such that G = PiK and P, N K < ®(P;) = 1. Clearly,
P =P (PNK)and PN K is a normal subgroup of G of order p. By Lemma 2.1, every maximal
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94 XIANHUA LI, TAO ZHAO

subgroup of P/(P N K) is S®-supplemented in G/(P N K). Then P/(PN K) < Zy(G/(PNK))
by induction. Since |P N K| = p, we have P < Z;;(G), as required.

Lemma 2.4 is proved.

Now we can prove the following lemma.

Lemma 2.5. Let P be a normal p-subgroup of a group G, D a subgroup of P such that
1 < |D| < |P|. Suppose that every subgroup H of P with |H| = |D| is S®-supplemented in G, then
P < Zy(QG).

Proof. Assume that the result is false and let (G, P) be a counterexample for which |G||P] is
minimal. Then:

(1) |P: D| > p.
By Lemma 2.4, it is true.
) ®(P) = 1.
_ — D
Suppose that (P) # 1. If |®(P)| < |D|, then every subgroup H of P/®(P) with |H| = ](I>|(P’)|

is S®-supplemented in G = G/®(P) by Lemma 2.1. Then P/®(P) < Z;;(G/®(P)) by induction.
Hence P < Zy(G) by [12] (I, Theorem 7.19), a contradiction. Thus |[®(P)| > |D|. Let H be a
subgroup of ®(P) with |H| = |D|. By the hypothesis, H is S®-supplemented in G and so in P, a
contradiction.

(3) The final contradiction.

Let H be a subgroup of P with |H| = |D|. By the hypothesis, H is S®-supplemented in G,
then there exists a subnormal subgroup K of G such that G = HK and H N K < ®(H) = 1. Since
|G : K| is a power of p, there exists a normal subgroup M of G containing K such that |G : M| = p.
Let P, = P N M, then P, is a maximal subgroup of P and it is normal in G. By (1), |P1| > |D|.
Then every subgroup of P; with order |D| is S®-supplemented in G. So P; < Z;(G) by induction.
Since |P/Py| = p, we have P < Z;/(G), the final contradiction.

Lemma 2.5 is proved.

Lemma 2.6 ([9], Lemma 2.8). Let G be a group and p a prime dividing |G| with (|G|,p—1) =
= 1. Then:

(1) If N is normal in G and of order p, then N lies in Z(Q).

(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent.

B)IfM < Gand|G: M| =np,then M <G.

Lemma 2.7 ([5], X. 13). Let G be a group, then:

(1) F*(G) # 1 if G # 1, in fact, F*(G)/F(G) = Soc(F(G)Cq(F(Q))/F(G)).

(2) If F*(Q) is soluble, then F*(G) = F(G).

@) Ca(F*(G)) < F(G).

Lemma 2.8 ([8], Lemma 2.6). Let N be a nontrivial soluble normal subgroup of a group G. If
every minimal normal subgroup of G which is contained in N is not contained in ®(G), then the
Fitting subgroup F(N) of N is the direct product of minimal normal subgroups of G which are
contained in N.
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3. Main results.

Theorem 3.1. Let P be a Sylow p-subgroup of a group G, where p is a prime dividing |G|
such that (|G|,p — 1) = 1. If every maximal subgroup of P is S®-supplemented in G, then G is
p-nilpotent.

Proof. Assume that the result is false and let G be a counterexample of minimal order. Then we
have:

(1) G has the unique minimal normal subgroup N such that G/N is p-nilpotent and ®(G) = 1.

Clearly G is not a non-abelian simple group. Let NV be a minimal normal subgroup of G, consider
G/N. Let M /N be a maximal subgroup of PN/N, by Lemma 2.6 we may suppose that |[PN/N| >
> p?. Clearly M = Py N for some maximal subgroup P; of P and PN N = P, N N is a Sylow
p-subgroup of N. By the hypothesis, P; is S®-supplemented in G, then there exists a subnormal
subgroup K of G such that G = PK and P, N K < ®(P;). Thus G/N = (PLN/N)(KN/N) =
(M/N)(KN/N). It is easy to see that K N N contains a Hall p’-subgroup of N and then
(IN: (PLAN)|,|N: (KNN)|) =1,s0 (PLNN)(KNN)=N=NNG = NnPK.By[10] (A,
Lemma 1.2), we have NN KN = (PN K)N. Thus (P,N)/NN(KN)/N = (PLNONKN)/N =
=(PANK)N/N < ®(P;)N/N < ®(PiN/N), i.e., M/N is S®-supplemented in G/N. Therefore,
G/N satisfies the hypothesis of the theorem. The minimal choice of G implies that G/N is p-
nilpotent. The uniqueness of N and ®(G) = 1 are obvious.

() Op(G) = 1.

If Oy(G) # 1, then N < Oy (G) and G/N is p-nilpotent by (1). Hence G is p-nilpotent, a
contradiction.

(3) O,(G) =1 and so N is not p-nilpotent.

If O,(G) # 1, then N < O,(G). Since ®(G) = 1, there exists a maximal subgroup M of G
such that G = M N and M NN = 1. Since ®(0,(G)) < ®(G) =1, O,(G) is an elementary abelian
group. It is easy to see that O,(G) N M is normalized by N and M, hence O,(G) N M I G. If
O,(G) N M # 1, by the uniqueness of N, we have N < O,(G) N M, hence G = MN = M, a
contradiction. This contradiction shows that O,(G) "M = 1. By N < O,(G) and G = M N, we
have N = O,(G). Let M, be a Sylow p-subgroup of M. If M,, = 1, then N is a Sylow p-subgroup of
G. Let P; be a maximal subgroup of N, then ®(P;) = 1. By the hypothesis, there exists a subnormal
subgroup K of G such that G = P, K and P, N K < ®(P;) = 1. Since any Sylow r-subgroup of
G with r # p is a Sylow r-subgroup of K, we have OP(G) < K. By the uniqueness of N, we
obtain that N < OP(G). So G = PLK = NK = K, then P; = 1 and |G|, = p, so G is p-nilpotent
by Lemma 2.6, a contradiction. Thus M, # 1. Let Py be a maximal subgroup of P containing

M, then by the hypothesis, there exists a subnormal subgroup 7" of G such that G = BT and
PoNT < &(F). By the previous argument, N < OP(G) <T. Then Py = PBhNP =P NNM, =
= My(PhNN) < M,(PoNT) < My®(Fy) < Py. Thus we have M, = P and so |[N| = p, then
N < Z(G) by Lemma 2.6. Since G/N is p-nilpotent, G is p-nilpotent, a contradiction.

If N is p-nilpotent, then Ny char N G, so Ny < Oy (G) = 1by (2). Thus N is a p-group and
then N < O,(G) = 1, a contradiction. Thus (3) holds.

(4) The final contradiction.
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By Lemma 2.1, we know that every maximal subgroup of P is S®-supplemented in PN. Thus
if PN < G, then PN is p-nilpotent and N is p-nilpotent, contradicts to (3), so we have PN = G.
Since G/N is a p-group, N = OP(QG). It is easy to see that G is not a non-abelian simple group, so we
have G # N. Hence there exists a maximal normal subgroup M /N of G/N such that |G : M| = p.
Since PN M is a maximal subgroup of P, by the hypothesis, there exists a subnormal subgroup 7" of
G such that G = (PNM)T and PNMNT < ®(PNM). In this case, we still have T' > OP(G) = N.
PN M <P implies that (PNM) < &(P),so PNN < PNMNT < ®(PNM) < &(P). Thus N
is p-nilpotent by Tate’s theorem [4] (IV, Theorem 4.7), contrary to (3). This contradiction completes
the proof.

Theorem 3.1 is proved.

Remark. The hypothesis that (|G|,p—1) = 1 in Theorem 3.1 cannot be removed. For example,
Ss, the symmetry group of degree 3 is a counter-example.

Theorem 3.2. Let P a Sylow p-subgroup of a group G, where p is a prime dividing |G| such
that (|G|,p—1) = 1. Let D be a subgroup of P such that 1 < |D| < |P|. If every subgroup H of P
with |H| = |D| is S®-supplemented in G, then G is p-nilpotent.

Proof. Suppose that the result is false and let G be a counterexample of minimal order. Then we
have:

(1) Oy (G) = 1.

If Op(G) # 1, Lemma 2.1 shows that the hypothesis still holds for G/O,/ (G). Then G /O (G)
is p-nilpotent by our minimal choice of GG and so is (G, a contradiction.

(2)|P:D|>p.

If |P : D| = p, then by Theorem 3.1, G is p-nilpotent.

(3) The final contradiction.

Let H be a subgroup of P such that |H| = |D|, then by the hypothesis H is S®-supplemented
in G. So there exists a subnormal subgroup K of G such that G = HK and H N K < ®(H).
Since |G : K| is a power of p, there exists a normal subgroup M of G containing K such that
|G : M| = p. Let P, = PN M be a Sylow p-subgroup of M, then P; is a maximal subgroup of P.
By (2), |P1| > |D|. Lemma 2.1 shows that every subgroup of P; with order |D| is S®-supplemented
in M. Then M is p-nilpotent by our minimal choice of G and so is G, the final contradiction. This
contradiction completes the proof.

Theorem 3.2 is proved.

Obviously, Theorem 3.2 is true when p is the smallest prime divisor of |G|. Then we have the
following corollary.

Corollary 3.1. Let G be a finite group. If for every prime p dividing |G|, there exists a Sylow
p-subgroup P of G such that P has a subgroup D satisfying 1 < |D| < |P| and every subgroup H
of P with |H| = |D| is S®-supplemented in G, then G has a Sylow tower of supersoluble type.

If we drop the assumption that (|G|,p — 1) = 1 and add N¢(P) is p-nilpotent, we still have the
similar results.

Theorem 3.3. Let p be a prime dividing |G|, P a Sylow p-subgroup of G. If Ng(P) is p-
nilpotent and there exists a subgroup D of P such that 1 < |D| < |P| and every subgroup H of P
with |H| = |D| is S®-supplemented in G, then G is p-nilpotent.
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Proof. Assume that the result is false and let G be a counterexample of minimal order. By
Theorem 3.2, we may suppose that p is not the smallest prime divisor of |G| and so p is an odd
prime. Moreover, we have:

(1) Oy (G) = 1.

If Op(G) # 1, then by Lemma 2.1 it is easy to see that G/O,/(G) satisfies the hypothesis of
the theorem. Thus the minimal choice of G implies that G/O,/(G) is p-nilpotent and hence G is
p-nilpotent, a contradiction.

(2) If L is a proper subgroup of GG containing P, then L is p-nilpotent.

It is easy to see that P € Syl,(L) and Np(P) < Ng(P) is p-nilpotent. Furthermore, by
Lemma 2.1 we know every subgroup of P with order |D| is S®-supplemented in G and thus
S®-supplemented in L. So L is p-nilpotent by the minimal choice of G.

(3) Op(G) # 1.

Let J(P) be the Thompson subgroup of P, then Ng(P) < Ng(Z(J(P))) and by Lemma 2.1,
we know every subgroup of P with order |D| is S®-supplemented in Ng(Z(J(P))). Thus if
Na(Z(J(P))) < G, then Ng(Z(J(P))) is p-nilpotent by (2). It follows from [6] (VIII, Theo-
rem 3.1) that G is p-nilpotent, a contradiction. Thus we may suppose that Ng(Z(J(P))) = G and
hence O,(G) # 1.

Next, we let NV be a minimal normal subgroup of G contained in O,(G). Then we have:

(4) |[N| < |D| and G/N is p-nilpotent.

If IN| > |D|, pick a subgroup H of N with order |D|. By the hypothesis, there exists a subnormal
subgroup K of G such that G = HK and HNK < ®(H) < ®(N) = 1. Clearly, we have G = NK,
NNK #1and NNK <G. Thus NN K = N by the minimality of N and so K = G and H =1,
a contradiction. If | N| = |D|, then N is S®-supplemented in G by the hypothesis, so there exists
a subnormal subgroup 7" of G such that G = NT and N NT < ®(N) = 1. Since T is subnormal
in G and |G : T is a power of p, there exists a normal subgroup M of G containing 7" such that
|G : M| = p. Clearly, G = NM and N N M <G; then the minimality of N implies that NN M = 1.
So |N| = p and in this case, every minimal subgroup of P is S®-supplemented in G. Then G is
p-nilpotent by Lemma 2.2, a contradiction. Thus we have |[N| < |D|. It is easy to see that G/N
satisfies the hypothesis of the theorem, therefore G/N is p-nilpotent by the minimal choice of G.

(5) G = PQ, where @ is a Sylow g-subgroup of G with ¢ # p. Moreover, N = O,(G) = F(G).

Since G/N is p-nilpotent and N is a p-group, G is p-soluble. By [6] (VI, Theorem 3.5), there
exists a Sylow g-subgroup @ of G such that PQ is a subgroup of G for any ¢ € 7(G) with ¢ # p.
If PQ < G, then PQ is p-nilpotent by (2). Thus O,(G)Q = O,(G) x @ and Q < Cq(0,(G)) <
< 0p(G) by [6] (VI, Theorem 3.2), a contradiction. Hence we may assume that G = P(). Since the
class of all p-nilpotent subgroups formed a saturated formation, we may assume that /V is the unique
minimal normal subgroup of G contained in O,(G). By (1) and the fact that G is p-soluble, we can
conclude that N is the unique minimal normal subgroup of G and ®(G) = 1. By Lemma 2.8, we
have N = O,(G) = F(G).

(6) |P: D| > p.

Now we assume that |P : D| = p. Since N £ ®(G), there exists a maximal subgroup M of
G such that G = MN and M N N = 1. Obviously, P N M is a Sylow p-subgroup of M and
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P = (PN M)N. Pick a maximal subgroup P; of P containing P N M, then by hypothesis P;
is SP-supplemented in GG, so there exists a subnormal subgroup 7" of G such that G = P,T and
PiNT < ®(P). Since |G : T| = |Pr: (PN T)| is a power of p and T is subnormal in G,
OP(G) < T and thus N < T.Then P, = PPNP =P N(PNM)N =(PNM)(PLNN) <
< (PNM)(PANT) < (PN M)®(P,), therefore PN M = P; and |[N| = p. Since G is soluble
by (5), Ca(F(G)) < F(G) = N, so Cg(N) = N. Then we have M = G/N = Ng(N)/Cq(N) <
< Aut(N). Since Aut(NV) is a cyclic group of order p — 1, M and in particularly @ is cyclic and
hence G is g-nilpotent by Burnside’s Theorem [4] (IV, Theorem 2.8). It follows that G = Ng(P) is
p-nilpotent by the hypothesis, a contradiction.

(7) The final contradiction.

Since G is soluble, there is a normal maximal subgroup M of G such that |G : M| is a prime. If
|G : M| = q, then M is p-nilpotent by (2) and therefore P = M < G by (1), a contradiction. Thus
we may assume that |G : M| = p, then it follows that P N M € Syl,(M) is a maximal subgroup
of P. If N¢(P N M) < G, then Ng(P N M) > P is p-nilpotent by (2) and so is Nj/(P N M).
Since |P : D| > p by (6), every subgroup of P N M with order |D| is S®-supplemented in M by
Lemma 2.1. Consequently, M satisfies the hypothesis of the theorem and therefore M is p-nilpotent
by the minimal choice of G. The normal p-complement of M is also the normal p-complement of
G, a contradiction. Hence we may suppose that P N M < G and then N = O,(G) = PN M is a
maximal subgroup of P. This leads to |D| < |N|, contradicts to (4), the final contradiction.

Theorem 3.3 is proved.

Theorem 3.4. Let F be a saturated formation containing U and E a normal subgroup of a
group G such that G/E € F. If for every prime p dividing |E|, there exists a Sylow p-subgroup
P of E such that P has a subgroup D satisfying 1 < |D| < |P| and every subgroup H of P with
|H| = |D| is S®-supplemented in G, then G € F.

Proof. By Lemma 2.1, we know that for every prime p dividing |F|, there exists a Sylow p-
subgroup P of E such that P has a subgroup D satisfying 1 < |D| < |P| and every subgroup H of
P with |H| = |D| is S®-supplemented in F, then E is a Sylow tower group of supersoluble type
by Corollary 3.1. Let p be the largest prime dividing |E| and P a Sylow p-subgroup of E, then P
is normal in G. Since (G/P)/(E/P) = G/E € F and the hypothesis still holds for (G/P, E/P)
by Lemma 2.1, we have G/P € F by induction on |G|. Since P < Z;(G) by Lemma 2.5 and
Zu(G) < Zx(Q) by [10] (IV, Proposition 3.11), we have P < Zr(G) and so G € F, as required.

Theorem 3.4 is proved.

Theorem 3.5. Let F be a saturated formation containing U and E a normal subgroup of a
group G such that G/E € F. If for every prime p dividing |F*(F)|, there exists a Sylow p-subgroup
P of F*(F) such that P has a subgroup D satisfying 1 < |D| < |P| and every subgroup H of P
with |H| = |D| is S®-supplemented in G, then G € F.

Proof. We use induction on |G|. By Lemma 2.1, we know that for every prime p dividing
|F*(E)|, there exists a Sylow p-subgroup P of F*(E) such that P has a subgroup D satisfying
1 < |D| < |P] and every subgroup H of P with |H| = |D| is S®-supplemented in F*(FE).
By Corollary 3.1, F*(E) possesses an ordered Sylow tower of supersoluble type. In particular,
F*(E) is soluble and so F*(E) = F(F) by Lemma 2.7. Lemma 2.5 shows that F'(E) < Z;(G).
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Since Z1(G) < Zx(G) by [10] (IV, Proposition 3.11), we have F(E) < Zz(G). By [10] (IV,
Theorem 6.10), G/Cq(Zx(G)) € F and since F(E) < Zz(G), we have G/Cq(F(E)) € F.
By the hypothesis G/E € F, so G/Cg(F(F)) € F. But Cg(F(FE)) = Cg(F*(E)) < F(FE) by
Lemma 2.7, then we have G/F(E) € F. Hence G € F by Theorem 3.4, as required.

e N

10.
11.

12.
13.

Theorem 3.5 is proved.
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