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A RESULT ON GENERALIZED DERIVATIONS
ON RIGHT IDEALS OF PRIME RINGS

(ОДИН РЕЗУЛЬТАТ) ПРО УЗАГАЛЬНЕНЕ ДИФЕРЕНЦIЮВАННЯ
НА ПРАВИХ IДЕАЛАХ ПРОСТИХ КIЛЕЦЬ

Let R be a prime ring of characteristic not 2 and let I be a nonzero right ideal of R. Let U be the right Utumi quotient
ring of R and let C be the center of U. If G is a generalized derivation of R such that [[G(x), x], G(x)] = 0 for all x ∈ I,
then R is commutative or there exist a, b ∈ U such that G(x) = ax+ xb for all x ∈ R and one of the following assertions
is true:

(1) (a− λ)I = (0) = (b+ λ)I for some λ ∈ C,

(2) (a− λ)I = (0) for some λ ∈ C and b ∈ C.

Нехай R — просте кiльце, характеристика якого не дорiвнює 2, а I — ненульовий правий iдеал R. Нехай U —
праве фактор-кiльце Утумi кiльця R, а C — центр U. Якщо G є узагальненим диференцiюванням R таким, що
[[G(x), x], G(x)] = 0 для всiх x ∈ I, то R є комутативним або iснують a, b ∈ U такi, що G(x) = ax + xb для всiх
x ∈ R i виконується одне з наступних тверджень:

(1) (a− λ)I = (0) = (b+ λ)I для деякого λ ∈ C,

(2) (a− λ)I = (0) для деяких λ ∈ C та b ∈ C.

1. Introduction. Throughout this paper R will always denote a prime ring with center Z(R),
extended centroid C, right Utumi quotient ring U (sometimes, as in [2], U is called the maximal
right ring of quotients), and two-sided Martindale quotient ring Q (see [2] for the definitions). For
any x, y ∈ R, the commutator of x and y is denoted by [x, y] and defined to be xy − yx.

An additive mapping d from R into itself is called a derivation of R if d(xy) = d(x)y + xd(y)

holds for all x, y ∈ R. An additive mapping g : R → R is called a generalized derivation of R if
there exists a derivation d of R such that g(xy) = g(x)y + xd(y) for all x, y ∈ R [10]. Obviously
any derivation is a generalized derivation. Moreover, other basic examples of generalized derivations
are the mappings of the form x 7→ ax + xb, for a, b ∈ R. A generalized derivation in this form is
called (generalized) inner. Many authors have studied generalized derivations in the context of prime
and semiprime rings (see [1, 10, 13, 14]).

In [13], T. K. Lee extended the definition of a generalized derivation as follows. By a generalized
derivation he means an additive mapping g : I → U such that g(xy) = g(x)y+xd(y) for all x, y ∈ I,
where I is a dense right ideal of the prime ring R and d is a derivation from I into U. He also proved
that every generalized derivation can be uniquely extended to a generalized derivation of U, and
moreover, there exist a ∈ U and a derivation d of U such that g(x) = ax+ d(x) for all x ∈ U [13]
(Theorem 3).

In [7], De Filippis proved that if R is a prime ring of characteristic not 2 and G is a generalized
derivation of R such that [[G(x), x], G(x)] = 0 for all x ∈ R, then either R is commutative or there
exists λ ∈ C such that G(x) = λx for all x ∈ R. In the same paper, he uses his result to prove a
theorem concerning noncommutative Banach algebras. More precisely, he proves the following:
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166 Ç. DEMIR, N. ARGAÇ

Let R be a noncommutative Banach algebra with a continuous generalized derivation G = La+d,

where La denotes the left multiplication by a ∈ R and d is a derivation of R. If [[G(x), x], G(x)] ∈
∈ rad(R) (the Jacobson radical of R) for all x ∈ R, then [a,R] ⊆ rad(R) and d(R) ⊆ rad(R).

In [6], V. De Filippis and M. S. Tammam El-Sayiad considered this time a similar problem on
a non-central Lie ideal L of a prime ring R of characteristic not 2. It was proved that if G is a
generalized derivation of R such that [[G(u), u], G(u)] ∈ Z(R) for all u ∈ L, a non-central Lie ideal
of R, then either there exists λ ∈ C such that G(x) = λx for all x ∈ R or G(x) = ax+ xa+ λx for
all x ∈ R and for some a ∈ U, λ ∈ C and R satisfies the standard identity s4.

The aim of the present paper is to extend Filippis’ main result in [7] to the right ideals in prime
rings. Precisely, we will prove the following theorem.

Main theorem. Let R be a prime ring of characteristic different from 2 with the extended
centroid C and I be a nonzero right ideal of R. If G is a generalized derivation of R such that

[[G(x), x], G(x)] = 0

for all x ∈ I, then R is commutative or there exist a, b ∈ U such that G(x) = ax+ xb for all x ∈ R
and one of the following holds:

(i) (a− λ)I = (0) = (b+ λ)I for some λ ∈ C,
(ii) (a− λ)I = (0) for some λ ∈ C and b ∈ C.
Before we proceed, we give some illustrative examples.
Example 1. Let R = Mn(F ) be the ring of all (n × n)-matrices over a field F, and I be the

right ideal of R generated by the matrix unit e11, that is I = e11R. We note that the extended centroid
C of R coincides with its center Z(R) = F which consists of all scalar matrices (here we identify
F with the set of all scalar matrices up to isomorphism).

1. Let a, b ∈ R be such that ai1 = 0 = bi1 for all 2 ≤ i ≤ n and a11 = λ = −b11. Then
(a − λ)I = (0) = (b + λ)I (here of course we identify λ with the scalar matrix λ · 1). Define the
generalized derivation of R by G(r) = ar + rb for all r ∈ R. Then

[[G(x), x], G(x)] = [[ax+ xb, x], ax+ xb] =

= [[x(b+ λ), x], x(b+ λ)] = [−x2(b+ λ), x(b+ λ)] = 0

for all x ∈ I.
2. Let c, d ∈ R with d ∈ Z(R) and ci1 = 0 for all 2 ≤ i ≤ n, c11 = λ. Define now G(r) =

= cr + rd = (c+ d)r for all r ∈ R. Then since (c− λ)I = (0) and d ∈ Z(R), it is readily verified
that

[G(x), x] = [cx+ xd, x] = [λx, x] = 0

for all x ∈ I, and hence [[G(x), x], G(x)] = 0 follows.
2. Preliminaries. In what follows, R will be a prime ring. The related object we need to mention

is the right Utumi quotient ring U of R. The definitions, the axiomatic formulations and the properties
of this quotient ring U can be found in [2].

In any case, when R is a prime ring, all we need to know about U is that
(1) R ⊆ U ;
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(2) U is a prime ring;
(3) The center of U, denoted by C, is a field which is called the extended centroid of R.
We will make a frequent use of the theory of generalized polynomial identities and differential

identities (see [2, 11, 12, 15]). In particular we need to recall the following:
Remark 1 [4]. If R is a prime ring and I is a non-zero right ideal of R, then I, IR and IU

satisfy the same generalized polynomial identities with coefficients in U.
Remark 2 [11]. Let R be a prime ring, d a nonzero derivation of R and I a nonzero two-sided

ideal of R. Let f(x1, . . . , xn, d(x1), . . . , d(xn)) be a differential identity in I, that is

f(r1, . . . , rn, d(r1), . . . , d(rn)) = 0

for all r1, . . . , rn ∈ I. Then one of the following holds:
(i) d is an inner derivation of Q, in the sense that there exists q ∈ Q such that d(x) = [q, x] for

all x ∈ R, and I satisfies the generalized polynomial identity

f(r1, . . . , rn, [q, r1], . . . , [q, rn]),

(ii) I satisfies the generalized polynomial identity

f(x1, . . . , xn, y1, . . . , yn).

We also need to mention the following fact about generalized polynomials. It enables us to decide
whether a given generalized identity of a prime ring is a trivial identity or not.

Remark 3. Denote by T = U ∗C C{X} the free product over C of the C-algebra U and
the free C-algebra C{X}, with X a countable set consisting of non-commuting indeterminates
{x1, . . . , xn, . . .}. The elements of T are called generalized polynomials with coefficients in U. Let
a1, . . . , ak ∈ U be linearly C-independent, and

a1g1(x1, . . . , xn) + . . .+ akgk(x1, . . . , xn) = 0 ∈ T

for some g1, . . . , gk ∈ T. If gi(x1, . . . , xn) =
∑n

j=1
xjhj(x1, . . . , xn) and hj ∈ T, then g1, . . . , gk

are the zero element of T. The conclusion holds if

g1(x1, . . . , xn)a1 + . . .+ gk(x1, . . . , xn)ak = 0 ∈ T

and gi(x1, . . . , xn) =
∑n

j=1
hj(x1, . . . , xn)xj for hj ∈ T (see [4]).

2. Results. We start with an easy lemma that will be used in the sequel.
Lemma 1. Let R be a prime ring, I a nonzero right ideal of R. If a ∈ R is such that [ax, x] = 0

for all x ∈ I, then (a− λ)I = (0) for some λ ∈ C.
Proof. Linearizing [ax, x] = 0, one gets

[a, x]y + [a, y]x = 0 (1)

for all x, y ∈ I. Letting y = yr in (1) with r ∈ R and using (1) again, it follows

[a, y][x, r] = y[a, r]x. (2)

Letting now x = xs in (2) with s ∈ R, we get [a, I]I[R,R] = (0). Hence [a, I]I = (0) or R is
commutative. Of course [a, I]I = (0) if R is commutative. Then (a− λ)I = (0) for some λ ∈ C by
[3] (Lemma).

The following lemma is crucial and will be used in the proof of the inner case.
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Lemma 2. Let R be a prime ring of characteristic different from 2, I a nonzero right ideal of
R and a, b ∈ R.

(i) If [[ax, x], ax] = 0 for all x ∈ I, then (a− λ)I = (0) for some λ ∈ C.
(ii) If [[xb, x], xb] = 0 for all x ∈ I, then bI = (0) or b ∈ Z(R).
Proof. (i) By the hypothesis

[[ax, x], ax] = 0 (3)

for all x ∈ I. By Theorem 2 in [4] we see that (1) holds for all x ∈ IU. Replacing R and I with
U and IU respectively, we may assume that IC = I and R is centrally closed over its center C. In
case C is infinite, set R = R⊗C C and I = I ⊗C C where C is the algebraic closure of C. Then R
is centrally closed over its center C by [8], and (3) holds for all x ∈ I by a standard argument. Thus,
replacing R, I and C with R, I and C respectively, we may assume further that C is either finite or
algebraically closed. We proceed to show that (a− λ)I = (0) for some λ ∈ C.

Let u ∈ I, then

[[aux, ux], aux] = 0

for all x ∈ R. Assume on the contrary that au and u are C-independent for some u ∈ I. We claim
that

[[auX, uX], auX] (4)

is a non-trivial generalized polynomial identity (GPI for short) for R. For otherwise,

au(XuXauX −XauXuX +XuXauX)− u(XauXauX)

is the zero element of T = U ∗C C{X}. Then by Remark 3

uXauXauX = 0 ∈ T = U ∗C C{X}

implying au = 0, contrary to our assumption on au and u. Therefore (4) is a nontrivial GPI for R.
Thus R is a primitive ring with a nonzero socle soc(R) = H with C as the associated division ring
by Martindale’s theorem [15]. Now I and IH both satisfy (3), and so replacing I with IH, we may
assume that I ⊆ H.

Let e = e2 ∈ I be any idempotent. Then

[[aere, ere], aere] = 0 (5)

for all r ∈ R. Left multiplying (5) by e yields that

[[(eae)(ere), (ere)], (eae)(ere)] = 0

for all r ∈ R. Since eRe is a prime ring, char(eRe) = char(R) 6= 2 and eae ∈ eRe, we conclude
that either eRe is commutative or eae ∈ Z(eRe) = Ce by [7] (Proposition 1). In any case we have
eae ∈ Ce. On the other hand,

[[aer(1− e), er(1− e)], aer(1− e)] = 0
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for all r ∈ R. Expanding the commutator we arrive at

er(1− e)aer(1− e)aer(1− e) = 0

for all r ∈ R. Therefore ((1 − e)aer)4 = 0 for all r ∈ R, and so (1 − e)aeR is a nil right ideal of
bounded index. Hence (1− e)ae = 0 by Levitzki’s theorem [9] (Lemma 1.1). Now ae = eae ∈ Ce
for every idempotent e ∈ I. Since I is completely reducible right H-module, every element of I is
contained in fH for some f = f2 ∈ I. Then, for any x ∈ I, there exists an idempotent f ∈ I such
that x = fx, and so, it follows that

ax = afx = fafx ∈ Cfx = Cx.

Hence we see that [ax, x] = 0 for all x ∈ I, and then by Lemma 1 we have (a−λ)I = (0) for some
λ ∈ C.

(ii) Even if the proof of this part is very similar to the one in (i), we give its proof here for the
sake of completeness.

We now have

[[xb, x], xb] = 0 (6)

for all x ∈ I by the hypothesis. Again by Theorem 2 in [4] we see that (6) holds for all x ∈ IU.
Replacing R and I with U and IU respectively, we may assume that IC = I and R is centrally
closed over its center C. As in (i) replacing R, I and C with R, I and C respectively, when C is
infinite, we may assume further that C is either finite or algebraically closed.

Let u ∈ I, then

[[uxb, ux], uxb] = 0 (7)

for all x ∈ R. Assume on the contrary that b /∈ C and bI 6= (0). Then there exists u ∈ I such that
bu 6= 0. We claim that

[[uXb, uX], uXb]

is a non-trivial GPI for R. If not,

(uXbuXuX − uXuXbuX + uXbuXuX)b− (uXbuXbuX)

is the zero element of T = U ∗C C{X}. Then by Remark 3 again,

uXbuXbuX = 0 ∈ T = U ∗C C{X},

and hence bu = 0, contrary to our assumption. Therefore (7) is a non-trivial GPI for R. In the
present case, R is a primitive ring with a nonzero socle Soc(R) = H [15]. Moreover, since (6) is
also satisfied by IH, we may assume further that I ⊆ H by replacing I with IH. Similar to above,
let e = e2 ∈ I be an idempotent. Then

[[ereb, ere], ereb] = 0 (8)

for all r ∈ R. Right multiplying (8) by e yields that
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[[(ere)(ebe), (ere)], (ere)(ebe)] = 0

for all r ∈ R. Since eRe is a prime ring, char(eRe) = char(R) 6= 2 and ebe ∈ eRe, we conclude
that either eRe is commutative or ebe ∈ Z(eRe) = Ce by [7] (Proposition 1). In any case we have
ebe ∈ Ce. On the other hand,

[[er(1− e)b, er(1− e)], er(1− e)b] = 0

for all r ∈ R. Expanding the commutator we arrive at

er(1− e)ber(1− e)ber(1− e) = 0

for all r ∈ R. Therefore (1− e)beR is a nil right ideal of bounded index. Hence (1− e)be = 0 again
by Levitzki’s theorem [9] (Lemma 1.1). Thus, be = ebe ∈ Ce for every idempotent e ∈ I. Since I is
completely reducible right H-module, every element of I is contained in fH for some f = f2 ∈ I.
Then, for any x ∈ I, there exists an idempotent f ∈ I such that x = fx. Therefore, it follows that

bx = bfx = fbfx ∈ Cfx = Cx

for all x ∈ I. Hence we see that [bx, x] = 0 for all x ∈ I, and so (b− µ)I = (0) for some µ ∈ C by
Lemma 1. Now (6) reduces to

0 = [[xb, x], xb] = x3µ(b− µ)

for all x ∈ I. In particular, eµ(b − µ) = 0 and (e + er(1 − e))µ(b − µ) = 0 for all e = e2 ∈ I and
r ∈ R. This implies eRµ(b− µ) = 0, that is to say µ = 0 or b = µ ∈ C. We must have µ = 0 since
b /∈ C. But then bI = (0), again a contradiction.

Lemma 3. Let R be a prime ring of characteristic different from 2, I a nonzero right ideal of
R and a, b ∈ R. If

[[ax+ xb, x], ax+ xb] = 0 (9)

for all x ∈ I, then one of the following holds:
(i) (a− λ)I = (0) = (b+ λ)I for some λ ∈ C,
(ii) (a− λ)I = (0) for some λ ∈ C and b ∈ Z(R).
Proof. Let u ∈ I. Then

[[aux+ uxb, ux], aux+ uxb] = 0 (10)

for all x ∈ R, and hence for all x ∈ U. Replacing R and I with U and IU, we may assume that C is
just the center of R. We want to show that either R is a GPI-ring or the lemma holds. Therefore we
assume that R is not a GPI-ring. Assume further that au and u are C-independent for some u ∈ I.
Then R satisfies

[[auX + uXb, uX], auX + uXb].

Expansion of (10) yields that

auf(x) + ug(x) = 0

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 2



A RESULT ON GENERALIZED DERIVATIONS ON RIGHT IDEALS OF PRIME RINGS 171

for all x ∈ R, where

f(x) = 2xuxaux+ 2xuxuxb− xauxux− xuxbux

and

g(x) = 2xbuxaux+ 2xbuxuxb− xauxaux− xauxuxb− xuxbaux−

−xuxbuxb− xbauxux− xbuxbux.

Since R satisfies no non-trivial GPI, we must have

auf(X) = 0 ∈ T = U ∗C C{X}

by Remark 3. Hence

2auXuXauX + 2auXuXuXb− auXauXuX − auXuXbuX (11)

is the zero element of T = U ∗C C{X}. If now 1 and b are C-dependent, that is b ∈ C, then (9)
reduces to

[[(a+ b)x, x], (a+ b)x] = 0

for all x ∈ I. It follows from Lemma 2(i) that (a+b−α)I = (0) for some α ∈ C. Set λ = α−b ∈ C,
and so (a− λ)I = (0) for some λ ∈ C and b ∈ Z(R) (since b ∈ R). This gives (ii).

Therefore we may assume that 1 and b are C-independent. We rewrite (11) in the form

(2a(uX)2auX − auXa(uX)2 − a(uX)2buX) + (2a(uX)3)b = 0 ∈ T.

We conclude as above that 2a(uX)3b = 0 which is impossible unless charR = 2 or b = 0 or au = 0,

a contradiction. Until now we have shown that if au and u are C-independent for some u ∈ I, then
either the lemma holds or R is a GPI-ring. So we may assume that au and u are C-dependent for all
u ∈ I. Then [au, u] = 0 for all u ∈ I, and this implies (a−λ)I = (0) for some λ ∈ C by Lemma 1.
Now (9) reduces to

[[x(b+ λ), x], x(b+ λ)] = 0

for all x ∈ I. Hence by Lemma 2(ii), we have b ∈ C = Z(R) or (b+ λ)I = (0), giving (i) and (ii)
simultaneously.

We are now in a position to consider the case when R is a GPI-ring. Then R is a primitive
ring with a nonzero socle H with C as the associated division ring by Martindale’s theorem [15].
Moreover, since I and IH both satisfy (9), after replacing I with IH we may assume that I ⊆ H.

Let e = e2 ∈ I be any idempotent element. Then

[[aere+ ereb, ere], aere+ ereb] = 0 (12)

for all r ∈ R. Now left and right multiplying (12) by 1− e yields that

2(1− e)aererereb(1− e) = 0,
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and so

(1− e)aererereb(1− e) = 0

for all r ∈ R since char(R) 6= 2. It follows by the primeness of R that (1−e)ae = 0 or eb(1−e) = 0

by the Theorem in [16]. If (1− e)ae = 0, then right multiplication of (12) by e yields[
[(eae)(ere) + (ere)(ebe), ere], (eae)(ere) + (ere)(ebe)

]
= 0 (13)

for all r ∈ R. Similarly, if eb(1− e) = 0, then the left multiplication of (12) by e gives us the same
identity in (13). Thus in any case we have[

[a′x+ xb′, x], a′x+ xb′
]
= 0 (14)

for all x ∈ eRe, where a′ = eae and b′ = ebe. Since eRe is a prime ring, char(eRe) = char(R) 6= 2

and a′, b′ ∈ eRe, (14) implies that either eRe is commutative or a′, b′ ∈ Z(eRe) = Ce by [7]
(Proposition 1). In any case we have a′, b′ ∈ Ce.

Now we claim that for a given e = e2 ∈ I, if eb(1− e) = 0, then we must have (1− e)ae = 0,

too. So assume on the contrary that eb(1 − e) = 0 but (1 − e)ae 6= 0 for some e = e2 ∈ I. Pick
any α ∈ C, r ∈ R and set q = αer(1− e). Then q2 = 0 and the mapping ϕ(x) = (1 + q)x(1− q),
x ∈ R, defines a C-automorphism of R such that ϕ(I) ⊆ I. Thus[

[ϕ(a)x+ xϕ(b), x], ϕ(a)x+ xϕ(b)
]
= 0 (15)

for all x ∈ I. As above (15) implies that (1− e)ϕ(a)e = 0 or eϕ(b)(1− e) = 0. If (1− e)ϕ(a)e = 0,

then one gets that

0 = (1− e)ϕ(a)e = (1− e)ae

which is a contradiction. So we must have eϕ(b)(1− e) = 0. By calculation we arrive at

α2er(1− e)ber(1− e) + αeber(1− e)− αer(1− e)b(1− e) = 0. (16)

In particular, taking α = 1 in (16) it follows that

er(1− e)ber(1− e) + eber(1− e)− er(1− e)b(1− e) = 0.

In a similar fashion, taking this time α = −1 in (16) one gets

er(1− e)ber(1− e)− eber(1− e) + er(1− e)b(1− e) = 0.

Comparing these last two equations and using the fact that char(R) 6= 2, we obtain

er(1− e)ber(1− e) = 0

for all r ∈ R. Hence (1− e)be = 0, and so

eb = ebe = be.

Let s ∈ R and f = e + es(1 − e) ∈ I. We note that (1 − f)af 6= 0, and so we must have
fb(1− f) = 0. But this implies bf = fb as above. Hence
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b, e+ es(1− e)

]
= 0 (17)

for all s ∈ R. Now (17) implies b ∈ C by [5] (Lemma 1). So (9) reduces to[
[(a+ b)x, x], (a+ b)x

]
= 0

for all x ∈ I. Then for any r ∈ R, we have

0 = [[(a+ b)er(1− e), er(1− e)], (a+ b)er(1− e)],

that is

er(1− e)aer(1− e)aer(1− e) = 0.

Therefore (1− e)ae = 0 which is a contradiction. This proves our claim. So we have (1− e)ae = 0,

that is ae = eae ∈ Ce for all e = e2 ∈ I. Then since I is completely reducible right H-module,
every element of I is contained in fH for some idempotent f ∈ I. Let x ∈ I, then fx = x for some
f = f2 ∈ I. Hence

ax = afx = fafx ∈ Cfx = Cx.

This means [ax, x] = 0 for all x ∈ I, and therefore (a − λ)I = (0) for some λ ∈ C by Lemma 1.
From (9) we see that [

[x(b+ λ), x], x(b+ λ)
]
= 0

for all x ∈ I. Henceforth we have (b + λ)I = (0) or b ∈ Z(R) by Lemma 2(ii). This proves the
lemma.

We are now ready to prove our main theorem.
Main theorem. Let R be a prime ring of characteristic different from 2 with the extended

centroid C and I be a nonzero right ideal of R. If G is a generalized derivation of R such that[
[G(x), x], G(x)

]
= 0 (18)

for all x ∈ I, then R is commutative or there exist a, b ∈ U such that G(x) = ax+ xb for all x ∈ R
and one of the following holds:

(i) (a− λ)I = (0) = (b+ λ)I for some λ ∈ C,
(ii) (a− λ)I = (0) for some λ ∈ C and b ∈ C.
Proof. As we have already noted that every generalized derivation G on a dense right ideal of R

can be uniquely extended to U and assumes form G(r) = pr+d(r) for some p ∈ U and a derivation
d of U. Then [

[px+ d(x), x], px+ d(x)
]
= 0 (19)

for all x ∈ I, and hence for all x ∈ IU since I and IU satisfy the same differential identities [12].
If d = 0, then we get that [

[px, x], px
]
= 0

for all x ∈ IU. This last equation implies that (p − λ)IU = (0) for some λ ∈ C by Lemma 2(i).
Therefore g(r) = ar for all r ∈ R and (a− λ)I = (0) where a = p. So we may assume that d 6= 0.

In light of Kharchenko’s theorem (Remark 2), we divide the proof into two cases:
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Case 1. Let d be the X-inner derivation induced by the element q ∈ U − C. Then by (19) we
see that [

[(p+ q)x− xq, x], (p+ q)x− xq
]
= 0 (20)

for all x ∈ I. As we noted above (20) is also satisfied by IU. Therefore replacing R and I with U
and IU respective, we may assume that p, q ∈ R. Set a = p + q and b = −q for simplicity. Now it
follows from Lemma 3 that either (a− λ)I = (0) = (b+ λ)I for some λ ∈ C or (a− λ)I = (0) for
some λ ∈ C and b ∈ C.

Case 2. Let now d be an outer derivation of U. To continue the proof we first linearize (12). By
replacing x with x+ y in (18) and using (18) again, we end up with

[[G(x), x], G(y)] + [[G(x), y], G(x)] + [[G(y), x], G(x)]+

+[[G(x), y], G(y)] + [[G(y), x], G(y)] + [[G(y), y], G(x)] = 0 (21)

for all x, y ∈ I. Replacing x with −x in (21) and adding up the resulting equation to (21) yields that

[[G(x), x], G(y)] + [[G(x), y], G(x)] + [[G(y), x], G(x)] = 0 (22)

for all x, y ∈ I since charR 6= 2. Take xr instead of x in (22) with r ∈ R to get

[[G(x)r + xd(r), xr], G(y)] + [[G(x)r + xd(r), y], G(x)r + xd(r)]+

+[[G(y), xr], G(x)r + xd(r)] = 0 (23)

for all x, y ∈ I and r ∈ R. By Kharchenko’s theorem, since d is an outer derivation, R satisfies the
identity:

[[G(x)r + xs, xr], G(y)] + [[G(x)r + xs, y], G(x)r + xs] + [[G(y), xr], G(x)r + xs] = 0

for all x, y ∈ I and r, s ∈ R. In particular, R satisfies the blended component

[[xs, y], xs] = 0

for all x, y ∈ I and s ∈ R (and hence for all s ∈ U ). So for s = 1 in this last equation we have
[[x, y], x] = 0 for all x, y ∈ I. Then for any x, y, z ∈ I we have

0 = [[x, yz], x] = 2[x, y][z, x],

and so

[x, y][x, z] = 0

since charR 6= 2. Let now z = zr in this last equation to get

[x, y]z[x, r] = 0

for all x, y, z ∈ I and r ∈ R. Therefore for any x ∈ I, we see that [x, I]I = (0) or x ∈ Z(R). Thus
we conclude that [I, I]I = (0) or R is commutative. If the first possibility holds, then it follows from
[[x, y], x] = 0, x, y ∈ I, that x[x, y] = 0. This clearly implies the commutativity of R, and so the
theorem is proved.
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We finish with an example which shows that the characteristic assumption in the theorem cannot
be removed.

Example 2. Let F be a field with charF = 2, R = M2(F ) and a be any element of R. Then
for the mapping G(x) = [a, x], x ∈ R, one can easily see that for every x ∈ R, [[G(x), x], G(x)] =
= [G(x)2, x] = 0 since G(x)2 ∈ Z(R) for all x ∈ R.
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