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QUASI-UNIT REGULARITY AND QB-RINGS®
KBA3IOAUMHUYHA PEI'YVISIPHICTD TA QB-KUIbLA

Some relations for quasiunit regular rings and @) B-rings, as well as for pseudounit regular rings and Q) B -rings, are
obtained. In the first part of the paper, we prove that (an exchange ring R is a QQ B-ring) < (whenever x € R is regular,
there exists a quasiunit regular element w € R such that x = xyx = xyw for some y € R) < (whenever aR + bR = dR
in R, there exists a quasiunit regular element w € R such that a + bz = dw for some z € R). Similarly, we also give
necessary and sufficient conditions for () Boo-rings in the second part of the paper.

OTpuMaHO JiesKi CMiBBIHOIICHHS [T KBa310MMHUYHUX PErY/SIPHHUX KiIelb Ta () B-KiJelb, a TAKOXK IS ICEBIOOTMHUTHUX
peryinsipHux Kinerp Ta () Boo-Kinenp. ¥V mepiuiif yacTHHI cTaTTi JOBeAeHO, mo (kinble R 3 BIaCTUBICTIO 3aMiHu € ()B-
KUIBIIEM) < (KO & € R € peryisipHuM, TO iCHy€ KBa3iOAMHUYHHUN PErylsipHUN elleMeHT w € R Takuii, mo ¢ = zyxr =
= zyw ms gesxoro y € R) & (sxmo aR+ bR = dR B R, To icHye KBa3i0MUHUYHHIN PETyIIpHUH eeMeHT w € R Takui,
mo a + bz = dw s aesikoro z € R). AHANOTIYHHM YHHOM OTPHMaHi HeOOXiaHi Ta JocTaTHI yMOBH s () Boo-Kinelb
HaBE/ICHO Y APYTii JacTHHI CTaTTi.

1. Introduction. Let R be an associative ring with nonzero identity. Recall that a ring R is an
exchange ring if for every right R-module A and any decomposition A = M' @ N = @, A;,
where M}, ~ Rp and the index set I is finite, there exist submodules A, C A; such that A =
= M' @(D,c; A;) [8]. The class of exchange rings is large and includes all von Neumann regular
rings, all w-regular rings and C*-algebras of real rank zero [1] etc. The ring R is said to have stable
range one provided that whenever ax + b = 1 in R, there exists y € R such that a + by is a unit in
R. An exchange ring R has stable range one if and only if whenever = € R is regular, there exists
a unit-regular element w € R such that x = zyxr = zyw for some y € R if and only if whenever
aR + bR = dR in R, there exists a unit regular element w € R such that a + bz = dw for some
z € R [9]. Some necessary and sufficient conditions under which an exchange ring R has weakly
stable range one are also proved.

Replacing invertibility with quasi-invertibility in stable range one Pere Ara discover a new class
of rings, the () B-rings [2]. The ring R is a () B-ring provided whenever aR + bR = R in R, there
exists y € R such that a + by is quasi-invertible in R. As well known, this definition is left-right
symmetric. Replacing R;l with R} in the definition of ) B-ring, we say that a ring is @ Boo-ring
if whenever aR + bR = R in R, there exists y € R such that a + by € R} [6].

In this paper, the definitions of quasi-unit regular and pseudo-unit regular are given. An element
x € R is called quasi-unit regular (pseudo-unit regular) if there exists a quasi-invertible (pseudo-
invertible) element v € R such that x = zux. The purpose of this article is to investigate the
relations of quasi-unit regular and Q B-rings, as well as pseudo-unit regular and () B.o-rings. It is
shown in Section 2 that an exchange ring R is a () B-ring if and only if whenever x € R is regular,
there exists a quasi-unit regular element w € R such that © = xyx = xyw for some y € R if and
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only if for any regular x € R there exist a quasi-unit regular element w € R and an idempotent
e € R such that x = ew if and only if whenever aR 4+ bR = dR in R, there exists a quasi-unit
regular element w such that a + bz = dw for some z € R. In Section 3, we extend these to () Bo-
ring. It is extended the results of Chen [7]. We prove that an exchange ring R is a () Boo-ring if
and only if whenever x € R is regular, there exists a pseudo-unit regular element w € R such that
r = ryx = xyw for some y € R.

Throughout this paper, R denotes an associative ring with identity. We denote by R~!, E(R)
the set of all units of R, the set of all idempotents in R, respectively. An element z € R is regular
provided that x = xyx for some y € R, which is also commonly known as von Neumann regular.

2. Quasi-unit regular. Let us start by recalling the concept of quasi-invertibility. We say that
elements x and y in a ring R are centrally orthogonal provided that Ry = yRz = 0, and we write
xly. An element u in an arbitrary ring R is said to be quasi-invertible if there exist elements a, b
in R such that

(1 —ua)L(1l—bu). (2.1)

The set of quasi-invertible elements in R will be denoted by R, *. It is easily checked that R™'R_ ! =
= Rq_1 and Rq_lR_1 = Rq_l.

If u € R;', then we have the equation (1 — ua)u(l — bu) = 0. Taking v = a + b — aub this
implies that u = uvu. By computation 1 —uv = (1 —ua)(1 —bu) and 1 —vu = (1 — au)(1 — ub), so
that we have the relation (1 —uwv) L (1 — vu). We say in this situation that v is a quasi-inverse of w.

Definition 2.1. Let R be a ring. An element x € R is quasi-unit regular if there exists a
quasi-invertible element v € R such that x = xux. A ring R is quasi-unit regular if every element
in R is quasi-unit regular.

Lemma 2.1. Let R be a ring and x € R. Then the following are equivalent:

(1) z is quasi-unit regular;

2) z = zyx = xyu, where y,u € R and u € Rq_l;

(2" x = vyx = uyw, where y,u € R and u € R;l;

3) x = xyx = xyw, where y,w € R and w is quasi-unit regular;

3" x = zyxr = wyzx, where y,w € R and w is quasi-unit regular.

Proof. (1) = (2). Since x is quasi-unit regular, there exists a quasi-invertible element u € R
such that z = zux. Let ux = e and 1 — xzu = f. Then e, f € E(R) and

euru + uf = uruzru + u(l — zu) = u, e(uzu +uf) + (1 —e)uf = u.

Let g = (1 —e)ufu; (1 — e) where u; ! is the quasi-inverse of u. Since (1 — e)uf = (1 — e)u, we

have

=g l—eu=(1- e)uugl(l —e)u =g(l — e)u = gu.

Therefore

u(z + fuq_l(l —e))(1— eufuq_l(l —e))u = (ux + ufuq_l(l —e))(1— eufuq_l(l —e))u =
=(e+ ufu;l(l —e))(1— eufu(;l(l —e))u=(e(l— eufu;l(l —e))+ ufu;l(l —e))u=
=(e+(1- e)ufugl(l —e))u=(e+ g)u=u.
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Let
v=(1- eufu*1(1 —e)u=(1+ eufu;l(l —e)) 1, p=x+ fu;l(l —e).

Then vpv = v. Since R~ 1R 1 R_ Rq_lR_1 we have v € R‘1
Since (1—vq1v)R(1—vvq ) —O we have (1—vq Lo)p (1—1)1) 1) =0. Thenp = vt +2p —
— vq_lvp — pvvq_ = v, Ly(— vy Lo)p + p(1 — (o 1), In view of Theorem 2.3 [2], we conclude

that p € R(;l. Itis clear that
r = zur = zu(r + fu;l(l —e)) = zup.

(2) = (1). Suppose that x = xyxz = zyu where u € R;'. Let z = yxy. Then © = zza = xzu
and z = zxz. Hence z = z(x + (1 — x2)u)z where = + (1 — zz)u = u € R;'. That is, z is
quasi-unit regular. It follows from (1) = (2) that there exists a p € R, ' such that z = zuz = zup.
Lete=1—zzx and f = zu. Then e, f € E(R) and

fre(l—f)+e(l—f)=1-, (I=fle(l-f)=1-f.
Then

zte(l—flp=fp+e(l—flp= 1+ fpz(1—f)) 'pe R, .
It is clear that z = x(z 4 e(1 — f)p)z with z +e(1 — f)p € R_'. Therefore, x is quasi-unit regular.
(2) = (3). It is trivial.
(3) = (2). Let x = zyr = xyw where w is quasi-unit regular. It follows from (1) = (2), we

2—=candpe Rq_l. It follows from the equation zy + (1 — zy) = 1 we have

have w = ep where e
xyw + (1 — zy)w = w. Since x = xyw, we have z + (1 — zy)w = w. Then zy + (1 — xy)wy = wy.
Hence wy + (1 — zy)(1 — wy) = 1. It follows that ewy(1 —e) + (1 —2y)(1 —wy)(1 —e) =1 —e.
Consequently,

e+ (1—ay)(1—wy)(l—e)=1—cwy(l—e) = (1+ewy(l —e))™*

is invertible in R. Let

w=w+(1—zy)(1—wy)(1 - e)p= (e + (1 — 29)(1 — wy) (1 — €))p.

Since R™'R;' = R, ' and R;'R™' = R;!, we have u € R, !. It is easy to check that 2 = xyx =
= zyw = xyu where u € Rq_l.

Similarly, we can prove equivalences of (1), (2'), (3').

Lemma 2.1 is proved.

Corollary 2.1. Let R be a ring and x € R be regular. Then the following are equivalent:

(1) x is quasi-unit regular;

(2) there exist some idempotent e € R and some quasi-invertible element v € R such that
T = eu;

(2") there exist some idempotent e € R and some quasi-invertible element u € R such that
T = ue;

(3) there exist some idempotent ¢ € R and some quasi-unit regular element w € R such that
T = ew;

(3') there exist some idempotent ¢ € R and some quasi-unit regular element w € R such that

r = we.
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Proof. (1) = (2). It follows from (1) = (2) of Lemma 2.1.

(2) = (3). It is obvious.

(3) = (1). Assume x = zyx = ew, where e € R is an idempotent and w is quasi-unit regular. Let
w = wuw where u is a quasi-invertible in R. Since zy+ (1 —zy) = 1, we have ewy+ (1 —zy) = 1.
It follows that

ewy(l—e)+ (1 —zy)(1—e)=1—ce.

Then

vi=e+(1—zy)(l—e)=1—ewy(l —e) = (1 +ewy(l —e))*

is a unit in R. Let
p=z+ 1 —zy)(1 —e)w=(e+ (1 —2y)(1 —e))w = vw = vwuw = vw(uv')vw.

Since R‘qu_l = Rq_l and Rq_lR_1 = Rq_l, we have uv~! € Rq_l. Then q is quasi-unit regular. It is
easy to check that x = zyr = zy(z+ (1 —2y)(1 —e)w) = xyp. The result follows from Lemma 2.1.

Similarly, we can prove equivalences of (1), (2'), (3').

Corollary 2.1 is proved.

By the result of Theorem 8.4 [2], an exchange ring R is a () B-ring if and only if every regular
element in R is quasi-unit regular. It follows from Lemma 2.1, we immediately have the following
characterizations of exchange () B-ring.

Theorem 2.1. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB-ring;

(2) whenever x € R is regular, there exists a u € Rq_l such that x = ryxr = xyu for some
y e R;

(2') whenever x € R is regular, there exists a u € Rq_1 such that x = xyxr = uyx for some
y e R;

(3) whenever x € R is regular, there exists a quasi-unit regular element w € R such that
T = xyx = xyw for some y € R;

(3") whenever x € R is regular, there exists a quasi-unit regular element w € R such that
T = ryxr = wyx for some y € R.

By Theorem 2.1, an exchange ring R is a () B-ring if and only if whenever x = xyx € R, there
exists a quasi-invertible element v € R such that x = xyu if and only if whenever z = zyx € R,
there exists a quasi-invertible element u € R such that x = uyx. The following theorem gives a
common quasi-invertible element u € R such that x = xyu = uyz.

Theorem 2.2. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB-ring;

(2) whenever © = xyx, there exists a quasi-invertible element uw € R such that © = xyu = uyz;

(3) whenever x = xyx, there exists a quasi-invertible element u € R such that xyu = uyx.

Proof. (1) = (2). For any x = xyx in R, we have x = zzz and z = zxz with z = yzy. By
Theorem 8.4 [2], we have z = zxz = zvz for some quasi-invertible element v € R. Let

u=(1—zz—vz)v(l —zax — 2v) = v —vzV + .
Since v € R, !, there exist a,b € R such that (1 —va)L(1 — bv). It is easily checked that (1 — 2z —

—wvz)2=1and (1 — zz — 2v)? = 1. Then
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(1 —u(l=zx—2z2v)a(l —xz—vz)) = (1 —xz—v2)(1l —va)(l — zz — vz),

(1-—(1—z2x—2v)b(1 —2z —v2)u) = (1 — 20 — 20)(1 — bv)(1 — za — 2v).
Hence, (1 — u(1l — zz — zv)a(l — 2z —vz))L(1 — (1 — z& — 2v)b(1 — xz — vz)u). Therefore, u is
quasi-invertible. It follows from
TZU = T2V — TZVZV + TZT = TZT = X, UZL = VZT — VIVEZT + T2T = TZL = X

we obtain that x = ryu = xzu = uzzx = uyzx with u € Rq_l.

(2) = (3). It is obvious.

(3) = (1). For any z = zyz in R, there exists a quasi-invertible element v € R such that
xyu = uyx. Define

n: xyR=xR ~ yxR, re R, n(xr)=uyxr;

a: (1—zy)R— (1 —yx)R, reR, (1—zyr—(1- ym)u;1(1 — xy)r;

B: (1—yx)R— (1 —zy)R, reR, (1—yx)r— (1—azxy)ur
Since (1 — zy)u = u(1 — yx), we easily check that o and S are right R-module homomorphisms.
Define
¢: R=2R® (1 —2y)R > yzR® (1 —yz)R =R,

1 €xR, € (l—ay)R,  ¢(z1+22) =n(21) + a(z2);
Y: R=yzR® (1 —yx)R—zR& (1 —2y)R =R,

y1 €yzR,  yp € (l—yz)R, Yy +y2) =n "(y1) + Blya).
Then

(1= o) (1 + w2) = 9 — (1 — wy)uy 'uwy =

1

=1 —-zy)ze — (1 — asy)uq_luwg =1 —zy)(1 —u, u)xe

q
for any x1 € 2R, x2 € (1 — xzy)R. On the other hand,

(1= ) (y1 + 42) = y2 — (1 — yx)uuy 'ys = (1 — ya) (1 — uuy ' )ys
for any y; € yzR, ya € (1 —yz)R. Then we have ¢ is quasi-invertible such that z = x¢x. Therefore
R is a Q) B-ring.

Theorem 2.2 is proved.

Chen had shown that an exchange ring R is a () B-ring if and only if for any regular z € R,
there exist e € E(R) and u € R;l such that x = eu [5] (Theorem 5). Using Corollary 2.1, we have
following corollary.

Corollary 2.2. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB-ring;

(2) whenever x € R is regular, there exists an idempotent e € R and a quasi-unit regular element
w € R such that x = ew;

(2") whenever x € R is regular, there exists an idempotent ¢ € R and a quasi-unit regular
element w € R such that x = we.

ISSN 1027-3190. Ykp. mam. acypnu., 2012, m. 64, Ne 3



420 XIAOQING SUN, SHANGPING WANG, XIAOQIN SHEN, JIANGHUA LI

Canfell showed that R has stable range one if and only if aR + bR = R implies that there exists
aunit v € R such that a + by = du for some y € R, by using the method of completion of diagrams
[4] (Theorem 2.9). We generalize Canfell’s result to () B-rings.

Proposition 2.1. Let R be a ring. Then the following are equivalent:

(1) R is a QB-ring;

(2) whenever aR + bR = R, there exists some z € R such that a + bz is quasi-invertible;

(3) whenever aR + bR = dR, there exists some quasi-invertible element uw € R such that
a + bz = du for some z € R.

Proof. (3) = (2) = (1) are obvious.

(1) = (3). Let aR + bR = dR. Then a,b € dR. Hence we may assume that a = dr and b = ds
for some r,s € R. Let ax + by = d. Equivalently we have drx + dsy = d. It follows that dg = 0
where g = 1 — rz — sy. Now from the fact that 7z + sy + g = 1 we have there exists some 2z’ € R
such that 7 + (sy + g)z' = u € R;'. Hence

du=d(r+ (sy+9)2) =a+byz' +dgz’ =a+byz =a+bz
where z = y2/.

Proposition 2.1 is proved.

In case R is an exchange ring. We even have the following more general result.

Theorem 2.3. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB-ring;

(2) whenever aR + bR = R, there exists some quasi-unit regular element w € R such that
a+ bz = w for some z € R;

(3) whenever aR + bR = dR, there exists some quasi-unit regular element w € R such that
a+ bz = dw for some z € R.

Proof- (1) = (3). It follows from Proposition 2.1.

(3) = (2). It is obvious.

(2) = (1). Let x = zyx for some y € R. Since xy + (1 — xy) = 1. By assumptions we have
x4+ (1 — xy)z = w is quasi-unit regular for some z € R. Hence

x =zyr = zy(w — (1 — zy)z) = xyw.
The conclusion follows from Theorem 2.1.

Theorem 2.3 is proved.

Following a similar route above we give the following characterizations of () B-ring.

Theorem 2.4. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB-ring;

(2) whenever aR+bR = R, there exists a quasi-unit regular element w € R such that aw+by = 1
for some y € R;

(3) whenever aR + bR = R, there exist quasi-unit regular elements wy, wy € R such that
awy + bwy = 1;

(4) whenever a1 R + ... + am R = R, there exist quasi-unit regular elements wy, ..., w, € R
such that awy + ... + apwy, = 1, where m > 2;

(5) whenever aR+bR = dR, there exists a quasi-unit regular element w € R such that aw+by =
= d for some y € R;
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(6) whenever aR 4+ bR = dR, there exist quasi-unit regular elements wy, wo € R such that
awy + bwy = d;

(7) whenever a1 R + - - - + a,, R = dR, there exist quasi-unit regular elements w1, ..., wy, € R
such that awy + . .. + apwy, = d, where m > 2.

Proof. (7) = (4) = (3) = (2) and (7) = (6) = (5) = (2) are obvious.

(1) = (7). Assume that a; R+ ... + a,, R = dR. Then a; € dR, v = 1,...,m. Let a; = dt;,
i =1,...,m.Obviously we have dt1x1+. . .+dt,,x,, = d forsomez; € R,i=1,...,m. It follows
that dg = 0, where g = 1 — (dtyz1 + ... + dtyxy,). Since t1z1 + ... + Lz, + g = 1 we obtain
that thy R+ ... +t,, R+ gR = R. Note that R is an exchange ring, so there exist idempotent e; € R,
i=1,...,m, and idempotent f € R, where e; and f are orthogonal satisfying e; +...+e,+f =1
such that e; = t;y;, ¢ = 1,...,m, and f = gz for some y;, 2 € R, i = 1,...,m. Let w; = y;e;,
i =1,...,m. Then t,w; = tyy;e; = e; and wit,w; = y;e;e; = y;e; = w;. Since R is a () B-ring,
we have w; is quasi-unit regular by Theorem 8.4 [2]. It follows from tjwy + ... + tpwy, + g2 =
=e1+...+en+ f=1that aws + ... + apwy, = d(tiwr + ... + tpwy, + g2) = d.

(2) = (1). Let x = zyx for some y € R. Since yx+ (1 —yx) = 1, we have yR+ (1 —yx)R = R.
By assumptions there exists a quasi-unit regular element w € R such that yw + (1 — yz)z = 1 for
some z € R. Hence z = zyx = x(yw + (1 — yx)z) = zyw. It follows from Theorem 2.1 that R is
a () B-ring.

Theorem 2.4 is proved.

The following proposition may be viewed as a supplement of Theorem 2.4 in case m = 1, which
also generalizes Theorem 4 [5].
Proposition 2.2. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB-ring;

(2) whenever aR = bR, there exists a quasi-invertible element uw € R such that b = au;

(3) whenever aR = bR, there exists a quasi-unit regular element w € R such that b = aw.

Proof. (1) = (2). Given aR = bR, then a = bz and b = ay for z,y € R. From zy+ (1 —xy) =
= 1, we have z € R such that z + (1 —zy)z = u € Rq_l. It is easy to verify that bxy = b. Then
a=br="0b(z+(1—2xy)z) =bu.

(2) = (3). It is trivial.

(3) = (1). Let x = zyx for some y € R. Since xR = xyR, we can find a quasi-unit regular
element w € R such that z = zyw. Then z = zyzr = zyw. It follows from Theorem 2.1 that R is a
Q) B-ring.

Proposition 2.2 is proved.

Corollary 2.3. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB-ring;

(2) whenever 1: aR ~ bR, where a,b € R, there exists a quasi-invertible element u € R such
that ¢¥(a) = bu;

(3) whenever i: aR ~ bR, where a,b € R, there exists a quasi-unit regular element w € R such
that ¥ (a) = bw.
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Proof. (1) = (2). If ¢: aR ~ bR, then b = ¢(ax) and a = )~ (by) for some x,y € R. Then
b = Y(azx) = P~ (by)z) = byy(z). Since yy(z) + (1 — yy(z)) = 1 and R is a QB-ring, we
have y + (1 — y(x))z = u € R, Hence ¢(a) = by = b(y + (1 — yy(x))z) = bu.

(2) = (3). It is trivial.

(3) = (1). It follows from Proposition 2.2.

Corollary 2.3 is proved.

The ideas of the following result come from Lemma 1.2 [3].

Proposition 2.3. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB-ring;

(2) whenever x = xyz, there exists a € R such that y — a is quasi-invertible and 1 — xa is
invertible;

(3) whenever x = xyx, there exists a € R such that x — a is quasi-unit regular and 1 — ya is

invertible.
Proof. (1) = (2). Let x = zyx for some y € R. Since yr+ (1 —yz) = 1 and R is a  B-ring, we
have there exists some z € R such that u: = y+ (1 — yx)z is quasi-invertible. Let a = — (1 — yx)z.

Then y — a = u. Moreover, since © = zyz, we have 1 — za = 1 + z(1 — yx)z = 1 is invertible.

(2) = (3). Assume x = zyx. Let z = yay. Obviously, x = xzx and z = zxz. By assumption,
there exists a’ € R such that u := z — @’ is quasi-invertible and 1 — za’ is invertible. Let a = zya’.
Then

l—ya=1-yayd =1—zd, v —a=axyr — zyad = 2y(x — d’) = eu,

where e = zy is an idempotent and u € R !, Hence = — a is quasi-unit regular by Corollary 2.1.
(3) = (1). For any z = xyx in R, we have x = xzx and z = zxz with z = yxy. Then there
exists a’ € R such that w := z — o’ is quasi-unit regular and u := 1 — zd’ is invertible. Hence

ryw = zy(r — d') = v — 2yd = v — vyryd = — 22d' = (1 — 2d') = 2U0.

I = zyw’ where w' = wu~!. Assume that w = wpw, where p is the

It follows that x = xywu~
quasi-invertible in R. Then

1

w = wu! = wpwut = (wut) (up) (wut) = W' (up)w’,

where up € R_qu_ = R, ! Therefore, we have x = zyr = zyw’ with w’ is quasi-unit regular. It
follows from Theorem 2.1 that R is a () B-ring.

Proposition 2.3 is proved.

3. Pseudo-unit regular. Recall that two elements x,y € R are centrally orthogonal, denoted by
zly, if xRy = 0 = yRx. We say that two elements z,y € R are pseudo-orthogonal, denoted by
x4y, if RzRyR is nilpotent. Let R' = {u € R |3 a,b € R suchthat (1 —ua)j(l —bu)}. Itis
also easily checked that R1R} = R} and R !R™' = R

A ring R is a () By -ring provided that aR + bR = R implies that there exists ¥y € R such that
a+ by € R!. Obviously, every QB-ring is a Q Boo-ring.

Definition 3.1. Let R be a ring. An element x € R is pseudo-unit regular if there exists
u € R} such that v = xux. A ring R is pseudo-unit regular if every element in R is pseudo-unit
regular.
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Lemma 3.1. Let R be a ring and x € R. Then the following are equivalent:

(1) z is pseudo-unit regular;

(2) © = zyr = wyu, where u, y € R and u € R3};

2 x = xyx = uyz, where u, y € R and u € R},

3) z = zyx = xyw, where w, y € R and w is pseudo-unit regular;

(3" z = zyxr = wyx, where w, y € R and w is pseudo-unit regular.

Proof. (1) = (2). Since z is pseudo-unit regular, there exists u € R3! such that x = zux. Let
ur =eand 1 —xu = f. Then €? = uzuxr = uz = e and > = (1 — 2u)(l —zu) = 1 — 2u = f.
Hence euru + uf = uruzru + u(l — xu) = u and e(uzu + uf) + (1 — e)uf = u. Since u € R},
there exists v € R such that (1 — uv)j(1 — vu) and (R(u — uvu)R)™ = 0 = (R(v — vuv)R)™ for
some m € N by Lemma 2.1 [6]. Let g = (1 — e)ufv(l — e). Since (1 — e)uf = (1 — e)u, we see
that

(1 -e)ufv(l —e))u=(1—e)uvu — (1 — e)uveu = (1 — e)uvu — (1 — e)uvuzru =
=(1-e)uvu+ (1 —e)(u — uvu)zu — (1 — e)uaru =

=(1—-e)uvu — (1 —e)(u —uvu) + (1 — e)(u — uvu)zu.
Asaresult, (1 —e)u = (1 —e)ufv(l —e)u = gu (mod R(u — uvu)R). Similarly, we have
g> = (1 —e)ufv(l —e)ufv(l —e) = (1 —e)ufv(l —e) =g (mod R(u — uvu)R).
Then
u(z+ fo(l —e))(1 —eufv(l —e))u= (ux +ufv(l —e))(1 —eufv(l —e))u=

=(et+ufv(l—e))(l—cufv(l—e))u=(e(l —eufv(l—e))+ufv(l—e))u=

=(e+ (1 —-eufv(l —e))u=(e+ g)u = u(mod R(u — wvu)R).
Letp =2+ fv(l —e) and ¢ = (1 — eufv(l —e))u = (1 + eufv(l —e))~tu. Then gpg = q. Since
RR} = R} and R.JR™' = R}, we have g € R;'. Hence qpg = q in R/R(u— uvu)R. Since
g € (R/R(u—uvu)R)!, there exist a,b € R/R(u — uvu)R such that (1 — ga)y(1 — bg). It follows
from (1 — gp) = (1 —gp)(1 — ga) and (1 - pg) = (1 — bg)(1 — bp) that (1 — gp)i(1 — 5q). Then
p € (R/R(u—wvu)R)3}. By Lemma 2.5 [6], p € R'. Hence x = zux = zu(z + fu;'(1—e)) =
= zup.

(2) = (1). Suppose that x = ryz = xyu where u € R!. Let z = yay. Then = xzx = 22U
and z = zxz. Hence z = z(x+ (1 —z2)u)z where x+ (1 —z2)u = u € R z is pseudo-unit regular.
It follows from (1) = (2) that there exists a p € Ry! such that z = zuz = zup. Let e = 1 — 2 and
f = zu. Then e? = e and f? = f. It is easily checked that

fpz(l—=f)+el—f)=1-f and (1—fle(1-f)=1-F
Then
zte(l—flp=fot+el—flp=(1+ fwe(l - f))"'pe R
It is clear that z = z(z +e(1 — f)p)z with z+e(1 — f)p € Ry} Therefore, z is pseudo-unit regular.
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(2) = (3). It is trivial.
(3) = (2). Let © = xyx = xzyw where w is quasi-unit regular. It follows from (1) = (2), we

2 =eand p € R It follows from the equation zy + (1 — xy) = 1 we obtain

have w = ep where e
zyw + (1 — zy)w = w. Since x = xyw, we have x + (1 — zy)w = w. Then zy + (1 — zy)wy = wy.
Hence wy + (1 — zy)(1 — wy) = 1. It follows that ewy(1 —e) + (1 —2y)(1 —wy)(1 —e) =1 —e.

Consequently,

et (1—azy)(l —wy)(1 —e) =1 —ewy(l —e) = (1 +ewy(l —¢)) ™"
is invertible in R. Let

u=w+(1-zy)(l —wy)(l —e)p=(e+ (1 —ay)(l—wy)(l-e)p.

Since R7'R} = Ry and RIR™! = R, we have u € RZ!. It is easy to check that
r = ryr = xyw = ryu where u € R}

Similarly, we can prove equivalences of (1), (2'), (3').

Lemme 3.1 is proved.

Corollary 3.1. Let R be a ring and x € R be regular. Then the following are equivalent:

(1) x is pseudo-unit regular;

(2) there exist some idempotent e € R and some u € R} such that v = eu;

(2') there exist some idempotent e € R and some u € Ry} such that v = ue;

(3) there exist some idempotent e € R and some pseudo-unit regular element w € R such that
T = ew;

(3') there exist some idempotent ¢ € R and some pseudo-unit regular element w € R such that
T = we.

Proof. (1) = (2). It follows from (1) = (2) of Lemma 3.1.

(2) = (3). It is obvious.

(3) = (1). Assume & = xyx = ew, where e € R is an idempotent and w is pseudo-unit regular.
Let w = wuw where u € R}. Since 2y + (1 — 2y) = 1, we have ewy + (1 — zy) = 1. It follows
that ewy(1 —e) + (1 —zy)(1 —e) =1 —e. Then

vi=e+(1—zy)(l—e)=1—ewy(l —e) = (1 +ewy(l —e)) "
is a unit in R. Let
p=z+ (1 —zy)(1 —e)w=(e+ (1 —2y)(1 —e))w = vw = vwuw = vw(uwv')vw.

Since R'R! = Ry! and R !R™' = R}, we have uv=! € RZ!. Then g is pseudo-unit regular.
It is easy to check that z = zyr = zy(z + (1 — zy)(1 — e)w) = xyp. The result follows from
Lemma 3.1.

Similarly, we can prove equivalences of (1), (2), (3).

Corollary 3.1 is proved.

By the result of Theorem 2.1 [7], an exchange ring R is a () Bo-ring if and only if every regular
element in R is pseudo-unit regular. It follows from Lemma 3.1 and Corollary 3.1, we immediately
have the following characterizations of exchange () Boo-ring.
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Theorem 3.1. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QBy-ring;

(2) whenever x € R is regular, there exists a u € R} such that x = xyr = zyu for some
y e R;

(2') whenever x € R is regular, there exists a u € Ry such that x = xyx = uyx for some
y € R

(3) whenever x € R is regular, there exists a pseudo-unit regular element w € R such that
T = ryxr = xyw for some y € R;

(3") whenever © € R is regular, there exists a pseudo-unit regular element w € R such that
T = zyx = wyx for some y € R.

By Lemma 3.1 and Theorem 3.1, the proof of Theorems 2.2, 2.3 and 2.4, Propositions 2.1, 2.2
and 2.3 could be similarly extended to () B,o-ring.
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