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ON THE COMPLEXITY OF THE IDEAL OF ABSOLUTE NULL SETS*

ПРО КОМПЛЕКСНIСТЬ IДЕАЛУ АБСОЛЮТНИХ НУЛЬ-МНОЖИН

Answering a question of Banakh and Lyaskovska, we prove that for an arbitrary countable infinite amenable group G the
ideal of sets having µ-measure zero for every Banach measure µ on G is an Fσδ subset of {0, 1}G.

У вiдповiдь на питання, поставлене Банахом i Ляскiвською, доведено, що для будь-якої злiченної аменабельної
групи G iдеал множин, що мають нульову µ-мiру для будь-якої мiри Банаха µ на G, є Fσδ-пiдмножиною {0, 1}G.

1. Introduction. This note is related to a paper by T. Banakh and N. Lyaskovska [1]. Given an
amenable group G, Banakh and Lyaskovska considered the ideal N of absolute null subsets of G,
i.e., sets having µ-measure zero for every Banach measure µ on G (a finitely-additive, probability,
left-invariant measure µ : P(G)−→ [0, 1] defined on the family of all subsets of G; see [3]). Since
each ideal on a countable infinite group G can be considered as a subspace of the Cantor set {0, 1}G

it makes sense to consider its descriptive properties. Banach and Lyaskovska asked ([1], Problem 4)
whether the ideal of absolute null subsets of the group Z is co-analytic. In this note we prove (see
Corollary 3.1) that for an arbitrary countable infinite amenable group G the ideal N is in fact Fσδ.
This follows from a characterisation of absolute null subsets of an arbitrary amenable group (see
Proposition 2.1) based on the notion of the intersection number of Kelly [2].

2. A characterisation of absolute null sets. Following Kelly [2] we define the intersection
number I(B) of a family B of subsets of a set X to be inf{i(S)/n(S)} where the infimum is taken
over all finite sequences S = (S1, . . . , Sn) of (not necessary distinct) elements of B, n = n(S) is the
length of S and

i(S) = sup

{
n∑
i=1

χSi(x) : x ∈ X

}
.

Proposition 2.1. Let G be an amenable group and A ⊆ G. Then the following are equivalent:
(1) A is absolute null.

(2) The intersection number of the family {gA : g ∈ G} is zero.

Proof. (1) ⇒ (2). Assume that I({gA : g ∈ G}) = δ > 0. By a theorem of Kelly (see [2],
Theorem 2), there is a finitely additive probability measure m defined on P(G) such that m(gA) ≥ δ
for each g ∈ G.

Let θ be a Banach measure on G. Following the proof of Invariant Extension Theorem (see [4],
Theorem 10.8) define a function µ : P(G)−→ [0, 1] by letting

µ(B) =

∫
G

m(g−1B)dθ(g), for B ⊆ G.

It is easy to see that µ is a Banach measure on G. Moreover, we have

µ(A) =

∫
G

m(g−1A)dθ(g) ≥ inf{m(g−1A) : g ∈ G} ≥ δ > 0,

which shows that A 6∈ N .
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(2)⇒ (1). Let µ be an arbitrary Banach measure on G. Suppose that µ(A) = ε > 0. Then, since
µ is left-invariant, we also have µ(gA) = ε for every g ∈ G. Consequently, by [2] (Proposition 1),
I({gA : g ∈ G}) ≥ ε > 0.

Proposition 2.1 is proved.
3. The Borel complexity of the ideal N . The following corollary of Proposition 2.1 gives an

answer to a question of Banakh and Lyaskovska (see [1], Problem 4).
Corollary 3.1. Let G be an amenable group and A ⊆ G. Then the following are equivalent:
(1) A is absolute null.

(2) ∀k ∈ N ∃n ∈ N ∃ḡ ∈ Gn+1 ∀S ⊆ {1, . . . , n+ 1} :

|S|
n+ 1

>
1

k + 1
⇒

⋂
i∈S

giA = ∅.

In particular, if G is countably infinity, then formula (2) gives a Fσδ definition of the ideal N .

Proof. It is easy to see that formula (2) simply states that I({gA : g ∈ G}) = 0 so its equivalence
with condition (1) was established in Proposition 2.1.

To prove the remaining part of the corollary, assume that G is countably infinity. Then it is enough
to show that for fixed n ∈ N, ḡ ∈ Gn+1 and S ⊆ {1, . . . , n+1} the family {A ⊆ G :

⋂
i∈S giA = ∅}

is closed in P(G).

But this follows from the fact that for A ⊆ G we have⋂
i∈S

giA = ∅ ⇐⇒ ∀g ∈ G ∃i ∈ S : g−1i g 6∈ A.

Corollary 3.1 is proved.
4. Some open problems. Let G be an arbitrary infinite group. Following a suggestion by Taras

Banakh (personal communication) let us call a set A ⊆ G Kelly null if the intersection number of
the family {gA : g ∈ G} is zero; denote by K the collection of all Kelly null subsets of G. In view
of Proposition 2.1, K is an ideal of subsets of G provided the group G is amenable. On the other
hand, Proposition 5.1 of [1] implies that if G has a free subgroup of rank 2, then K is not an ideal; in
fact G is then the union of two Kelly null sets. In any case, however, K contains a (possibly proper)
subfamily AK = {A ⊆ G : ∀K ∈ K K ∪A ∈ K} which already forms an ideal.

The remarks above lead to the following problems suggested by Banakh.
Problem 1. Characterise groups G for which K is an ideal.
Problem 2. Characterise groups G which are finite unions of elements of K.
Problem 3. Given a countably infinite group G find a combinatorial description of elements of

the ideal AK. What is its descriptive complexity? In particular, is it Borel?
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