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BICOMPLEX NUMBER AND TENSOR PRODUCT SURFACES IN R}

ITOBEPXHI JOBYTKY BIKOMIVIEKCHUX YHUCEJI
TA TEH30PHOI'O JOBYTKY B R

We show that a hyperquadric M in R3 is a Lie group by using the bicomplex number product. For our purpose, we
change the definition of tensor product. We define a new tensor product by considering the tensor product surface in the
hyperquadric M. By using this new tensor product, we classify totally real tensor product surfaces and complex tensor
product surfaces of a Lorentzian plane curve and a Euclidean plane curve.

By means of the tensor product surfaces of a Lorentzian plane curve and a Euclidean plane curve, we determine a
special subgroup of the Lie group M. Thus, we obtain the Lie group structure of tensor product surfaces of a Lorentzian
plane curve and a Euclidean plane curve. Morever, we obtain left invariant vector fields of these Lie groups. We consider
the left invariant vector fields on these groups, which constitute a pseudo-Hermitian structure. By using this, we characterize
these Lie groups as totally real or slant in R3.

I3 BUKOPHCTAHHAM T00YTKY GIKOMILIEKCHHX UMCEl MOKa3aHo, o rimepksanpuka M y R3 e rpymoro JIi. s mocsrHeHHs
Hamol MeTu MoAM(iKOBaHO O3HAUCHHS TEH30pHOro NoOyTKy. HoBmil TeH30pHHI M0OYyTOK O3HA4YE€HO MUIIXOM DPO3IVIAILY
MOBEPXHI TEH30pHOro A00yTKy B rimepkBazpumi M. 3a I0MOMOror IbOr0 HOBOTO JOOYTKY KIacH(piKOBaHO TOTAJILHO
JIHCHI ITOBEPXHI TEH30PHOTO JOOYTKY Ta KOMIIIEKCHI TOBEPXHI TEH30pHOT0 N0OYTKY II0CKoi KprBoi JIopeHIia Ta eBKIIi10BOT
MJI0CKOi KPHBOI.

3a JOMOMOTrOK MOBEPXOHb TEH30PHOTO J0OYTKY ITOCKOi KpuBOi JIOpeHIa Ta eBKIIiJOBOI IIOCKOT KPUBOI OTPUMAaHO
crenianbHy marpymy rpymu Jli M. TakuMm 9uHOM, OTPHEMaHO CTPYKTypy rpymH JIi Ui MOBEpXOHb TEH30PHOTO JOOYTKY
wiockoi KpuBoi JlopeHua Ta eBkiizoBoi miockoi kpuBoi. KpiM Toro, oTpuMaHo j1iBOiHBapiaHTHI BEKTOPHI MOJIST KX TPYII
JIi. Po3risiHyTO NMiBOIHBapiaHTHI BEKTOPHI MOJIS HA IIUX IPYIaX, sIKi yTBOPIOIOTH IICEBIOEPMITOBY CTPYKTYpy. Lle nae 3mory
oxapakTepu3ysarn rpymu Ji sik ToTaneHO miiicHi a6o ckicHi B R3.

1. Introduction. In the Euclidean space E™, the tensor product immersion of two immersions of a
given Riemannian manifold was firstly defined and studied by Chen in [3]. In particular, the direct
sum and the tensor product maps of two immersions of two different Riemannian manifolds are
defined by Decruyenaere and coauthors in [4] in the following way:

Let M and N be two differentiable manifolds and assume that f: M — E™ and h: N — E”
are two immersions. The direct sum map and tensor product map are defined respectively by

fOh: M xN—=E™  (feh)(p,q) = (i), fmp), hi(q),- .., hn(q)),

and

f®h: M xN—=E™,  (foh)(p.q = (fihi(a), - i) ha(q), -, fm(p)ha(q))-

Under certain conditions obtained in [4], the tensor product map f ® h is an immersion in the
space E™".

The simplest examples of the tensor product immersions are tensor product surfaces. In the
Euclidean space E", the tensor product surfaces of two Euclidean planar curves, as well as of a
Euclidean space curve and a Euclidean plane curve are investigated in [8] and [1], respectively.
Morever, in the semi-Euclidean space EI, the tensor product surfaces of two Lorentzian planar
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curves, as well as of a Lorentzian plane curve and a Euclidean plane curve are studied in [9] and
[10], respectively. Also, the tensor product surfaces of a Lorentzian space curve and a Euclidean
plane curve as well as of a Euclidean space curve and a Lorentzian plane curve are studied in [5] and
[6], respectively.

It is often quite diffucult to decide if a manifold is paralelizable. S™ is paralelizable if and only
if n =1,3,7. Is it possible to make paralelization of any surface? The answer is yes. If M is a Lie
group then M is paralelizable.

In [12], the authors showed that a hyperquadric M in R* is a Lie group by using bicomplex
number product. Also, in the same paper, Lie group structure of tensor product surfaces of Euclidean
planar curves was obtained .

In this paper, we obtain Lie group structure of some special hypersurface in R3. By changing the
tensor product rule given in R} in [3] we give a new tensor product definition. As a result, the tensor
product surface is obtained as a subset of the hyperquadric M. Hence, we investigate the tensor
product surface as a Lie group. For our aim, if we change the definition of tensor product given in
above as;

(@®B) (t,s) = (a1(t)Br(s), a1(t) Ba(s), —az(t)Ba(s), az(t) Bi(s))

we can easily obtain the same results which given in [10]. By using the new tensor product, we
classify totally real tensor product surfaces and complex tensor product surfaces of a Lorentzian
plane curve and a Euclidean plane curve. Furthermore we give some theorems for tensor product
surfaces to be Lie groups and one parameter Lie subgroups. Finally, we give the necessary conditions
for Lie group structures of tensor product surfaces to be totally real or slant in R%, respectively.

At the beginning, we recall notions of bicomplex numbers.

2. Preliminary. A bicomplex number is defined by the basis {1,4,j,7j} where 4, j,ij satisfy
i? = —1, j2 = —1, ij = ji. Thus any bicomplex number z can be expressed as * = x11 +
+ x90 + x3j + x41j V1,9, T3,24 € R. We denote the set of bicomplex numbers by Cs. For any
x=x11 4+ xoi + x3j + 2415 and y = y11 + Yot + y37 + yaij in Cy, the bicomplex number addition
is defined as

z+y=(x14+y1) 1+ (x2+y2)i+ (z3+y3)j+ (wa+ya)ij.

The multiplication of a bicomplex number x = x11 + x2¢ + 235 + x49j by a real scalar A is

defined as
Az = Ax1l + Axot + Axsgj + Axgij.
With this addition and scalar multiplication operations, C5 is a real vector space.

Bicomplex number product, denoted by x, over the set of bicomplex numbers C5 is given by
the following table:

x| 1 i i

ij|ijg —j —i 1
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The vector space Co together with the bicomplex product X is an real algebra [13].
Since bicomplex number algebra is associative it can be considered in terms of matrices. Consider
the set of matrices

X1 —T2 —T3 T4
X2 X1 —T4 —x3
Q= r,eR, 1<i<4
€3 —T4 X1 —T2
| T4 x3 T2 T |

The set () together with matrix addition and scalar matrix multiplication is a real vector space.
Furthermore, the vector space together with matrix product is an algebra.
The transformation

h: Co —Q
given by
(21 —z2  —u3 T4 |
) ) . Z2 €1 —T4 —x3
h(x =211 + xoi + 23] + x41)) =
T3  —X4 1 —Z2
T4 3 T Ty

is one-to-one and onto. Moreover, Vz,y € Cy and VA € R, we have

h(z+y)=h(z)@h(y),
h (Ax) = Ah(x),

h(zxy)=h(x)h(y).

Thus the algebras C' and @ are isomorphic.

For further bicomplex number concepts see [13].

3. Tensor product surfaces of a Lorentzian plane curve and a Euclidean plane curve. In this
section, we change the definition of tensor product as follows:

Leta: R — R? (+—) and 3: R — R? be respectively a Lorentzian planar curve and a Euclidean
planar curve. Put a(t) = (a1 (t), aa(t)) and B(s) = (B1(s), P2(s)). Let us define their tensor prod-
uct as

f=a®p: R* 5 R5(++——),
3.1
f(t,s) = (aa(t)Br(s), ar(t)Ba(s), —aa(t)Ba(s), a(t)Bi(s)).

By using equation (3.1), the canonical tangent vectors of f (¢, s) can be easily computed as

g‘: = (4 (t)B1(s), a1 (t)Ba(s), —as(t)Ba(s), sy (t) Bi(s)),
(3.2)
% — (ar(t)B} (), a1 (£) B (s), —aa(t) Bh(s), (1) B} (5)).

where o means the derivative of «.
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In the following, we will assume that « is a spacelike or a timelike curve with spacelike or a
timelike position vector and we will assume that 3 is a regular curve. We shall also assume that the
tensor product surface f (¢, s) is a regular surface, i.e., 11922 — gi5 7 0.

Hence relations (3.1) and (3.2) imply that the coefficients of the pseudo-Riemannian metric,
induced on f (¢, s) by the pseudo-Euclidian metric g of R is given g = da? + da3 — da? — da3, are

af o

gir =49 (4;4) =0 (0/,0/ )92 (B,8),
of 0

g2=y9 <a{ 8‘£> =g1 (o, a') g2 (B,8),

_ (of Of\ _ ' gl
g22 =g <8S, 85) =0 (O[,Oé)gg (/8 7B)a
where g1 = dz? — dx3 and go = da? + dx3 are the metrics of R? and R?, respectively. Consequently,
an orthonormal basis for the tangent space of f (¢, s) is given by

1 of

= Vg 0

€1

. 1 <g 0 g 8f>
2 = 15— 9125, |-
\/}911 (911922 - 9%2)‘ Os ot

Recall that the mean curvature vector field H is defined by

1
H = 5(51h(€1, e1) + ezh(e2, e2)),

where h is a second fundamental form of a® and ¢; = g(e;, e;), i = 1, 2. In particular by Beltrami’s
formula we have

1
H=—ZAf.

Next, recall that a surface M in R‘Ql is said to be minimal, if its mean curvature vector field H
vanishes identically.

A basis of the normal space of f(t,s) can ce calculated as follows. Let J;: R? — R? and
Jo: R? — R? be the folowing maps:

Jl(wa y) = (ya .’E),

JQ(xvy) = (_yvx)'

Observe that g (X, J1(X)) =0 for X € R? and g2 (Y, J2(Y)) = 0 for Y € R2.
Then the normal space is spanned by

ni(t, s) = Ji(a(t) @ J2 (B(s)) = (az(t), a1(t)) ® (—B2(s), Bi(s)) =

= ( — ag(t)Ba(s), az(t)B1(s), —aa(t)Bi(s), —al(t)ﬁz(é’))’
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na(t, s) = Ji(d/ (1)) ® J2(B'(s)) = (a5(t), a1 (t) @ (—B5(s), Bi(s)) =

= (= ab(t)Ba(s), ab(1)B1 (), —ah (D51 (s), —ah ()85 (5)).

4. Totally real and complex Lorentzian immersion and slant tensor product surface. Let
a: R — R?(+-) and 3: R — R? be respectively a Lorentzian planar curve and a Euclidean planar
curve and let f = a® [ be their tensor product. We consider the pseudo-Hermitian structure J given
by

J (u,v,z,w) = (—v,u, —w, z), u,v,z,weER.

In the next theorem by using the new product we classify totally real tensor product surface in the
semi-Euclidean space R3, i.e., the pseudo-Hermitian structure .J at each point transforms the tangent
space to the surface into the normal space.

Theorem 1. The tensor product immersion f = a ® [ of a Lorentzian plane curve and a
Euclidean plane curve is a totally real Lorentzian immersion with respect to the pseudo-Hermitian
structure J on RS if and only if o is a Lorentzian circle centered at 0 or [3 is a straight line passing

through origin.

Proof. Im f is a totally real surface if and only if J (g{) is orthogonal to (;f and J (?) is
S S

orthogonal to e
We have
J (g{) = (—ai(t)ﬂ2(8),a/1(t)51(s),—a’z(t)ﬁl(s), —ag(t)ﬂz(g))'

By a straightforward calculation, we obtain

() )0 %)
() )

if and only if (a1} — agab) = 0 or (8165 — 51 82) = 0. Integrating these equations, we find that
either [ is a straight line passing through origin, or « is a Lorentzian circle centered at 0.

Theorem 1 is proved.

Theorem 2. The tensor product immersion f = a ® 8 of a Lorentzian plane curve and a
Euclidean plane curve is a complex Lorentzian immersion with respect to the pseudo-Hermitian
structure J on R} if and only if « is a straight line passing through origin and (3 is an Euclidean
planar curve.

Proof. By definition, the following equations are satisfied:

ISSN 1027-3190. Yxp. mam. acypn., 2012, m. 64, Ne 3

We have



312 S. 0. KARAKUS, Y. YAYLI

J (gD — (0l (®)B2(5), h (1)1 (s), ~ab(t) B (5), —ah(D)Ba(s) )

J (gi) = (—a1(t)5§(8),a1(t)ﬁ{(s),—aQ(t)/Bi(s), _a2(t)55<3))'

By a straightforward calculation, we obtain

(o(5) ) s(o(0) )0
g (7 (%) m) = (@050 - ah(aate)) (825 + 55(5). 42

o(7(5): m) = (@0t - axa) (570 + 52(5).
From equations (4.1) and (4.2) we have
o (H)aa(t) — ar(t)ah(t) = 0.

It follows that « is straight line passing through the origin.

Theorem 2 is proved.

Recall the definition of a slant surface with respect to pseudo-Hermitian structure J on Rj. Let
M be a surface with respect to the pseudo-Hermitian structure J on R3. Then M is said to be a
proper slant if

g(‘](el)>e2):)‘7 )\ER,

along M for a given orthonormal basis {e;, ea} of T,M (p € M) which is independent of the choice

of {e1,ea} [3].
Leta: R — R? (4+—) and 3: R — R? be respectively a Lorentzian planar curve and a Euclidean
planar curve. We consider polar coordinates on « and 3. Then,

a(t) = p1(t) (cosht,sinht),

B (s) = p2(s) (coss,sins).
A straightforward computation leads to
Php2 |
\/ (07 = 1) (05 + P3) — pT5
If py = constant, it follows that p; = a;e?, a; € R, b; € R. Hence « is a hyperbolic spiral and /3

is a circle centered at the origin. If po #constant, let us put 'O—ff =g, k=1,2. Then
Pk

g(J(e1),e2) =

J@+na-a)-1]
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Therefore Im f is a proper slant surface if and only if
2

) — )2
@+n0-a-1
It follows that
2 2
C2 + )\ - 2 _ 2
ENE A (1 cl) .

This means that ¢;(¢) and cy(s) must be constant functions, which implies that p;(t) = aje’t,

p2(8) = age?®, ay,by,as,by € R. Consequently, a is a hyperbolic spiral and 3 is a logarithmic
spiral. In this way, we proved the following theorem.

Theorem 3. The tensor product immersion f = « ® 8 of a Lorentzian plane curve and a
Euclidean plane curve is a slant surface with respect to pseudo-Hermitian structure J on R if and
only if a is a hyperbolic spiral and (3 is either a circle centered at O or a spiral curve.

5. Lie groups and some special subgroup. In this section, we deal with the hyperquadric

M = {z = (w1,22,33,24): 123+ 224 =0, g (x,2) # 0},

M = {x = (ml,m2,m3,az4) : 13 + 2014 = 0, LL‘% + x% — x% — mi % 0}.
We consider M as the set of bicomplex numbers,
M = {$ =x11 + a0t + 23] + x48j € Co: w173 + o4 = 0, g(x,x) #* O}.

The components of M are easily obtained by representing bicomplex number multiplication in

matrix form:
_acl —X9 —XI3 Xq i
—_— o T —xT4 —XI3
M=<z= : mas+ a4 =0, g(z,x)#0
T3 —X4 T —X2
T4 T3 T2 T

Theorem 4. The set of M together with the bicomplex number product is a Lie group.
Proof. M is a differentiable manifold and at the same time a group with group operation given
by matrix multiplication. The group function
M x M — M
defined by (x,y) — x.y is differentiable. So, (M, x) can be made a Lie group so that h is a
isomorphism.
Theorem 4 is proved.

Consider the group M; of all unit bicomplex numbers x = x11 + x2i + 35 + x4%j on M with
the group operation of bicomplex multiplication. That is

Miy={zeM: g(x,x) =1},
My={zeM: z}+2;—25—a]=1}.
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Lemma 1. M is 2-dimensional Lie subgroup of M.
6. Lie algebra of Lie group M and M;. M is a Lie group of dimension three. Let us find its
Lie algebra. Thus, let

a(t) = a1 (t)]l + ao(t)i + as(t)j + aq(t)ij

be a curve on M such that a (0) = 1, i.e., ag (0) = 1, oy, (0) = 0 for m = 2, 3, 4. Differentiation of
the equation o (t)as(t)+aa(t)au(t) = 0 yields the equation o (t) s (t)+ a1 (t) ol () +ady(t)ca(t)+
+ ap(t)ay(t) = 0. Substituting ¢ = 0, we obtain o (0) = 0. The Lie algebra is thus constituted by

0

oy,
form ¢ = (3 + 27+ (4ij. Let us find the left invariant vector field X on M for which X |,—1= (. Let

B (t) be a curve on M such that 3 (0) = 1, 8/ (0) = ¢. Then L, (3(t)) = x5(t) is the left translation
of the curve () by the bicomplex number z, its tangent vector is 3’ (0) = x(¢. In particular, denote
by X,, those left invariant vector fields on M for which,

0

ooy,

vectors of the form ( = (,,, ) la=1, where m = 1,2, 4. The vector ( is formally written in the

Xm ‘a:l:

b
a=1

where m = 1,2,4. These three vector fields are represented at the point & = 1, in bicomplex
notation, by the bicomplex units 1,%,4j. For the components of these vector fields at the point
x = x11 + 290 + x3j + x47j we have (X1), = z1, (X2), = zi, (X3), = zij:

X1 = (z1, 22,3, 24),
X2 - (—562,371,—154,173)7

X4 = (24, —x3, —22, 1),

where all the partial derivaties are at the point x.
M is a Lie group of dimension two. Its Lie algebra can be easily found that

Xy = (=22, 21, —24,23),
X4 - (':U47 —x3, —T2, .’L'l).

Theorem 5. M is paralelizable.
Proof. 1f we put

T1 = p1COS P,
T2 = pP1 sin ¢7
x3 = pacosb,

T4 = posinb,

then from z1x3 + x2x4 = 0 we have
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cos¢p =sinf, sin¢g = —cosb,
or
cos ¢ = —sin ¥, sin ¢ = cos 6.

Besides, the condition x2 +23 — 2% — 23 # 0 gives p? —p3 # 0. We have the parametric representation
of one component of M with vector position 7(p1, p2, @)

r = (p1cos ¢, p1sing, —pasing, p2 cos ¢) .

Hence, we have three vectors tangent to coordinate curves

Tp, = (cos¢,sin¢,0,0),
79, = (0,0, —sin ¢, cos ¢),

Ty = (_101 sin st pP1 COS ¢7 —p2 COS ¢a —pP2 sin ¢) :

Evidently these vectors are ortogonal each other and put together a paralelization of M.

Theorem 5 is proved.

7. Tensor product surfaces and Lie groups. In this section, by using the tensor product surfaces
of a Lorentzian plane curve and a Euclidean plane curve, we determine some special subgroup of this
Lie group M. Thus, we obtain Lie group structure of tensor product surfaces of a Lorentzian plane
curve and a Euclidean plane curve. Also, we obtain left invariant vector fields of these Lie groups.

Theorem 6. Let a: R — R? be a hyperbolic spiral, and 3: R — R? be a spiral with the same
parameter, i.e., ot) = e(cosht,sinht) and B(t) = e"(cost,sint), a,b € R. Then their tensor
product is a one-parameter subgroup in a Lie group M.

Proof. We obtain

y(t) = a(t) ® B(t) = elotb)t (coshtcost,coshtsint, —sinhtsint,sinh¢cost).
It can be easily seen that

v (t1) x v (t2) = v (t1 + t2)

for all ¢1,t2. Hence, (y(t), X) is a one-parameter Lie subgroup of (M, x).

Theorem 6 is proved.

Corollary 1. Let a: R — R? be a hyperbolic spiral and B: R — R? be a circle centered at O
with the same parameter, i.e., a(t) = e (cosht,sinht), a € R, and B(t) = (cost,sint). Then their
tensor product is a one-parameter subgroup in a Lie group M.

Proof. In Theorem 6 taking b = 0, we find that § is a circle centered at O. Then their tensor
product is a one-parameter subgroup in a Lie group M.

Corollary 2. Let a: R — R? be a Lorentzian circle centered at O and 3: R — R? be circle
centered at O with the same parameter, i.e., a(t) = (cosht,sinht) and 5(t) = (cost,sint). Then
their tensor product is a one-parameter subgroup in a Lie group M.
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Proof. Since ||a(t) ® B(t)||, = 1, it follows that a(t) ® 5(t) C M;. By taking a = b = 0, in
Theorem 6, we find that « is a Lorentzian circle centered at O and [ is a circle centered at O. Then
their tensor product is a one-parameter subgroup in a Lie group M;.

Theorem 7. Let a: R — R? be a Lorentzian circle centered at O and 3: R — R? be circle
centered at O with the same parameter, i.e., a(t) = (cosht,sinht), 5(t) = (cost,sint), and v(t) =
= a(t) ® B(t) be their tensor product. Then, the left invariant vector field on y(t) is X = X9 + X4,
where X9 and X4 are left invariant vector fields on M.

Proof. Let us find the left invariant vector field on ~(¢) to the vector,

d

Uza

e=0
n(t) = (1,t,0,t) is a curve with tangent vector w. Its image under L is the curve,

Ly(n(t)) = gn(t) = (x11 4+ 29t + x3j + x4ij) % (1 4+ ti + tij) =

= (z1 — zot + x4t) + i (21t + 22 — w3t) + J (—22l + T3 — 24t) + 0J (X1t + 23T + 24) .
Its tangent vector is,
Lg(n(t))(t) = (—.TQ + a:4) +1 (xl — .763) +7 (—xg — x4) + 13 (:111 + 1’3) .

For the left invariant vector X we have
0

0 0 0
X =(— — — — —T9 — — —_—
( xo + 334) 92y + ($1 :Ug) 92 + ( T2 :U4) s + (xl + ZC3) Bira

Theorem 7 is proved.

Conclusion 1. Let a: R — R? be a hyperbolic spiral (or a Lorentzian circle centered at O)
and 3: R — R? be a spiral (or circle centered at O) with the same parameter. Then their tensor
product is the maximal integral curve.

Now, we want to classify these Lie groups as totally real or slant in semi-Euclidean space Rj.
In order to do so, consider the left invariant vector field on these groups which constitute pseudo-
Hermitian structure which is given by J = X5.

Corollary 3. Let a: R — R? be a Lorentzian circle centered at O, B: R — R? be either a
spiral or a circle centered at O, and f = « ® 3 be their tensor product immersion. Then the Lie
group f(t,s) is totally real Lorentzian immersion with respect to the pseudo-Hermitian structure J.

Proof. From Theorem 1 we know that, if « is a Lorentzian circle centered at O then f = a ®
is totally real surface with respect to the pseudo-Hermitian structure .J.

Corollary 4. Let a: R — R? be a hyperbolic spiral and 3: R — R? be either a circle centered
at O or a spiral and f = o ® [3 be their tensor product. Then the Lie group f (t,s) is a proper slant
surface with respect to pseudo-Hermitian structure J on Rj.

Proof. From Theorem 3 we know that, if « is a hyperbolic spiral and § is either a circle centered
at O or a spiral curve then f = a ® [ is proper slant surface with respect to the pseudo-Hermitian
structure J.
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