UDC 512.5
P. Nosratpour (Islamic Azad Univ. Tehran, Iran),
M. R. Darafsheh (School Math., Statistics and Comput. Sci., College Sci., Univ. Tehran, Iran)

RECOGNITION OF THE GROUPS $L_{5}(4)$ AND $U_{4}(4)$ BY THE PRIME GRAPH РОЗПІЗНАВАННЯ ГРУП $L_{5}(4)$ ТА $U_{4}(4)$ ПО ГРАФУ ПРОСТИХ ЧИСЕЛ

Let G be a finite group. The prime graph of G is the graph $\Gamma(G)$ whose vertex set is the set $\Pi(G)$ of all prime divisors of the order $|G|$ and two distinct vertices p and q of which are adjacent by an edge if G has an element of order $p q$. We prove that if S denotes one of the simple groups $L_{5}(4)$ and $U_{4}(4)$ and if G is a finite group with $\Gamma(G)=\Gamma(S)$, then G has a normal subgroup N such that $\Pi(N) \subseteq\{2,3,5\}$ and $\frac{G}{N} \cong S$.
Нехай G - скінченна група. Графом простих чисел групи G називають граф $Г(G)$, множиною вершин якого ϵ множина $\Pi(G)$ усіх простих дільників порядку $|G|$ і в якому дві різні вершини p та q з'єднані ребром, якщо G містить елемент порядку $p q$. Доведено, що, якщо S є однією з простих груп $L_{5}(4)$ та $U_{4}(4)$, а G є скінченною групою, для якої $\Gamma(G)=\Gamma(S)$, то G має нормальну підгрупу N таку, що $\Pi(N) \subseteq\{2,3,5\}$ та $\frac{G}{N} \cong S$.

1. Introduction. Let G be a finite group. The spectrum $\omega(G)$ of G is the set of orders of elements in G, where each possible order element occurs once in $\omega(G)$ regardless of how many elements of that order G has. This set is closed and partially ordered by divisibility, hence it is uniquely determined by its maximal elements. The set of maximal elements of $\omega(G)$ is denoted by $\mu(G)$. The number of isomorphic classes of finite groups H such that $\omega(G)=\omega(H)$ is denoted by $h(G)$. If $h(G)=k \geq 1$ is finite then the group G is called a k-recognizable group by spectrum. If $h(G)$ is not finite, G is called non-recognizable. A 1-recognizable group is usually called a recognizable group. The recognizability of finite groups by spectrum was first considered by W. J. Shi et al. in [16]. A list of finite simple groups which are known to be or not to be recognizable by spectrum is given in [11].

For $n \in N$, let $\Pi(n)$ denote the set of all the prime divisors of n, and for a finite group G let us set $\Pi(G)=\Pi(|G|)$. The prime graph $\Gamma(G)$ of a finite group G is a simple graph with vertex set $\Pi(G)$ in which two distinct vertices p and q are joined by an edge if and only if G has an element of order $p q$. It is clear that a knowledge of $\omega(G)$ determines $\Gamma(G)$ completely but not vise-versa in general. Given a finite group G, the number of non-isomorphic classes of finite groups H with $\Gamma(G)=\Gamma(H)$ is denoted by $h_{\Gamma}(G)$. If $h_{\Gamma}(G)=1$, then G is said to be recognizable by prime graph. If $h_{\Gamma}(G)=k<\infty$, then G is called k-recognizable by prime graph, in case $h_{\Gamma}(G)=\infty$ the group G is called non-recognizable by graph. Obviously a group recognizable by spectra need not to be recognizable by prime graph, for example A_{5} is recognizable by spectra but $\Gamma\left(A_{5}\right)=\Gamma\left(A_{6}\right)$.

The number of connected components of $\Gamma(G)$ is denoted by $s(G)$. As a consequence of the classification of the finite simple groups it is proved in [19] and [10], that for any finite simple group G we have $s(G) \leq 6$. Let $\Pi_{i}=\Pi_{i}(G), 1 \leq i \leq s$, be the connected components of G. For a group of even order we let $2 \in \Pi_{1}$. Recognizability of groups by prime graph was first studied in [6] where some sporadic simple groups were characterized by prime graph. As another concept we say that a non-abelian simple group G is quasi-recognizable by graph if every finite group whose prime graph is $\Gamma(G)$ has a unique non-abelian composition factor isomorphic to G.

It is proved in [20] that the simple groups $G_{2}(7)$ and ${ }^{2} G_{2}(q), q=3^{2 m+1}>3$, are recognizable by graph, where both groups have disconnected prime graphs. A series of interesting results concern-
ing recognition of finite simple groups were obtained by B.Khosravi et al. In particular they have stabilized quasi-recognizability of the group $L_{10}(2)$ by graph and the recognizability of $L_{16}(2)$ by graph in [8] and [9], where both groups have connected prime graphs.

Next we introduce useful notation. Let p be a prime number. The set of all non-abelian finite simple groups G such that $p \in \Pi(G) \subseteq\{2,3,5, \ldots, p\}$ is denoted by \mathfrak{S}_{p}. It is clear that the set of all non-abelian finite simple groups is the disjoint union of the finite sets \mathfrak{S}_{p} for all primes p. The sets \mathfrak{S}_{p}, where p is a prime less than 1000 is given in [21].
2. Preliminary results. Let G be a finite group with disconnected prime graph. The structure of G is given in [19] which is stated as a lemma here.

Lemma 2.1. Let G be a finite group with disconnected prime graph. Then G satisfies one of the following conditions:
a) $s(G)=2, G=K C$ is a Frobenius group with kernel K and complement C, and the two connected components of G are $\Gamma(K)$ and $\Gamma(C)$. Moreover K is nilpotent, and here $\Gamma(K)$ is a complete graph.
b) $s(G)=2$ and G is a 2-Frobeuius group, i.e., $G=A B C$ where $A, A B \unlhd G, B \unlhd B C$, and $A B, B C$ are Frobenius groups.
c) There exists a non-abelian simple group P such that $P \leq \bar{G}=\frac{G}{N} \leq$ Aut (P) for some nilpotent normal $\Pi_{1}(G)$-subgroup N of G and $\frac{\bar{G}}{P}$ is a $\Pi_{1}(G)$-group. Moreover, $\Gamma(P)$ is disconnected and $s(P) \geq s(G)$.

If a group G satisfies condition(c) of the above lemma we may write $P=\frac{B}{N}, B \leq G$, and $\frac{\bar{G}}{P}=\frac{G}{B}=A$, hence in terms of group extensions $G=N \cdot P \cdot A$, where N is a nilpotent normal $\Pi_{1}(G)$-subgroup of G and A is a $\Pi_{1}(G)$-group.

The above structure lemma was extended to groups with connected prime graphs satisfying certain conditions [17]. Denote by $t(G)$ the maximal number of primes in $\Pi(G)$ pairwise nonadjacent in $\Gamma(G)$ and $t(2, G)$ the maximal number of primes in $\Pi(G)$ nonadjacent to 2 .

Lemma 2.2. Let G be a finite group satisfying the following conditions:
a) there exist three pairwise distinct primes in $\Pi(G)$ nonadjacent in $\Gamma(G)$, i.e., $t(G) \geq 3$.
b) there exists an odd prime in $\Pi(G)$ nonadjacent in $\Gamma(G)$ to 2 , i.e., $t(2, G) \geq 2$.

Then there is a finite non-abelian simple group S such that $S \leq \bar{G}=\frac{G}{K} \leq \operatorname{Aut}(S)$ for the maximal normal solvable subgroup K of G. Furthermore $t(S) \geq t(G)-1$ and one of the following statements holds:

1. $S \cong A_{7}$ or $L_{2}(q)$ for some odd q, and $t(S)=t(2, G)=3$.
2. For every prime $p \in \Pi(G)$ nonadjacent to 2 in $\Gamma(G)$ a Sylow p-subgroups of G is isomorphic to a Sylow p-subgroup of S. In particular $t(2, S) \geq t(2, G)$.

In the following we list some properties of the Frobenius group where some of its proof can be found in [15].

Lemma 2.3. Let G be a Frobenius group with kernel K and complement H. Then:
a) K is nilpotent and $|H| \mid(|K|-1)$.
b) The connected components of G are $\Gamma(K)$ and $\Gamma(H)$.
c) $|\mu(K)|=1$ and $\Gamma(K)$ is a complete graph.
d) If $|H|$ is even, then K is abelian.
e) Every subgroup of H of order $p q, p$ and q not necessary distinct primes, is cyclic. In particular if H is abelian, then it would be cyclic.
f) If H is non-solvable, then there is a normal subgroup H_{0} of H such that $\left[H: H_{0}\right] \leq 2$ and $H_{0} \cong S L_{2}(5) \times Z$, where every Sylow subgroup of Z is cyclic and $|Z|$ is prime to 2,3 and 5 .

A Frobenius group with cyclic kernel of order m and cyclic complement of order n is denoted by m : n.

The following result is also used in this paper whose proof is included in [4].
Lemma 2.4. Every 2-Frobenius group is solvable.
Lemma 2.5 [7]. Let G be a finite solvable group all of whose elements are of prime power order. Then the order of G is divisible by at most two distinct primes.

Lemma 2.6 [12]. Let G be a finite group, $K \unlhd G$, and let $\frac{G}{K}$ be a Frobenius group with kernel F and cyclic complement C. If $(|F|,|K|)=1$ and F does not lie in $\frac{K \cdot C_{G}(K)}{K}$, then $r \cdot|C| \in w(G)$ for some prime divisor r of $|K|$.

Lemma 2.7 [18]. (1) If there exists a primitive prime divisor r of $q^{n}-1$, then $L_{n}(q)$ has a Frobenius subgroup with kernel of order r and cyclic complement of order n.
(2) $L_{n}(q)$ contains a Frobenius subgroup with kernel of order q^{n-1} and cyclic complement of order $\frac{q^{n-1}-1}{(n, q-1)}$.

Using [3] we can find $\mu\left(L_{5}(4)\right)$ and using [13] we can find $\mu\left(U_{4}(4)\right)$.
Lemma 2.8. For the groups $L_{5}(4)$ and $U_{4}(4)$ we have

$$
\begin{gathered}
\mu\left(L_{5}(4)\right)=\{8,60,126,255,315,341\}, \\
\mu\left(U_{4}(4)\right)=\{51,65,30,20\} .
\end{gathered}
$$

Using Lemma 2.8 we can draw the prime graphs of the groups $L_{5}(4)$ and $U_{4}(4)$ (see Figures 1 and 2).

Our main results are the following:
Theorem 2.1. If G is a finite group such that $\Gamma(G)=\Gamma\left(L_{5}(4)\right)$, then G has a normal subgroup N such that $\Pi(N) \subseteq\{2,3,5\}$ and $\frac{G}{N} \cong L_{5}(4)$.

Theorem 2.2. If G is a finite group such that $\Gamma(G)=\Gamma\left(U_{4}(4)\right)$, then G has a normal subgroup N such that $\Pi(N) \subseteq\{2,3,5\}$ and $\frac{G}{N} \cong U_{4}(4)$.
3. Proof of Theorem 2.1. First we prove Theorem 2.1 in series of steps. Therefore we assume G is a group with $\Gamma(G)=\Gamma\left(P S L_{5}(4)\right)$. By Fig. 1 we have $s(G)=2$, hence G has disconnected prime graph and we can use the structure theorem for G which is denoted by Lemma 2.1 here:
a) G is non-solvable.

If G is solvable, then consider a $\{7,11,17\}$-Hall subgroup of G and call it H. By Fig. $1, H$ dose not contain elements of order $7 \cdot 11,7 \cdot 17,11 \cdot 17$, and since it is solvable, by [7] we deduce $\Pi(H) \leq 2$, a contradiction.

Fig. 1. The prime graph of $L_{5}(4)$.

Fig. 2. The prime graph of $U_{4}(4)$.
b) G is neither a Frobenius nor a 2-Frobenius group.

By (a) and Lemma 2.4, G is not a 2 -Frobenius group. If G is a Frobenius group, then by Lemma 2.1, $G=K C$ with Frobenius kernel K and Frobenius complement C with connected components $\Gamma(K)$ and $\Gamma(C)$. Obviously $\Gamma(K)$ is a graph with vertices $\{11,31\}$ and $\Gamma(C)$ with vertex set $\{2,3,5,7,17\}$. Since G is non-solvable, by Lemma 2.3(a) C must be non-solvable. Therefore, by Lemma 2.3(f) C has a subgroup isomorphic to H_{0} and $\left[C: H_{0}\right] \leq 2$, where $H_{0} \cong S L_{2}(5) \times Z$ with Z cyclic of order prime to $2,3,5$. But $\mu\left(S L_{2}(5)\right)=\{4,6,10\}$ from which we can observe that H_{0} has no element of order 15 . This implies that C has no element of order 15, contradicting Fig. 1.
(a) and (b) imply that case (c) of Lemma 2.1 holds for G. Hence there is a non-abelian simple group P such that $P \leq \bar{G}=\frac{G}{N} \leq \operatorname{Aut}(P)$ where N is a nilpotent normal $\Pi_{1}(G)$ subgroup of G and $\frac{\bar{G}}{P}$ is a $\Pi_{1}(G)$-group and $s(P) \geq 2$. We have $\Pi_{1}(G)=\{2,3,5,7,17\}$ and $\Pi(G)=\{2,3,5,7,11,17,31\}$. Therefore P is a simple group with $\Pi(P) \subseteq\{2,3,5,7,11,17,31\}$, i.e., $P \in \mathfrak{S}_{p}$ where p is a prime number satisfying $p \leq 31, p \neq 13,19,23,29$. Using [21] we list the possibilities for P in Table 1.
c) $\{11,31\} \subseteq \Pi(P)$.

By Table $1,|\operatorname{Out}(P)|$ is a number of the form $2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma}$, therefore if $\frac{G}{N}=P \cdot S$ where $S \leq \operatorname{Out}(P)$, then $|P|_{p}=\left|\frac{G}{N}\right|_{p} /|S|_{p}$ for all $p \in \Pi(G)$, where n_{p} denotes the p-part of the integer $n \in N$. Hence $|N|_{p}=\frac{|G|_{p}}{|P|_{p} \cdot|S|_{p}}$, from which the claim follows because $\Pi(N) \subseteq\{2,3,5,7,17\}$.

Therefore, only the following possibilities arise for $P: L_{2}(32), L_{5}(4), O_{12}^{+}(2), S_{10}(2)$.
d) $P \cong L_{5}(4)$.

By [14] the group $L_{2}(32)$ has three prime graph components as follows $\Pi_{1}=\{2\}, \Pi_{2}=\{31\}$ and $\Pi_{3}=\{3,11\}$. Both groups $S_{10}(2)$ and $O_{12}^{+}(2)$ have two prime graph components with the

Table 1. Simple groups in $\mathfrak{S}_{p}, p \leq 31, p \neq 13,19,23,29$.

P	$\|P\|$	\mid out $(P) \mid$	P	$\|P\|$	\mid out $(P) \mid$
A_{5}	$2^{2} \cdot 3 \cdot 5$	2	$H S$	$2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$	2
A_{6}	$2^{3} \cdot 3^{2} \cdot 5$	A_{12}	$2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11$	2	
$S_{4}(3)$	$2^{6} \cdot 3^{4} \cdot 5$	2	$U_{6}(2)$	$2^{15} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 11$	6
$L_{2}(7)$	$2^{3} \cdot 3 \cdot 7$	2	$L_{2}(17)$	$2^{4} \cdot 3^{2} \cdot 17$	2
$L_{2}(8)$	$2^{3} \cdot 3^{2} \cdot 7$	3	$L_{2}(16)$	$2^{4} \cdot 3 \cdot 5 \cdot 17$	4
$U_{3}(3)$	$2^{5} \cdot 3^{3} \cdot 7$	2	$S_{4}(4)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 17$	4
A_{7}	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	2	$H e$	$2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17$	2
$L_{2}(49)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$	4	$O_{8}^{-}(2)$	$2^{12} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 17$	2
$U_{3}(5)$	$2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$	6	$L_{4}(4)$	$2^{12} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 17$	4
$L_{3}(4)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	12	$S_{8}(2)$	$2^{16} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 17$	1
A_{8}	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	2	$O_{10}^{-}(2)$	$2^{20} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17$	2
A_{9}	$2^{6} \cdot 3^{4} \cdot 5 \cdot 7$	2	$L_{2}(31)$	$2^{5} \cdot 3 \cdot 5 \cdot 31$	2
J_{2}	$2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$	2	$L_{3}(5)$	$2^{5} \cdot 3 \cdot 5^{3} \cdot 31$	2
A_{10}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$	2	$L_{2}(32)$	$2^{5} \cdot 3 \cdot 11 \cdot 31$	5
$U_{4}(3)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 7$	8	$L_{2}\left(5^{3}\right)$	$2^{2} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 31$	6
$S_{4}(7)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4}$	2	$G_{2}(5)$	$2^{6} \cdot 3^{3} \cdot 5^{6} \cdot 7 \cdot 31$	1
$S_{6}(2)$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7$	1	$L_{5}(2)$	$2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31$	2
$O_{8}^{+}(2)$	$2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7$	6	$L_{6}(2)$	$2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31$	2
$L_{2}(11)$	$2^{2} \cdot 3 \cdot 5 \cdot 11$	2	$O_{10}^{+}(2)$	$2^{20} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 17 \cdot 31$	2
M_{11}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	1	$L_{5}(4)$	$2^{20} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17$	
M_{12}	$2^{6} \cdot 3^{3} \cdot 5 \cdot 11$	2		31	4
$U_{5}(2)$	$2^{10} \cdot 3^{5} \cdot 5 \cdot 11$	2	$S_{10}(2)$	$2^{25 \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17}$	
M_{22}	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$	2		31	2
A_{11}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11$	2	$O_{12}^{+}(2)$	$2^{30} \cdot 3^{8} \cdot 5^{2} \cdot 77^{2} \cdot 11 \cdot 17$	
$M^{c} L$	$2^{6} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11$	2		31	2

second component $\Pi_{2}=\{31\}$. In any case the above facts violates the prime graph of $L_{5}(4)$ in Fig. 1, and this completes our claim.
e) $\frac{G}{N} \cong L_{5}(4)$. So far we proved that $P \leq \frac{G}{N} \leq$ Aut (P) where $P \cong L_{5}(4)$. But Aut $\left(L_{5}(4)\right)=$ $=L_{5}(4): A$ where A is a four group. If σ_{2} denotes the field automorphism and Θ the graph automorphism of $L_{5}(4)$, then $A=\left\langle\sigma_{2}, \Theta\right\rangle$ and we have the following possibilities for $\frac{G}{N}$:

$$
\begin{aligned}
& \frac{G}{N} \cong L_{5}(4), \quad \frac{G}{N} \cong L_{5}(4):\left\langle\sigma_{2}\right\rangle, \quad \frac{G}{N} \cong L_{5}(4):\langle\Theta\rangle \\
& \frac{G}{N} \cong L_{5}(4):\left\langle\sigma_{2} \cdot \Theta\right\rangle \quad \text { or } \quad \frac{G}{N} \cong L_{5}(4):\left\langle\sigma_{2}, \Theta\right\rangle
\end{aligned}
$$

It is shown in [5] that all the above possibilities except $\frac{G}{N} \cong L_{5}(4)$ violates the structure of the prime graph of G in Fig. 1, therefore our claim is proved.
f) $\Pi(N) \subseteq\{2,3,5\}$.

We know that N is a nilpotent normal $\{2,3,5,7,17\}$-subgroup of G. Regarding Fig. 1 we obtain:
If $2||N|$, then $\Pi(N) \subseteq\{2,3,5,7\}$.
If $17||N|$, then $\Pi(N) \subseteq\{3,5,17\}$.
If $7||N|$, then $\Pi(N) \subseteq\{2,3,5,7\}$.
If $7\left||N|\right.$ we may assume M is the characteristic 7^{\prime}-subgroup of N such that $\frac{H}{K} \cong L_{5}(4)$, where $H=\frac{G}{M}$ and $K=\frac{N}{M}$ is a non-trivial 7-group. By Lemma 2.7(1) $L_{5}(4)$ has a Frobenius group of the shape $4^{4}: 255$, where 4^{4} denotes Z_{4}^{4} and is the Frobenius kernel and 255 is the cyclic group of order $5 \cdot 3 \cdot 17$ and is the Frobenius complement. Now by Lemma 2.6, H would have an element of order $7 \cdot 17$ violating Fig. 1. Also $L_{5}(4)$ has a Frobenius group of the shape $11: 2$, then, if $17||N|$. Therefore by Lemma 2.6, H would have an element of order $2 \cdot 17$ violating Fig. 1. Therefore, the only possibility is $\Pi(N) \subseteq\{2,3,5\}$.

Theorem 2.1 is proved.
Proof of Theorem 2.2. Therefore we will assume that G is a group with $\Gamma(G)=\Gamma\left(U_{4}(4)\right)$. By Fig. 2 we have $s(G)=1$, i.e. the prime graph of G is connected. In this case Lemma 2.2 is applicable for the structure of G, because $\{2,13,17\}$ is an independent set as well as a 2 -independent set for G, hence $t(G)=3$ and $t(2, G)=3$. Therefore there is a finite non-abelian simple group S such that $S \leq \bar{G}=\frac{G}{K} \leq \operatorname{Aut}(S)$ for the maximal normal solvable subgroup K of G.

Before we continue our investigation, we need a table similar to Table 1 for simple groups G with $13 \in \Pi(G) \subseteq\{2,3,5, \ldots, 13\}$ but $7 \nmid|G|, 11 \nmid|G|$. Using [21] we obtain Table 2 .

Now suppose G satisfies condition (a) of Lemma 2.2. We have $S \not \equiv A_{7}$ because $7 \nmid|G|$. If $S \cong L_{2}(q), q$ odd, then by Tables 1 and 2 we obtain $S \cong L_{2}(5), L_{2}(9), L_{2}(17)$ or $L_{2}(25)$. Regarding the order of outer automorphism of the groups S listed above we obtain the following facts:

If $S \cong P S L_{2}(5)$ or $P S L_{2}(9)$, then $\{13,17\} \subseteq \Pi(K)$.
If $S \cong P S L_{2}(17)$, then $\{13\} \subseteq \Pi(K)$.
If $S \cong P S L_{2}(25)$, then $\{17\} \subseteq \Pi(K)$.

Table 2. Simple groups G with $13 \in \Pi(G) \subseteq\{2,3, \ldots, 13,17\}$ but $7,11 \nmid|G|$.

S	$\|S\|$	\mid out $(S) \mid$	S	$\|S\|$	\mid out $(S) \mid$
$A_{5} \cong L_{2}(5)$	$2^{2} \cdot 3 \cdot 5$	2			
$A_{6} \cong L_{2}(9)$	$2^{3} \cdot 3^{2} \cdot 5$	4	$S_{4}(5)$	$2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 13$	2
$L_{3}(3)$	$2^{4} \cdot 3^{3} \cdot 13$	2	$2^{7} \cdot 3^{6} \cdot 5 \cdot 13$	4	
$L_{2}(25)$	$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$	4	${ }^{2} F_{4}(2)^{\prime}$	$2^{11} \cdot 3^{3} \cdot 5^{2} \cdot 13$	2
$U_{4}(4)$	$2^{12} \cdot 3^{2} \cdot 5^{3} \cdot 13 \cdot 17$	4			
$U_{3}(4)$	$2^{6} \cdot 3 \cdot 5^{2} \cdot 13$	4			

Now by Lemma 2.7(2), $P S L_{2}(q)$ has a Frobenius group of the shape $q: \frac{q-1}{2}$. Since $\frac{q-1}{2}$ for $q=5,9,17,25$ is even, Lemma 2.6 implies that G has an element of order $2 \cdot 13$ or $2 \cdot 17$, both contradicting Fig. 2.

Therefore, G must satisfy condition (b) of Lemma 2.2. The primes non-adjacent to 2 are 13 and 17 , hence $\{13,17\} \subseteq \Pi(S)$, and regarding Tables 1 and 2 the only simple group whose order is divisible by 13 and 17 is $U_{4}(4)$. Therefore we obtain $U_{4}(4) \leq \frac{G}{K} \leq \operatorname{Aut}\left(U_{4}(4)\right)$.

Now we observe that the group $U_{4}(4)$ contains Frobenius subgroups of types 17: 4 and $13: 3$. We may assume K is elementary abelian p-group for $p \in\{2,3,5,13,17\}$. Therefore by Lemma 2.6 and Fig. 2 the orders of K can not be divisible by 13 . By Lemma 2.7 in [14] we have $17 \nmid|K|$. Therefore $\Pi(K) \subseteq\{2,3,5\}$.

By [2] the outer automorphism group of $U_{4}(4)$ is a cyclic group isomorphic to Z_{4}, hence we have the following lemma:

Lemma 4.1. If G is an almost simple group related to $L=U_{4}(4)$, then G is isomorphic to one of the following groups: $L, L: 2$ or $L: 4$.

If $U_{4}(4) \leq \frac{G}{K} \leq U_{4}(4): 4$, then by above lemma, we have $\frac{G}{K}=U_{4}(4), U_{4}(4): 2$ or $U_{4}(4): 4$.
If $\frac{G}{K}=U_{4}(4): 2$, then let t denote the outer automorphism of order 2, by [1] we have $C_{U_{4}(4)}^{(t)}=$ $=S_{4}(4)$ implying that t centralizes an element of order 17 violating Fig. 2.

If $\frac{G}{K}=U_{4}(4): 4$, then, similar to the above case, let t denote the outer automorphism of order 4, by [1] we have $C_{U_{4}(4)}^{(t)}=S_{4}(4)$ implying that t centralizes an element of order 17 violating Fig. 2. Therefore, the only possibility is $\frac{G}{K} \cong U_{4}(4)$.
Theorem 2.2 is proved.

1. Aschbacher M., Seitz G. M. Involutions in chevalley groups over fields of even order // Nagoya Math. J. - 1976. 63, № 1. - P. 1-91.
2. Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of finite groups. - Oxford: Clarendon Press, 1985.
3. Darafsheh M. R. Order of elements in the groups related to the general linear groups // Finite Fields Appl. - 2005. 11. - P. 738-747.
4. Darafsheh M. R. Pure characterization of the projective special linear groups // Ital. J. Pure and Appl. Math. - 2008. - № 23. - P. 229-244.
5. Darafsheh M. R., Karamzadeh N. S. On recognition property of some projective special linear groups by their element orders // Util. math. - 2008. - 75. - P. 125-137.
6. Hagie M. The prime graph of a sporadic simple group // Communs Algebra. - 2003. - 31, № 9. - P. 4405-4424.
7. Higman G. Finite groups in which every element has prime power order // J. London Math. Soc. - 1957. - 32. P. 335-342.

8. Behrooz Khosravi, Bahman Khosravi, Behnam Khosravi. A characterization of the finite simple group $L_{16}(2)$ by its prime graph // Manuscr. math. - 2008. - 126. - P. 49-58.
9. Kondratiev A. S. On prime graph components for finite simple groups // Math. Sb. - 1989. - 180, № 6. - P. 787-797.
10. Mazurov V. D., Xu M. C., Cao H. P. Recognition of finite simple groups $L_{3}\left(2^{m}\right)$ and $U_{3}\left(2^{m}\right)$ by their element orders // Algebra and Logic. - 2000. - 39, № 5. - P. 567-585.
11. Mazurov V. D. Recognition of finite simple groups $S_{4}(q)$ by their element orders // Algebra and Logic. - 2002. - 41, № 2. - P. 93-110.
12. Mazurov V. D., Chen G. Y. Recognisability of finite simple groups $L_{4}\left(2^{m}\right)$ and $U_{4}\left(2^{m}\right)$ by spectrum // Algebra and Logic. - 2008. - 47, № 1. - P. 49 - 55.
13. Mazurov V. D. Characterization of finite groups by sets of element orders // Algebra and Logic. - 1997. - 36, № 1. P. 23-32.
14. Passman D. S. Permutation groups. - New York: W. A. Benjamin Inc., 1968.
15. Shi W. J., Yang W. Z. A new characterization of A_{5} and the finite groups in which every non-identity element has prime order // J. Southwest China Teachers Coll. - 1984. - P. 9-36(in Chinese).
16. Vasilev A. V. On connection between the structure of a finite group and the properties of its prime graph // Sib. Math. J. - 2005. - 46, № 3. - P. 396-404.
17. Vasilev A. V., Grechkoseeva M. A. On recognition by spectrum of finite simple linear groups over fields of characteristic 2 // Sib. Math. J. - 2005. - 46, № 4. - P. 593-600.
18. Williams J. S. Prime graph components of finite groups // J. Algebra. - 1981. - 69, № 2. - P. $487-513$.
19. Zavarnitsine A. V. Recognition of finite groups by the prime graph // Algebra and Logic. - 2006. - 45, № 4.
20. Zavarnitsine A. V. Finite simple groups with narrow prime spectrum // Sib. Electron. Math. Repts. - 2009. - 6. P. 1-12 (http://semr.math.nsc.ru/v6/p1-12.pdf).

Received 29.08.11,
after revision -10.02 .12

